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Non-autonomous vector integral equations
with discontinuous right-hand side

PaorLo CUBIOTTI

Abstract. We deal with the integral equation u(t) = f(t, [; g(t, z)u(z) dz), with t € I :=
0,1], f: I xR®™ > R® and g : I x I — [0,+o00[. We prove an existence theorem for
solutions u € L%(I,R"™), s €]1,+o0], where f is not assumed to be continuous in the
second variable. Our result extends a result recently obtained for the special case where
f does not depend explicitly on the first variable ¢t € I.
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1. Introduction

Let I :=[0,1], and consider the integral equation

(1) u(t) = f(/lg(t,z) u(z)dz) foraa. tel,

where f : R — Rand g : I x I — [0,400[ are given functions. Recently [3],
an existence theorem for solutions v € L*°(I,R) to equation (1) was established,
where, unlike other recent results in the field, the continuity of the function f
was not assumed. More precisely, f was required to be a.e. equal in a suitable
interval [0,0] to a function f* : [0,0] — R such that the set {z € [0,0] : f*
is discontinuous at z} has null 1-dimensional Lebesgue measure. Later [4], such
result was extended to the case where f : R™ — R", establishing an existence
theorem for solutions u € L (I,R™) (Theorem 1 of [4]). In the latter result, the
above assumption (which specifies what kind of discontinuity is allowed for f) has
the following form: there exist a function f* : [[i[0,04] — R™ (with suitable
positive 0;) and n subsets E1, ..., E, of [[I[0,05] such that the projection of
each set F; over the i-th axis has null 1-dimensional Lebesgue measure and

n
(2) {ze H[O,UZ’] : f* is discontinuous at z}U
=1

Ufa e [JI0.00: 7*(@) # F(@)} € | B
i=1

i=1
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Moreover, it was proved that such result is no longer true if the set |Ji'; E; is
replaced by an arbitrary set £ C J]i [0, 0;] with null n-dimensional Lebesgue
measure.

Our aim in this note is to prove a further extension of Theorem 1 of [4] to
the more general case where the function f can depend explicitly on the variable
t € I. That is, we are interested in the study of the vector integral equation

(3) u(t) = f(t,/lg(t,z) u(z)dz) fora.a. tel,

where f: I xR"™ - R"™ and g : I x I — [0, +00[. We establish an existence result
for solutions v € L¥(1,R™) (with s €1, +00c]) which contains Theorem 1 of [4] as a
special case. In particular, the function f will not be assumed to be continuous in
the second variable, but only to satisfy, for a.a. ¢ € I, a condition analogous to (2)
with respect to a function f* : I x [[i;]0,0;[— R™ (with suitable positive o;).
The function f*(-,z) will be assumed to be measurable for each fixed z in a
countable dense subset of [[;;]0,0;[. Consequently, as regards regularity of f,
our assumptions are weaker than the usual Carathéodory condition assumed in
the literature (f measurable with respect to ¢ € I for all z € R™ and continuous in
x € R™ for a.a. t € I). In this direction, the reader can see for instance [2], [5], [6]
(where the same equation is studied in the scalar case n = 1 to obtain existence
of integrable solutions) and also [7], and references therein. In particular, we refer
to [2], [7] for motivations for studying equation (3).

Before concluding this section, we point out that our result is obtained as an
application of an existence result for inclusions of the type ¥ (u)(t) € F (¢, ®(u)(t))
established by O. Naselli Ricceri and B. Ricceri ([13]).

2. Notations

Essentially, we follow the same notations as in [4]. Let n € N be fixed. We denote
by my, the n-dimensional Lebesgue measure in R™. If i € {1,... ,n}, we denote
by m; : R™ — R the projection over the i-th axis. If z € R", we put x; := m;(z)
(namely, we use subscripts to denote component of vectors). If z,y € R™, we write
x <y (resp., x < y) to indicate that x; < y; (resp., z; <y;) foralli =1,... ,n.
If z,y € R", with < y (resp., z < y), we put |z, y[:= [[iL; |z, y[ (resp.,
(2, ) = [Ty s, i)

The space R™ (whose origin is denoted by 0y,) is considered with its Euclidean
norm || - ||n. fz € R" ¢ >0, A CR"™ A # 0, we put

B(z,e):=={y eR": |z — ylln < e},
(z,6) == {y €R": ||z — ylln <},
(z,A) := inf ||z — v||n.

vEA
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Moreover, we denote by A and ¢o A the closure and the closed convex hull of A,
respectively.

If p € [1,400], we denote by p’ the conjugate exponent of p. Moreover, we
denote by LP(I,R™) the space of all (equivalence classes of) measurable functions
uw: I — R™ such that

/||u(t)||g dt <400 if p< oo,
I

esssupger [|u(t)||n < 400 if p=+o0,

with the usual norm

1

p .
el o ey = ( JALCLE dt) it p< oo,
[ull oo (1,rny = esssupyer [u(t)|ln i p=+o0.

We put LP(I) := LP(I,R). As usual, we denote by C9(I,R"™) the space of all
continuous functions v : I — R"™. Finally, we put Iy :=]0,1[.

We refer the reader to [1], [11] for the definitions and the basic facts about
multifunctions.

3. The result

We now state our main result.

Theorem 1. Let o € R", with 0, < 0, s €]1,+00], and let f : Ix]0n, o[ — R™,
g:IxI—[0,400[, a: I — R™ measurable, 5 € L*(I,R"), ¢g € L/(I), with

j>s andj>1,¢; € L¥ (I), and P a countable dense subset of |0y, 0. Assume
that:

(i) for a.a.t € I, one has

0 < ay(t) < essinfyeqo, o filt, ) <esssupgeio, of filtsx) < Bi(t)

(4)

forall i=1,...,n;
(ii) one has
o
0 < [goll sy < min ———t—;
LD = a<i<n (1Bill pe(ny
(iii) there exist sets Fn,...,En Cl0n,0[, with my(m;(E;)) = 0 for all i =
1,...,n, and a function f* : Ix|0p, o[ — R™ such that for each x € P the

function f*(-,x) is measurable and for a.a. t € I one has

(5) ({x €100, 0: f*(t,2) # f(t, 2)}U
U {x €]0n,0[: f*(t,-) is discontinuous at a:}) - O E;;
=1
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(iv) for each t € I, the function g(t,-) is measurable;
(v) for a.a. z € I, the function g(-, z) is continuous in I, differentiable in I
and

g(t,z) < ¢o(z), 0< %(t,z) < ¢1(z) for all te Iy.

Then there exists a solution v € L°(I,R™) to equation (3).
Before proving Theorem 1, we need the two following propositions.

Proposition 1. Let 0 € R", with 0, < o, let f : Ix]0p,0[— R™, o : [ — R"
and 3 : I — R"™ three given functions, with a and 3 measurable, and let K C I
measurable, with K # I, such that for eacht € I \ K and eachi =1,... ,n one
has

a;i(t) <essinfycg, of fi(t,x) < esssupyeo, of filt: ) < Bi(t).

Moreover, assume that there exist a function f* : Ix]0p,0]— R™, a set E C
10n, o[, with my(E) = 0, and a nonempty set P C 10y, 0| such that:

(i) for eacht € I\ K, one has
{z €]0n,0[: f*(t,x) # f(t,2)}U

U {x €]0n,0(: f*(t,-) is discontinuous at z} C E;

(ii) for each x € P, the function f*(-,z) is measurable.
Then there exists a function f : Ix |0,, 0] — R™ satisfying:

(a) for alli=1,... ,n one has
a;(t) < fi(t,x) < Bi(t) forall te I\ K andall x €0, 0[;
(b) for eacht € I\ K, one has
{z €]0p,0[: ft,z) # f(t,z)} U{z €]0,,0]: f(t,-) is discontinuous at z} C F;
(c) for each z € P, the function f(-,z) is measurable.
PROOF: Let t € I\ K be fixed. For each i =1,... ,n, let

Ri(t) = {x €]0n, 0[: fF(t,2) < as(t)},
Si(t) := {x €]0n, o[ f7(t,x) > Bi(t)},

and let
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We claim that T'(t) € E. Arguing by contradiction, assume that there exists
& € T(t)\ E. Therefore, there is some 7 € {1,...,n} such that & € R:(t) U S:(2).
Assume that & € R;(t) (if # € S;(¢), we can argue in an analogous way). Hence
we have

f;(t,f) < O‘i(t) < ess inf:ce}on,a[ f;(t, I)
Since & ¢ FE, by assumption (i) the function f*(¢,-) is continuous at &. Conse-
quently, there exists A € R", with 0, < A, such that
[t u) <essinfyeo, o fi(t2) forall weV:=]2—X2+AC]0n,0f,

which contradicts assumption (i) since my, (V) > 0. Such a contradiction implies
T(t) C E, as claimed. Therefore, we have proved that

(6) Tt)CE forall tel\K.
Now, let f : Ix]0,, o[ — R™ be defined by setting

ftz) = { f*t,x) if tel\ K and x €]0y,,0[\T(t)

B(t) otherwise.
Taking into account (6) and assumption (i), it follows easily from the construction
that f satisfies conclusion (a) and also f(t,z) = f(t,x) for all (t,z) € (I \ K) x
(]0n,o[\E). To conclude the proof of conclusion (b), let t € I \ K and T €
10n, o[ \E be fixed, and let us show that the function f(Z,-) is continuous at .
By (6) we have T ¢ T'(f), hence
a;(t) < fF(t,T) < Bi(t) forall i=1,...,n.
Since by assumption (i) the function f*(Z,-) is continuous at T, there exists a
neighborhood U of T, with U C 0y, o[, such that
a;(t) < fi(t,z) < Bi(t) forall i=1,...,n andall z € U.

Consequently, we have U N T(Z) = 0, hence f(Z,z) = f*(Z,z) for all z € U. This
implies that f(Z,-) is continuous at T, as claimed. Finally we prove conclusion (c).
To this aim, fix x € P. Let

n

Si={teI\K:z¢Tt)} =[){t eI\ K:ai(t) < fi(t,x) < Bi(t)}.
i=1
By our assumptions, the set S is measurable. Since we have

. fr,x) i tesS
o) = { |
B(t) if tel\S,
it follows from assumption (i) that f(-,z) is measurable. O

The following proposition recollects some known facts about multifunctions.
For the reader’s convenience, we provide a short proof.
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Proposition 2. Let ¢ : I x R™ — R"™ be a given function, and let D be a
countable dense subset of R™. Assume that:

(i) for eacht € I, the function v(t,-) is bounded;
(ii) for each x € D, the function (-, x) is measurable.

Let F: I x R — 2R" be the multifunction defined by setting

(7) Flta):= () w( U {v@y)}).
ly=elln <7

Then one has:

(a) F(t,x) #0 for all (t,x) € I x R™;

(b) for each x € R™, the multifunction F(-,x) is measurable;

(c) for eacht eI, the multifunction F(t,-) has closed graph;

(d) if t € I and ¥(t,-) is continuous at x € R™, then F(t,z) = {¢(t,z)}.

PRrROOF: (a). Let (t,z) € I x R™ be fixed. For each m € N, put

A= U @)

yeD
1
H?!*Z“nﬁm

Since the set D is dense in R", it is immediate to see that A, # 0 for all m € N.
Consequently, since Ap11 C Ay for all m € N, the family {A,}men has the
finite intersection property. Since each A, is closed, by assumption (i) it follows
that F(t,2) = (,,eny Am # 0, as desired.

(b). Fix € R™. By assumption (ii) and Theorems 8.2.2 and 8.2.4 of [1], for
each fixed m € N the multifunction

tel-w( J {ulty))

yeD
ly—zlln<

is measurable. Again by Theorem 8.2.4 of [1], the multifunction ¢ — F(¢,x) is
measurable.

(c). Fix t € I. Let {#P} and {§P} be two sequences in R", converging to
x* € R™ and y* € R", respectively, such that

(8) 9P € F(t,#P) for all pe N.
Let m € N be chosen. Let v € N be such that

1
(9) (|12P — z*||n < . for all p>w.
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By (8) and (9), for each p > v we have

pew( U wewt)cw( U )
lly—2P|n < g Hy—f*euig%

Since the last set does not depend on p, we get

vew( U wtn)

yeD
1
ly—a*lIn< %

As m € N was arbitrary, we get y* € F(t,z*), as desired.

(d). Let t € I be fixed, and let z € R™ be such that (¢, -) is continuous at z.
Let € > 0 be fixed. Then, there exists § > 0 such that

¥(t, B(x,9)) € B(¥(t,x),€).

Consequently, for each m > % one has

o U {ety}) CBEte).e),
Ilyff/jr?ﬁ%

hence F(t,z) C B(¢(t,),¢). Since ¢ was arbitrary and F(t,z) # ), we easily get
F(t,z) = {¢(t, )}, as claimed. O

PROOF OF THEOREM 1: We can suppose j < +oo. Put E := (J; E; (of
course, mp(F) = 0), and let K C I, with mq(K) = 0, such that (4) and (5) hold
for each t € I\ K. Now, let f : Ix]0,,0[— R" be a function satisfying the
conclusion of Proposition 1 (the assumptions of Proposition 1 are satisfied), and
let ¢ : I x R™ — R™ be defined by

(10) Wit z) — { ft) At (6o € (T oo

B(t) otherwise.
In particular, observe that
(11) a(t) <y(t,z) < B(t) forall (t,z)e (I\K)xR™

Let 2 be a dense countable subset of R™\ |0, c[. Hence, the set D := PUQ is a
dense countable subset of R™. It follows easily from the above construction that
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1 and D satisfy the assumptions of Proposition 2. Consequently, the multifunc-
tion F : I x R® — 2R" defined by (7) satisfies the conclusion of Proposition 2.
Moreover, by (10) and (11) we get

a2) {F@mgkmymm if (ta)e(I\K)xR"

F(t,z) = B(t) if (t,7) € K x R™.

Now we want to apply Theorem 1 of [13] taking T =1, X =Y = R", p = s,
q= j/7 V =L*(I,R"), ¥(u) =u, r = Hﬁ”LS(LR")? P(A) = +oo,

D(u)(t) :/Ig(lf,z)u(z)dz7

and F : I x R™ — 2R" ag above. In particular, we observe the following facts.

(a) ®(L(I,R™)) C CO(I,R™). This follows easily from our assumptions (iv)
and (v) and the Lebesgue’s dominated convergence theorem.

(b) If v € L*(I,R™) and {v*} is a sequence in L*(I,R™), weakly convergent to v
in L7’ (I, R™), then the sequence {®(vF)} converges to ®(v) strongly in L (I, R™).
This follows by Theorem 2 at p. 359 of [10], since g is j-th power summable in I x I

(note that ¢ is measurable on I x I by the classical Scorza-Dragoni’s theorem; see
[14] or also [9]).

(c) By (12) (taking into account that 0, < a(t) for all ¢ € I\ K), the function

h:tel— sup d(0p,F(t,x))
TER™

belongs to L¥(I) and ||k sy < (|8l ps(1,r7)-

Therefore, taking into account the above construction, all the assumptions of
Theorem 1 of [13] are satisfied. Consequently, there exist a function & € L*(I,R™)
and a set H C I, with m1(H) = 0, such that
(13) a(t) € F(t,®(a)(t)) forall tel\H.

In particular, by (12) we have
(14) a(t) € [a(t),B(t)] forall tel\(HUK).

For each fixed i =1,... ,n, let v; : I — R be defined by

7i(t) = i (B() (1)) = /1 olt, 2) (=) d=.
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For each t € I, by (ii), (v) and (14) we have
o
0 <%(t) < lldoll oy Nl s () < 27— 1Bill Ls(ry = 04 -
Z 2y D = Ty D =

hence
(15) Yi(I) C [0, 04).

By (iv), (v) and (14), it is easy to see that ~; is strictly increasing, and also by
Lemma 2.2 at p. 226 of [12], we have

%*yi(t) = /I %(t,z) G;(z)dz >0 forall te .

By Theorem 2 of [15] (taking into account (a)), the function ~, Lis absolutely
continuous. Put

Si =7 H(mi(B;) U{0,03}) N yi(1)].

By assumption (iii) and Theorem 18.25 of [8], we get m1(.S;) = 0. At this point,
put

n
S:=(JS)UKUH
i=1

Choose any point t* € I\ S. We claim that

(16) D(a)(t*) €]0p, o[ \E.

To see this, observe that for each ¢ = 1,... ,n we have ;(t*) ¢ m;(E;) U{0,0;},
hence by (15) we get v;(t*) €]0,0;[ and also ®(a)(t*) ¢ E;. Therefore, (16)
follows. Since ¥(t*,z) = f(t*,z) for all x €]0,,0[, and by (16) the function

F(t*,-) is continuous at ®(@)(t*), it follows that 1 (¢*, - ) is continuous at @ (a)(¢*),
hence (taking into account conclusion (d) of Proposition 2) we have

F(t°,2(a)(t") = {v(t*, @@) (")} = {f(t*, 2(@)(t"))} = {f(¢", 2(a)(¢"))}.

Consequently, (13) implies
a(t™) = f(t, 2(a)(t7)).

As t* was any point in I\ S and m1(S) = 0, the proof is complete. O
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Remark. The example at p. 245 of [3] shows that in assumption (v) of Theorem 1
one cannot assume 0 < %%(t, z) < ¢1(z). Moreover, as we pointed out in Section 1,
the example provided at the end of [4] shows that in assumption (iii) of Theorem 1

the set |Ji*_; E; cannot be replaced by any set E C]0,, 0| with my(E) = 0.

The next example shows that the sets Fq,... , Fp in assumption (iii) of Theo-
rem 1 cannot be assumed to depend on t € I.

Example. Let n =1, s = 400, at) = %, Bt)=3,0=4,9(t, z2) =t ¢o(z) =1,
¢1(z) =1 and

1 if z#t
(17) f(t’x)_{z if o=t
It is easy to check that all the assumptions of Theorem 1 are satisfied, with the
exception of assumption (iii). Moreover, observe that if one puts f*(¢,2) = 1,
than for each ¢ €]0,1] one has {x €]0,4[: f*(t,z) # f(t,z)} = {t} (or also, one
can take f* = f and observe that for each t €]0,1] one has {x €]0,4[: f(¢,-) is
discontinuous at x} = {¢}; in both cases, the function f*(-,x) is measurable for
all 2 €]0,4[). Now we prove that there is no solution u € L!(I) to problem (3).
Arguing by contradiction, assume that such a solution exists. Consequently, by
(17) we get u(t) € {1,2} for a.a. t € I. Therefore, we have

(18) u(t) = f(t,tlullpygy) foraa. tel

Now, assume that |[u[[z1;y = 1. By (17) and (18) we get u(t) = 2 a.e. in I,
a contradiction. If, conversely, we assume that [lul[z1y > 1, again by (17)
and (18) we get u(t) =1 a.e. in I, another contradiction. This proves our claim.
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