On remote points, non-normality and π -weight ω_1

Sergei Logunov

Abstract. We show, in particular, that every remote point of X is a nonnormality point of βX if X is a locally compact Lindelöf separable space without isolated points and $\pi w(X) \leq \omega_1$.

Keywords: remote point, butterfly-point, nonnormality point Classification: 54D35

1. Introduction

We investigate some types of points in remainders $X^* = \beta X \setminus X$ of Čech-Stone compactifications.

A point $p \in X^*$ is called a remote point of X if it is not in the closure of any nowhere dense subset of X. This kind of points became popular after the papers [3], [4] of van Douwen had been published. The existence of remote points in the remainders of ccc nonpseudocompact spaces with π -weight ω_1 was proved by Dow [2]. An inspection of the relevant results in the literature reveals that the remote points constructed so far satisfy our condition (*) below. This leads us to the notion of a strong remote point. It is unknown to the author whether there is an example of a remote point, which is not a strong remote point.

If removing a point p from a compact Hausdorff space results in obtaining a nonnormal subspace, then p is called a nonnormality point of the space. There are several simple proofs that, under CH, any point of ω^* is a nonnormality point of ω^* ([8], [9]). "Naively", it is known only for special points of ω^* . If p is an accumulation point of some countable discrete subset of ω^* , or if p is a strong R-point, or if p is a Kunen's point, then p is a nonnormality point of ω^* (Blaszczyk and Szymanski [1], Gryzlov [5], van Douwen, respectively). If X is a normal second countable space without isolated points, which is either locally compact or zero-dimensional, then every point of its remainder is a nonnormality point of βX ([6], [7]).

In some cases the fact that $p \in X^*$ is a strong remote point of X permits to show that p is a b-point of βX , i.e. that there are sets F and $G \subset X^* \setminus \{p\}$ which are closed in $\beta X \setminus \{p\}$, disjoint and have p as a limit point [7], [10] (see below). It easily implies that p is a nonnormality point of βX , i.e. $\beta X \setminus \{p\}$ is not normal.

In our paper, the following results are obtained.

Theorem 1.1. Let X be a locally compact Lindelöf separable space without isolated points and $\pi w(X) \leq \omega_1$. Then every remote point $p \in X^*$ of X is a b-point (and, consequently, a nonnormality point) of βX .

Theorem 1.2. Let $X = \bigcup_{i \in \omega} X_i$ be a normal separable space without isolated points and $\pi w(X) \leq \omega_1$. Then every strong remote point $p \in X^*$ of X is a *b*-point (and, consequently, a nonnormality point) of βX .

2. Proofs

We will present a proof of Theorem 1.2 below, assuming its conditions hold. By Claims 1 and 2 it is clear that Theorem 1.1 is an easy corollary to Theorem 1.2.

The set of all functions from ω to ω is denoted by ω^{ω} . For a set $U \subset X$ let $U^{\epsilon} = \beta X \setminus Cl_{\beta X}(X \setminus U)$ if U is open and $U^* = Cl_{\beta X}U \setminus X$ if U is closed. A set $U \subset X^*$ is called τ -bounded for a cardinal τ iff for any $F \subset U$, $|F| < \tau$ implies $Cl_{\beta X}F \subset U$. A π -base \mathcal{U} for X is a set of nonempty open subsets of X with the property that each nonempty open subset of X contains a member of \mathcal{U} . The π -weight of X, $\pi w(X)$, is the minimum cardinality of a π -base for X.

Let 2^X be set of all subsets of X. A subset π of 2^X is called *strong cellular* if the closures of its members in X form a pairwise disjoint family. One *refines* a subset σ of 2^X , $\pi > \sigma$, if $U \cap V \neq \emptyset$ implies $U \subset V$ for any $U \in \pi$ and $V \in \sigma$. If, in addition, $\{U \in \pi : U \subset V\}$ is finite for every $V \in \sigma$, then π finitally refines σ , $\pi >_{fin} \sigma$. And, finally, $\pi *$ -refines $\sigma, \pi >_* \sigma$, iff there is a finite subset $\delta \subset \pi$ such that $\pi \setminus \delta$ refines σ .

If π_0, \ldots, π_n are nonempty subsets of 2^X , then the collection

$$\prod_{k=0}^{n} \pi_{k} = \{\bigcap_{k=0}^{n} U_{k} : U_{k} \in \pi_{k} \text{ and } \bigcap_{k=0}^{n} U_{k} \neq \emptyset\}$$

is said to be their *product*.

From now on $X = \bigcup_{i \in \omega} X_i$ is a free topological sum and $\pi_0 = \{X_i : i \in \omega\}$.

Definition 2.1. A point $p \in X^*$ is called a *strong remote point* of X iff p is a remote point of X and

(*) for any family of open sets $\mathcal{W} \subset 2^X$ the following holds: if $\mathcal{W} > \pi_0$ and $p \in \bigcup \mathcal{W}^{\epsilon}$, then there is a subfamily $\mathcal{W}' \subset \mathcal{W}$ such that $\mathcal{W}' >_{fin} \pi_0$ and $p \in (\bigcup \mathcal{W}')^{\epsilon}$.

From now on a strong remote point $p \in X^*$ is fixed. It is easy to see that $p \notin Cl_{\beta X}X_i$ for each $i \in \omega$ and that (*) is trivial if every X_i is compact.

A discrete in X countable family of nonempty open sets $\pi \subset 2^X$ is called a *p*-chain if $\pi >_{fin} \pi_0$ and $p \in \bigcup \pi^{\epsilon}$. Thus π_0 is a *p*-chain. Next we put

$$[\pi] = \bigcap \{ Cl_{\beta X} \bigcup \sigma : \sigma \subset \pi \text{ is a } p\text{-chain} \}$$

for any p-chain π and $S = \{s \in [\pi_0] : s \text{ is a strong remote point of } X\}$. We fix $Y = \bigcup_{i \in \omega} Y_i$, where $Y_i = \{y_{ij} : j \in \omega\}$ is a countable everywhere dense subset of X_i , and put

 $T = \{t \in [\pi_0] : t \in Cl_{\beta X} D \text{ for some } D \subset Y, \text{ for which every } D \cap Y_i \text{ is finite } \}.$

From now on

$$\xi(p) = \{A \subset \omega : p \in (\bigcup_{i \in A} X_i)^{\epsilon}\}$$

is an ultrafilter on ω . For any $f, g \in \omega^{\omega}$, $f <_p g$ iff $\{i \in \omega : f(i) < g(i)\} \in \xi(p)$. It is a folklore and easy to see that there are so called $\xi(p)$ -dominant families $\{f_{\alpha} : \alpha < \tau\} \subset \omega^{\omega}$ having the following properties: $f_{\alpha} <_p f_{\beta}$ whenever $\alpha < \beta < \tau$ and for any $g \in \omega^{\omega}$, $g <_p f_{\alpha}$ for some $\alpha < \tau$. We fix one of them $\mathcal{F} = \{f_{\alpha} : \alpha < \lambda(p)\}$ of the smallest cardinality $\lambda(p)$. Then, obviously, $\lambda(p) \geq \omega_1$. For any $\mathcal{G} \subset \omega^{\omega}$, $|\mathcal{G}| < \lambda(p)$ implies $g <_p f$ for each $g \in \mathcal{G}$ and for some $f \in \omega^{\omega}$.

Now for every $i \in \omega$ we fix a π -base $\mathcal{U}_i = \{U_{i\alpha} : \alpha \in \omega_1\}$ for X_i . For any $\beta \in \omega_1$, for $\{U_{i\alpha} : \alpha < \beta\} \subset \mathcal{U}_i$ we fix a cellular refinement $\{\mathcal{V}_{ij}(\beta) : j \in \omega\}$ with the following properties:

- 1) every $\mathcal{V}_{ij}(\beta)$ is a maximal strong cellular family of nonempty open subsets of X_i ;
- 2) $\mathcal{V}_{ij+1}(\beta) > \mathcal{V}_{ij}(\beta)$ for each $j \in \omega$;
- 3) for every $\alpha < \beta$, $\mathcal{V}_{ij(i,\alpha,\beta)}(\beta) > \{U_{i\alpha}\}$ for some $j(i,\alpha,\beta) \in \omega$.

We put, also, $\mathcal{V}_g(\beta) = \bigcup_{i \in \omega} \mathcal{V}_{ig(i)}(\beta)$ for each $g \in \omega^{\omega}$ and fix a *p*-chain $\pi_g(\beta)$ so that $\pi_g(\beta) \subset \mathcal{V}_g(\beta)$.

Claims 1 through 4 are easy and sometimes well-known and are left as exercises to the reader.

Claim 1. If $p \in X^*$ is a *b*-point of βX , then $\beta X \setminus \{p\}$ is not normal.

Claim 2. Let $p \in X^*$, where X is a locally compact Lindelöf space. Then there exists a family $\{X_n : n \in \omega\}$ of compact regularly closed subsets of X such that $\{X_n : n \in \omega\}$ is a discrete in X family and $p \in Cl_{\beta X} \bigcup \{X_n : n \in \omega\}$.

Claim 3. For any *p*-chains π and σ , if $\pi >_* \sigma$, then $[\pi] \subset [\sigma]$.

Claim 4. For any finite family of *p*-chains $\{\pi_i\}_{i=0}^n$, $\prod_{i=0}^n \pi_i$ is a *p*-chain refining every π_i .

Claim 5. For any countable family of p-chains $\{\pi_i : i \in \omega\}$ there is a p-chain π *-refining every π_i .

PROOF: Let $\sigma = \bigcup_{n \in \omega} \sigma(n)$, where

$$\sigma(n) = \prod_{i=0}^{n} \{ U \subset X_n : \text{ either } U \in \pi_i \text{ or } U = X_n \setminus Cl \bigcup \pi_i \}$$

S. Logunov

Then $Cl \bigcup \sigma = X$. So $Cl_{\beta X} Op \subset \bigcup \sigma^{\epsilon}$ for some neighborhood $Op \subset \beta X$. Any *p*-chain π such that $\pi \subset \{Op \cap U : U \in \sigma \text{ meets } Op\}$ is as required. \Box

Claim 6. T is $\lambda(p)$ -bounded.

PROOF: Let $F \subset T$ and $|F| < \lambda(p)$. For every $x \in F$, $x \in Cl_{\beta X} \bigcup_{i \in \omega} \{y_{ij} \in Y : j \leq f_x(i)\}$ for some $f_x \in \omega^{\omega}$. For some $f \in \omega^{\omega}$, $f_x <_p f$ for each $x \in F$. But then

$$Cl_{\beta X}F \subset Cl_{\beta X} \bigcup_{i \in \omega} \{y_{ij} \in Y : j \le f(i)\} \cap [\pi_0] \subset T.$$

Claim 7. S is $\lambda(p)$ -bounded.

PROOF: Let $q \in [\pi_0] \setminus S$. Then there is a maximal strong cellular family of open sets $\mathcal{W} = \{V_{ij} \subset X_i : i, j \in \omega\}$ such that $q \notin Cl_{\beta X} \bigcup \sigma$ for any $\sigma \subset \mathcal{W}, \sigma >_{fin} \pi_0$. Let $F \subset S$ and $|F| < \lambda(p)$. Then for every $x \in F$, $x \in (\bigcup_{i \in \omega} \bigcup_{j \leq f_x(i)} V_{ij})^{\epsilon}$ for some $f_x \in \omega^{\omega}$. For some $f \in \omega^{\omega}, f_x <_p f$ for each $x \in F$. But then

$$Cl_{\beta X}F \subset Cl_{\beta X} \bigcup_{i \in \omega} \bigcup_{j \leq f(i)} V_{ij} \subset \beta X \setminus \{q\}.$$

Claim 8. For any family of *p*-chains $\{\pi_{\alpha}\}_{\alpha < \tau}$, if $\tau < \lambda(p)$ then $\bigcap_{\alpha < \tau} [\pi_{\alpha}] \cap T \neq \emptyset$. PROOF: For any finite $\rho \subset \tau$ we can fix a point $t(\rho) \in T$ so that

$$t(\rho) \in [\prod_{\alpha \in \rho} \pi_{\alpha}] \subseteq \bigcap_{\alpha \in \rho} [\pi_{\alpha}].$$

But then the set $Cl_{\beta X}\{t(\rho): \rho \subset \tau \text{ is finite}\}$, which is contained in T by Claim 6, meets $\bigcap_{\alpha < \tau} [\pi_{\alpha}]$.

Claim 9. For any family of *p*-chains $\{\pi_{\alpha}\}_{\alpha < \tau}$, if $\tau < \lambda(p)$, then *p* is not isolated in $\bigcap_{\alpha < \tau} [\pi_{\alpha}]$.

PROOF: Let $\bigcap_{\alpha < \tau} [\pi_{\alpha}] \cap Cl_{\beta X} Op = \{p\}$ for some neighborhood $Op \subset \beta X$. Then for a *p*-chain $\pi = \{Op \cap X_i : i \in \omega\}$ we have $\bigcap_{\alpha < \tau} [\pi_{\alpha}] \cap [\pi] \cap T = \emptyset$ in a contradiction to Claim 8.

Claim 10. Let $\bigcap_{\alpha < \tau} [\pi_{\alpha}] \cap S = \{p\}$ for some family of *p*-chains $\{\pi_{\alpha}\}_{\alpha < \tau}$ of cardinality $\tau < \lambda(p)$. Then *p* is a *b*-point of βX .

PROOF: For any finite $\rho \subset \tau$ we can fix a point $s(\rho) \in S \setminus \{p\}$ so that $s(\rho) \in [\prod_{\alpha \in \rho} \pi_{\alpha}]$ by [2]. But then the sets $Cl_{\beta X}\{s(\rho) : \rho \subset \tau \text{ is finite}\} \setminus \{p\}$ and $\bigcap_{\alpha < \tau} [\pi_{\alpha}] \setminus \{p\}$ are as required.

Below we have only to examine the case when the hypotheses of Claim 10 are wrong.

Claim 11. For an arbitrary neighborhood $Op \subset \beta X$, $[\pi_{f_{\alpha}}(\beta)] \subset Op$ for some $f_{\alpha} \in \mathcal{F}$ and $\beta \in \omega_1$.

PROOF: Let $Cl_{\beta X}O'p \subset Op$ for a neighborhood $O'p \subset \beta X$. As p is a strong remote point, $p \in (\bigcup \bigcup_{i \in \omega} \mathcal{U}'_i)^{\epsilon} \subset O'p$ for some finite $\mathcal{U}'_i \subset \mathcal{U}_i$. For some $\beta < \omega_1$, $\mathcal{U}'_i \subset \{U_{i\alpha} : \alpha < \beta\}$ for each $i \in \omega$. For every $U_{i\alpha} \in \mathcal{U}'_i$ we can choose $j(i, \alpha, \beta) \in \omega$ so that $\mathcal{V}_{ij(i,\alpha,\beta)}(\beta) > \{U_{i\alpha}\}$ (see above). Let $g \in \omega^{\omega}$ be defined for any $i \in \omega$ as follows: $g(i) = \max \{j(i, \alpha, \beta) : U_{i\alpha} \in \mathcal{U}'_i\}$ if $\mathcal{U}'_i \neq \emptyset$ and g(i) = 1 otherwise. Then $\mathcal{V}_g(\beta) > \bigcup_{i \in \omega} \mathcal{U}'_i$ by our construction. Let, finally, $f_\alpha \in \mathcal{F}$ be chosen so that $g <_p f_\alpha$. But then $[\pi_{f_\alpha}(\beta)] \subset [\pi_g(\beta)] \subset Cl_{\beta X} \bigcup \bigcup_{i \in \omega} \mathcal{U}'_i \subset Op$.

Claim 12. If $|\mathcal{F}| > \omega_1$, then p is a b-point of βX .

PROOF: For every $f_{\alpha} \in \mathcal{F}$ there are points $t_{\alpha} \in T$ and $s_{\alpha} \in S \setminus \{p\}$, belonging to $B_{f_{\alpha}} = \bigcap_{\beta < \omega_1} [\pi_{f_{\alpha}}(\beta)]$ by Claims 8 and 10. Then the sets $F = Cl_{\beta X} \{t_{\alpha} : \alpha < \lambda(p)\} \setminus \{p\}$ and $G = Cl_{\beta X} \{s_{\alpha} : \alpha < \lambda(p)\} \setminus \{p\}$ are as required. Indeed, they have p as a limit point by Claim 11. For every $\lambda < \gamma < \lambda(p)$, $f_{\lambda} <_p f_{\gamma}$ clearly implies $[\pi_{f_{\gamma}}(\beta)] \subset [\pi_{f_{\lambda}}(\beta)]$ for each $\beta < \omega_1$, so $B_{f_{\gamma}} \subset B_{f_{\lambda}}$. But then

$$F \cap G \setminus B_{f_{\lambda}} \subset Cl_{\beta X}\{t_{\alpha} : \alpha < \lambda\} \cap Cl_{\beta X}\{s_{\alpha} : \alpha < \lambda\} \subset T \cap S = \emptyset.$$

Claim 13. If $|\mathcal{F}| = \omega_1$, then p is a b-point of βX .

PROOF: Let $\{\pi_{f_{\alpha}}(\beta) : f_{\alpha} \in \mathcal{F}, \beta \in \omega_1\}$ be listing into the form $\{\pi_{\gamma} : \gamma \in \omega_1\}$. By Claim 5 we can construct *p*-chains σ_{γ} ($\gamma < \omega_1$) so that $\sigma_{\gamma} >_* \pi_{\gamma}$ and $\sigma_{\gamma} >_* \sigma_{\lambda}$ if $\lambda < \gamma < \omega_1$. We can fix points $t_{\gamma} \in T$ and $s_{\gamma} \in S \setminus \{p\}$, belonging to $[\sigma_{\gamma}]$, and repeat the proof of Claim 12, using these points.

Our proof is complete.

References

- Blaszczyk A., Szymanski A., Some nonnormal subspaces of the Čech-Stone compactifications of a discrete space, in: Proc. 8-th Winter School on Abstract Analysis, Prague (1980).
- [2] Dow A., Remote points in spaces with π -weight ω_1 , Fund. Math. **124** (1984), 197–205.
- [3] van Douwen E.K., Why certain Čech-Stone remainders are not homogeneous, Colloq. Math. 41 (1979), 45–52.
- [4] van Douwen E.K., Remote points, Dissert. Math. 188 (1988).
- [5] Gryzlov A.A., On the question of hereditary normality of the space βω \ ω, Topology and Set Theory (Udmurt. Gos. Univ., Izhevsk) (1982), 61–64 (in Russian).
- [6] Logunov S., On hereditary normality of compactifications, Topology Appl. 73 (1996), 213–216.
- [7] Logunov S., On hereditary normality of zero-dimensional spaces, Topology Appl. 102 (2000), 53–58.
- [8] van Mill J., An easy proof that $\beta N \setminus N \setminus \{p\}$ is non-normal, Ann. Math. Silesianea 2 (1984), 81–84.

S. Logunov

- [9] Rajagopalan M., $\beta N \setminus N \setminus \{p\}$ is not normal, J. Indian Math. Soc. **36** (1972).
- [10] Shapirovskij B., On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of pointwise normal spaces, Dokl. Akad. Nauk SSSR 223 (1987), 1083– 1086 (in Russian).

Department for Algebra and Topology, Udmurt State University, Krasnogeroyskaya 71, Izhevsk 426034, Russia

E-mail: postmaster@ziga.udm.ru

(Received December 6, 1999, revised November 17, 2000)

384