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Almost closed sets and topologies they determine

V.V. Tkachuk, I.V. Yaschenko

Abstract. We prove that every countably compact AP-space is Fréchet-Urysohn. It is
also established that if X is a paracompact space and Cp(X) is AP, then X is a Hurewicz
space. We show that every scattered space is WAP and give an example of a hereditarily

WAP-space which is not an AP-space.
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0. Introduction

If X is a topological space and F ⊂ X , let us say that F is almost closed if F\F
is a one-point set. If F\F = {x}, we sometimes denote it by F → x. It is natural
to say that the topology of a space X is determined by almost closed subspaces
if for any non-closed A ⊂ X and any x ∈ A\A there is an almost closed F ⊂ A
such that F → x. The concept sounds as a purely topological one. However it
was first introduced in a paper [PT] which dealt with categorical topology. The
relevant spaces were called AP-spaces and the explanation was “Approximation
by Points”. Unfortunately, there is no way to see what points have to do with the
mentioned approximations, which in fact are approximations (of the closures) by
almost closed sets. Of course, saying AC-space (from Almost Closed) instead of
AP-space gives really nothing better provided that there are quite a few papers in
which the term AP-space is accepted. We also use it here but the point is that it
is worth to find a better name for so natural a concept. Maybe these spaces could
be called apy spaces (from ape) which still has nothing to do with the intuitive
perception, but sounds the same and is fancy.
Another method to determine a topology by almost closed sets is to say that

a subset A of a space X is closed if and only if F ⊂ A for any almost closed
F ⊂ A. Such topologies could be called weakly determined by almost closed sets.
The relevant spaces were introduced by P. Simon in [Si] and studied intensively
under the name WAP-spaces from “Weak Approximation by Points”. This paper
is devoted to study AP-spaces and WAP-spaces (apy? and wapy? spaces).
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In [BY] it was proved that any compact AP-space is Fréchet-Urysohn. We
prove that the same is true for countably compact AP-spaces. The properties
AP and WAP are respective generalizations of Fréchet-Urysohn property and se-
quentiality, so it is natural to see how theorems about Fréchet-Urysohn property
and sequentiality can be strengthened to be proved for AP- or WAP-spaces. For
example, any sequential Cp(X) is Fréchet-Urysohn. The analogous assertion can-
not be proved for AP and WAP: in [BY] an example of a space X was given for
which Cp(X) is WAP but not AP. We prove here that if Cp(X) is AP and X is
a paracompact space, then X is a Hurewicz space. This result is new even for
separable metric spaces. As a consequence, if P is the space of the irrationals,
then Cp(P) is a space with a countable network which is not AP. We prove that
any stratifiable AP-space is M1; this result has to do with the latest achievement
of T. Mizokami and N. Shimane who proved, in particular, that any sequential
stratifiable space is M1. Of course, we refer the heavy part of the work to their
paper [MSh] where a class (P ) is introduced in which the coincidence (M1 =M3)
takes place and observe that AP-spaces are inside (P ).
Until today nobody seemed to have cared whether any WAP-space is heredi-

tarily WAP. The question turned out not to be so easy. We give a counterexample
under CH and it is not clear at all whether a WAP-space which is not heredi-
tarily WAP, exists in ZFC. The last result which we would like to mention is
Theorem 2.7 which says that any scattered space is WAP. This, together with a
theorem of A. Bella [Be] implies a well known result of Mrówka, Rajagopalan and
Soundararajan [MRS] that any compact scattered space is pseudoradial. Another
consequence is that there is a plenty of hereditarily WAP-spaces which need not
necessarily be AP.

1. Notation and terminology

All spaces under consideration are assumed to be Tychonoff. Given a space
X , the family τ(X) is its topology and τ∗(X) = τ(X)\{∅}. As usual, Cp(X)
is the set of real-valued continuous functions on X endowed with the topology
of pointwise convergence. This means that Cp(X) has the subspace topology

induced from R
X .

If X is a space and A ⊂ X then the AP-closure of A in X is the set A ∪ {x ∈
A\A : there is an almost closed F ⊂ A such that F → x}. A set is AP-closed if
it is equal to its AP-closure. A space X is AP, if the AP-closure of any A ⊂ X
coincides with A; the space X is WAP, if any AP-closed set in X is closed in X .
A space X is Fréchet-Urysohn if for any A ⊂ X and any x ∈ A there is a sequence
S ⊂ A which converges to x. The space X is sequential , if for any non-closed
A ⊂ X there is a sequence S ⊂ A which converges to some x ∈ A\A. The space X
is discretely generated if for any A ⊂ X and any x ∈ A there is a discrete D ⊂ A
such that x ∈ D. A space X is scattered if any subspace of X has an isolated
point. It is said that X is a Hurewicz space if for any sequence {γn : n ∈ ω} of
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open covers of X , for each n ∈ ω there exists a finite subfamily µn ⊂ γn such that⋃
{µn : n ∈ ω} is a cover of X . Now, a space X is called stratifiable if for each
closed F ⊂ X and n ∈ ω a set G(F, n) ∈ τ(X) can be chosen so that F ⊂ G(F, n),

if F ⊂ F ′ then G(F, n) ⊂ G(F ′, n) for each n ∈ ω, and F =
⋂
{G(F, n) : n ∈ ω}.

Stratifiable spaces are also called M3-spaces. A space is called M1, if it has a
σ-closure preserving base. A dense-in-itself space X is submaximal if all dense
subsets of X are open in X . If X has no isolated points, but any stronger topology
on X is not dense-in-itself, it is called maximal .
The rest of the notation is standard and follows [En].

2. Some known and some new facts about AP- and WAP-spaces

Although quite a few nontrivial statements have been proved about these two
classes, there are still some basic questions which seemed to never have been asked
about AP and WAP-spaces. Our first proposition is a compilation of most trivial
facts about these concepts. Surely, all they are known by the specialists while
some have never been formulated explicitly.

2.1 Proposition. (1) Any subspace of an AP-space is an AP-space;
(2) any closed subspace of a WAP-space is a WAP-space;
(3) any AP-space is a WAP-space but not vice versa;
(4) any Fréchet-Urysohn space is an AP-space;
(5) any sequential space is a WAP-space;
(6) any sequential AP-space is Fréchet-Urysohn;
(7) any closed continuous image of an AP-space is an AP-space;
(8) any closed continuous image of an WAP-space is a WAP-space;
(9) a quotient image of an AP-space is not necessarily an AP-space;
(10) any space with a unique non-isolated point is AP;
(11) a non-WAP-space can be a union of two subspaces each one of which is

AP;

(12) any infinite compact WAP-space has a nontrivial convergent sequence;
hence the space βω\ω is not WAP;

(13) it is independent of ZFC whether every countably tight compact space is
a WAP-space.

Proof: The properties (1)–(5) are absolutely evident. Let us prove (6). If X is
a sequential AP-space, take any A ⊂ X and x ∈ A\A. By AP property, there is
an almost closed F ⊂ A with F → x. Since F is non-closed, there is a convergent
sequence S ⊂ F whose limit is some point y outside of F . Of course, y has to
coincide with x and hence S is a sequence in A which converges to x.
To prove (7) and (8) assume that X is an AP-space (WAP-space) and f :

X → Y is a closed continuous onto map. Suppose that A ⊂ Y and x ∈ A\A.
If B = f−1(A) then f−1(x) ∩ B 6= ∅ (and therefore the set B is not closed in
X) and thus there is an almost closed C ⊂ B with y ∈ C for some y ∈ f−1(x)
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(for some y ∈ X\B respectively). It is easy to check that D = f(C) is an almost
closed subset of A and x ∈ D (or f(y) ∈ D\A respectively).
To prove (9), take any sequential non-Fréchet-Urysohn space X . Then X is

a quotient image of a metric space M ([Ar1]). Since any sequential AP-space is
Fréchet-Urysohn by (6), we can conclude that a quotient image of a metric space
is not necessarily AP. The item (10) is evident because in a space with a unique
nonisolated point any non-closed set is almost closed.
Now, let D be the countable maximal space constructed by van Douwen [vD].

It was proved in [BY] that X = D × (ω + 1) is not WAP. However, X = Y ∪ Z
where Y = D×{ω} and Z = X\Y . The space Y is homeomorphic to D which is
submaximal and hence AP ([BY]). The space Y is homeomorphic to a free union
of countably many copies of D and hence is also submaximal. Thus a non-WAP-
space X is representable as a union of two AP-subspaces, which proves (11).
To show that (12) holds, take any infinite compact WAP-space X . If X is

scattered, then denote by I the set of isolated points of X . The set X\I is not
empty and hence it has an isolated point x. Take a closed neighborhood V of the
point x such that V ∩((X\I)\{x}) = ∅. Then V is a compact space with the only
non-isolated point x. Hence X a nontrivial convergent sequence with limit x. Now
if X is not scattered, then it has a countably infinite dense in itself subspace Y .
If Y is closed then it is an infinite metrizable compact space and hence has a
non-trivial convergent sequence. If not, then there is an almost closed F ⊂ Y
such that F → x ∈ X\Y . The space F ∪ {x} is an infinite countable compact
space. Therefore it is metrizable and has a non-trivial convergent sequence. This
settles (12).
Finally, to see that (13) is true, observe that there are models of ZFC in which

every countably tight compact space is sequential and hence WAP ([Ba]). On the
other hand, under the Jensen’s axiom ♦, Fedorchuk constructed in [Fe] a compact
countably tight space X without convergent sequences. This space is not WAP
by (12). �

2.2 Theorem. Let X be a countably compact AP-space. Then X is a Fréchet-
Urysohn space.

Proof: Assume that A ⊂ X and x ∈ A\A. Fix an almost closed P ⊂ A such
that x ∈ P . Take a maximal disjoint family γ of open subsets of P whose closures
do not contain x. Then x ∈

⋃
γ and hence there is an almost closed Q ⊂

⋃
γ

such that x ∈ Q. Let γ′ = {U ∈ γ : U ∩ Q 6= ∅}. It is easy to see that γ′ is
infinite. For each U ∈ γ′ take an xU ∈ U ∩ Q. The set B = {xU : U ∈ γ′} is
discrete and (B\B)∩ (

⋃
γ) = ∅. This means B is closed in Q and therefore x has

to be the only accumulation point of B in the countably compact space Q ∪ {x}.
Therefore B∪{x} is a countably compact infinite space with the only non-isolated
point x. Such a space must be compact and hence there is a sequence in B which
converges to x. �
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2.3 Corollary. If X is a k-space which is AP, then it is Fréchet-Urysohn. In
particular, any Čech-complete AP-space is Fréchet-Urysohn.

Proof: Let A ⊂ X and x ∈ A. Find an almost closed F ⊂ A such that x ∈ F .
Since F is not closed, there is a compact K ⊂ X with K ∩ F non-closed and
hence x ∈ K ∩ F . By Theorem 2.2 the space K is Fréchet-Urysohn, so there is a
sequence S ⊂ K which converges to x. Clearly, S ⊂ A and we are done. �

The following result shows that there is some strange situation with an evident
question about WAP-spaces. The question is whether any subspace of a WAP-
space is a WAP-space. All authors remark that it is so for closed subspaces and
there is an absolute silence about arbitrary ones. It turned out that it is difficult
to construct a WAP-space which is not hereditarily WAP. At least, we only could
do it under CH and the example is not evident at all. We will see later that
the class of hereditarily WAP-spaces is pretty large, it contains, in particular, all
scattered spaces.

2.4 Example. There exists a countably compact WAP-space X such that under
the Continuum Hypothesis there is a dense Y ⊂ X such that Y is not WAP.

Proof: Denote by D the discrete two-point space. Our space X will be a dense
subspace of D

ω1 . Let Σ(0) = {x ∈ D
ω1 : |x−1(1)| 6 ω} and Σ(1) = {x ∈ D

ω1 :
|x−1(0)| 6 ω}. Now the set X = Σ(0) ∪ Σ(1) is as promised. It is evident that
X is a countably compact space of uncountable tightness and hence not AP by
Theorem 2.2. Let us show that X is WAP.

Suppose that A is an AP-closed non-closed subset of X . Consider the sets
A0 = A ∩ Σ(0) and A1 = A ∩ Σ(1). If some Ai is not closed in the Fréchet-
Urysohn space Σ(i), then there is a convergent sequence S ⊂ Ai such that S → x,
where x ∈ Σ(i)\Ai. Of course, x /∈ A and S is an almost closed set with S → x.
Thus, A is not AP-closed in X , a contradiction. This proves that Ai is closed in
Σ(i) for each i = 0, 1. This implies that each Ai is countably compact and for
any x ∈ A\A we have x ∈ Σ(i) and x ∈ A1−i for some i ∈ {0, 1}. We can assume
without loss of generality that there is an x ∈ Σ(0)\A such that x ∈ A1. Fix some
local base {Uα : α < ω1} at the point x. Since A1 is countably compact, for each
β < ω1 it is possible to choose a point xβ ∈

⋂
{Uα : α < β} ∩ A1.

The set F = {xβ : β < ω1}\{x} contains x in its closure and therefore it is
almost closed in X . Observe that the transfinite sequence S = {xβ : β < ω1}
converges to x which implies that any point of F is in the closure of some initial
segment of S. Since all initial segments of S are countable and the closure of any
countable subset of Σ(1) lies in Σ(1), we have F ⊂ Σ(1). Using once more Fréchet-
Urysohn property of Σ(1) we can see that the closure of any countable subset of
A1 is contained in A1. As a consequence, F ⊂ A1 is an almost closed subset of A
such that F → x ∈ X\A. Thus, X is a WAP-space. Note that we constructed the
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space X and proved that it is WAP without using any set-theoretic assumptions
outside of ZFC.
Now assume that CH holds. It was proved in [ASh] that under CH the space

Σ(0) has a dense Luzin subspace L. “Luzin” means, that all nowhere dense
subspaces of L are countable. Let Y = Σ(1) ∪ L. We claim that Y is not a
WAP-space. To establish this, it suffices to show that L is AP-closed in Y . Of
course, L is not closed since it is a proper dense subspace of Y .
Assume that F ⊂ L is an almost closed subspace of Y with F → x ∈ Σ(1).

Clearly, F is closed in L. If it contains some non-empty set U ∈ τ(L) then there
is a set V ∈ τ(Dω1) such that V ∩ L = U . Since L is dense in D

ω1 the set F is
dense in V and therefore all points of an infinite set V ∩Σ(1) are in the closure of
F which is supposed to have only x in its closure. This contradiction shows that
F is nowhere dense in L and hence countable. But the closure of any countable
subset of Σ(0) is contained in Σ(0) so x /∈ F , a contradiction. �

The following result shows that AP-spaces are useful in what concerns the
M3 =M1 problem.

2.5 Theorem. Suppose that X is a stratifiable AP-space. Then X is an M1-
space.

Proof: We are going to use a recent result of Mizokami and Shimane [MSh]
which states that if a stratifiable space X has a property, they call (P ), then X
is M1. A space X has the property (P ) if for every x ∈ X and every open U ⊂ X
such that x ∈ U\U there exists a closure preserving closed network N (x, U) at
the point x such that G ∩ U = G for each G ∈ N (x, U).
In [MSh] it was proved that every sequential space has the property (P ).
To see that every AP-space has property (P ) take any open U ⊂ X and any

x ∈ U\U . There exists an almost closed P ⊂ U with x ∈ P . Apply Theorem 1 of
[Gr] to fix a closed closure preserving quasi-base B at the point x. We claim that
the family N (x, U) = {{x} ∪ (B ∩ P ) : B ∈ B} is the desired network at x. It is
clear that N (x, U) is a network at x. If G ∈ N (x, U) then G = {x} ∪ (B ∩P ) for
some B ∈ B. Since B is an element of a quasi-base, we have x ∈ Int(B). Thus,
x ∈ P ∩ B and G = {x} ∪ (G ∩ U) ⊂ G ∩ U .
Observe that any closure preserving family restricted to a closed set is closure

preserving, which shows that N (x, U) is closure preserving and we are done. �

2.6 Remark. The property AP does not imply sequentiality in stratifiable spaces.
To see this, note that any countable space with a unique non-isolated point is M1
as well as AP but not necessarily sequential. On the other hand not allM1-spaces
are AP: a relevant example is the space X = V (ω) × (ω + 1) × (ω + 1), where
V (ω) is the Fréchet-Urysohn fan. In [BY] it was proved that this space is not AP.
However it is stratifiable being is a product of three stratifiable spaces. Since any
countable stratifiable space is M1 the space X is M1. Finally, there are countable
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AP-spaces which are not stratifiable: any submaximal countable space will do
([BY]).

2.7 Theorem. Any scattered space is WAP.

Proof: Let X be a scattered space. For any subset Y ⊂ X denote by i(Y ) the
set of isolated points of the subspace Y . Assume that a non-closed set A ⊂ X is
AP-closed in X . Let A0 = i(A) and B0 = A0\A0. Evidently, A0 is dense in A
and B0 is closed in X . If we have the sets Aα and Bα, let Aα+1 = i(Bα) and
Bα+1 = Bα\Aα+1. If β is a limit ordinal and we have Aα, Bα for each α < β, we
let Aβ = ∅ and Bβ =

⋂
{Bα : α < β}.

Since the space X is scattered, there exists an ordinal γ such that A0 = A =⋃
{Aα : α < γ}. Let β = min{α < γ : Aα ∩ (A\A) 6= ∅}. Then β is a non-limit
ordinal, β = β0 + 1.

Pick a point x ∈ Aβ\A = i(Bβ0)\A. Since x is isolated in Bβ0 there is an open

U ⊂ X such that U ∩ Bβ0 = {x}. Take any V ∈ τ(X) with x ∈ V ⊂ V ⊂ U

and consider the set F = (V ∩ A)\{x}. Since x ∈ A we have x ∈ F . We claim
that F is an almost closed set. Indeed, F ⊂ A =

⋃
{Aα : α 6 β0} ∪ Bβ0 and

F ∩ Bβ0 ⊂ V ∩ Bβ0 = {x}. Therefore F\{x} ⊂
⋃
{Aα : α 6 β0} ⊂ A. It turns

out that x is in the AP-closure of A, a contradiction. �

2.8 Corollary ([MRS]). Any scattered compact space is pseudoradial.

Proof: We only need to apply Theorem 2.7 and A. Bella’s result ([Be]) which
says that any compact WAP-space is pseudoradial. �

2.9 Corollary. Any scattered space is hereditarily WAP.

It is known ([Ar2]), that any hereditarily sequential space is Fréchet-Urysohn
and any hereditarily pseudoradial space is radial. The following result shows that
the properties AP and WAP behave differently.

2.10 Corollary. There exist hereditarily WAP-spaces which are not AP-spaces.

Proof: The space ω1 + 1 is not AP ([PT]). Being scattered, it is hereditarily
WAP by Corollary 2.9. �

3. The spaces Cp(X) and AP-property

We are going to prove that for paracompact X the AP-property of Cp(X)
implies X is Hurewicz. Another interesting feature of spaces Cp(X) which have
countable tightness and AP-property is that they are discretely generated, i.e.,
the closures are determined by the closures of discrete subsets.

3.1 Proposition. Let Cp(X) be an AP-space. Then any discrete family γ ⊂
τ∗(X) is countable.

Proof: Suppose that it is not so and fix a discrete family γ = {Uα : α < ω1} of
non-empty open subsets of X . Pick a point xα ∈ Uα for each α < ω1 and choose
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a function fα ∈ Cp(X) such that fα(xα) = 1 and fα|(X\Uα) ≡ 0. Given any
function f : A → R, where A = {xα : α < ω1}, let ϕ(f)(x) =

∑
{f(xα) · fα(x) :

α < ω1} for every x ∈ X . It is a routine and standard procedure to verify that

ϕ(f) ∈ Cp(X) and ϕ : R
A → Cp(X) is an embedding. As a consequence, R

ω1

embeds into Cp(X) and therefore it is an AP-space which is a contradiction with
the fact that a non-AP-space ω1 + 1 embeds in R

ω1 . �

3.2 Corollary. If X is paracompact and Cp(X) is an AP-space, then X is

Lindelöf.

3.3 Lemma. Suppose that X is normal and Cp(X) is an AP-space. Assume
that we have a sequence {γn : n ∈ ω} of open covers of X with the following
properties:

(1) γn = {Un
m : m ∈ ω} and Un

m ⊂ Un
m+1 for each m ∈ ω;

(2) for each n ∈ ω there exists a closed cover µn = {Fn
m : m ∈ ω} of the space

X such that Fn
m ⊂ Un

m and Fn
m ⊂ Fn

m+1 for all m ∈ ω.

Then it is possible to choose Wn ∈ γn for each n ∈ ω in such a way that {Wn :
n ∈ ω} is an ω-cover of X .

Proof: For each pair (m, n) of natural numbers, choose an fn
m ∈ Cp(X) such that

fn
m|Fn

m ≡ 1
n and fn

m|(X\Un
m) ≡ 1. It is clear that the sequence Sn = {fn

m : m ∈ ω}

converges to the function hn ≡ 1
n . As a consequence, the function h ≡ 0 is in the

closure of the set S =
⋃
{Sn : n ∈ ω}. Apply the AP-property of the space Cp(X)

to find an almost closed F ⊂ S such that h ∈ F . Observe that for any natural n
the set Fn = F ∩ Sn cannot be infinite because otherwise hn ∈ F\F . Therefore,
for each n ∈ ω we have a natural m(n) such that Fn ⊂ {fn

m : m 6 m(n)}. For
each n ∈ ω let Wn = Un

m(n). We claim that the family {Wn : n ∈ ω} is an

ω-cover of X . Indeed, let K be a finite subset of X . Since h ∈ F , there exists an
fn
m ∈ F such that fn

m(x) < 1 for every x ∈ K and therefore K ∩ (X\Un
m) = ∅.

Consequently, K ⊂ Un
m ⊂ Un

m(n) =Wn and we are done. �

3.4 Theorem. Suppose that Cp(X) is an AP-space andX is paracompact. Then
X is a Hurewicz space.

Proof: Apply Corollary 3.2 to conclude that X is a Lindelöf space. Let {λn :
n ∈ ω} be a sequence of open covers of the space X . Since X is Lindelöf, without
loss of generality, we may assume that each λn is countable; let {Wn

m : m ∈ ω}
be an enumeration of λn for each natural n. Define Un

m =
⋃
{Wn

i : i 6 m} for all
n, m ∈ ω. It is clear that the family γn = {Un

m : m ∈ ω} is a cover of the space X
and Un

m ⊂ Un
m+1 for all m, n ∈ ω.

It is a standard fact for Lindelöf spaces (see [En, 3.8.11]) that for each n ∈ ω
there exists a precise closed shrinking {Gn

m : m ∈ ω} of the cover λn, i.e., {Gn
m :

m ∈ ω} is a closed cover of X and Gn
m ⊂ Wn

m for all n, m ∈ ω. Now if Fn
m =⋃

{Gn
i : i 6 m}, then the covers γn = {Un

m : m ∈ ω} and µn = {Fn
m : m ∈ ω}
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satisfy the hypothesis of Lemma 3.3. Therefore we can choose a Wn ∈ γn so that
{Wn : n ∈ ω} is a cover of X . Since eachWn is covered by finitely many elements
of λn, there exist finite families νn ⊂ λn such that

⋃
{νn : n ∈ ω} = X . �

3.5 Corollary. If X is a metrizable space for which Cp(X) is AP, then X is
separable and has Hurewicz property.

3.6 Corollary. If P is the space of the irrational numbers with its natural topo-

logy, then Cp(P) is not an AP-space.

3.7 Theorem. Suppose that Cp(X) is AP and has countable tightness. Then
Cp(X) is discretely generated in the sense that for every A ⊂ Cp(X) and every

f ∈ A there exists a discrete D ⊂ A such that f ∈ D.

Proof: There will be no loss of generality if we assume that f is identically zero
and f ∈ A\A. Since Cp(X) is AP and countably tight, we may restrict ourselves
to the case when A is countable and almost closed. Let {fn : n ∈ ω} be some
enumeration of A. There exists a sequence {εn : n ∈ ω} of positive reals such
that εn → 0 and fi + εi 6= fj , fi + εi 6= f for any distinct i, j ∈ ω. Consider
the set B = {gn : n ∈ ω} where gn = fn + εn for each n ∈ ω. We claim that
f ∈ B. Indeed, let U = [f, x1, . . . , xl, ε] = {g ∈ Cp(X) : |g(xi) − f(xi)| < ε for

all i 6 l} be a basic neighborhood of f . Since f ∈ A\A, the set M = {n ∈ ω :
fn ∈ [f, x1, . . . , xl,

ε
2 ]} is infinite. Then for any n ∈ M with εn < ε

2 we have
|gn(xi) − f(xi)| = |fn(xi) + εn − f(xi)| 6 |fn(xi) − f(xi)| + εn < ε

2 +
ε
2 = ε for

all i 6 l and therefore gn ∈ U .
Since Cp(X) is AP and f ∈ B\B, there is an almost closed P = {gnk

: k ∈ ω} ⊂

B such that f ∈ P\P . Observe that the subspace D = {fnk
: k ∈ ω} is discrete.

Indeed, for any k ∈ ω we have fnk
/∈ P and hence there is a standard open set

W = [fnk
, x1, . . . , xl, ε] such that W ∩ P = ∅. If there are infinitely many i ∈ ω

such that fni ∈ V = [fnk
, x1, . . . , xl,

ε
2 ] then there is a natural i 6= k for which

εni < ε
2 . As a consequence, |gni(xp)− fnk

(xp)| = |fni(xp)− fnk
(xp) + εi| < ε for

all p 6 l which implies gni ∈ W ∩ P , a contradiction. Thus, V is a neighborhood
of fnk

which intersects only finitely many elements of D. Therefore D is discrete

and we only have to prove that f ∈ D.
Let U = [f, x1, . . . , xl, ε] be a basic neighborhood of f . Since f ∈ P\P , the

set N = {k ∈ ω : gnk
∈ [f, x1, . . . , xl,

ε
2 ]} is infinite. Pick any k ∈ N such that

εnk
< ε
2 . Then |fnk

(xi)− f(xi)| = |gnk
(xi)− f(xi)− εnk

| < ε for all i 6 l which
shows that fnk

∈ U . �

3.8 Corollary. Any countable submaximal space Y is an AP-space which cannot
be embedded into a Cp(X) which is an AP-space.

Proof: In [BY] it was proved that any submaximal space is AP and hence so is Y .
It is evident that discrete generability is hereditary. It is also a standard fact that
if a countable space embeds into a Cp(Z) then there is a second countable space
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X such that Y embeds into Cp(X) and the latter one embeds in Cp(Z). Since
the tightness of Cp(X) is countable, we may apply Theorem 3.7 to conclude that
Y has to be discretely generated, which is impossible because in a submaximal
space all discrete subspaces are closed. �

3.9 Remark. Under Martin’s axiom there exists a maximal (and hence sub-
maximal) topological group ([Ma]). Thus, it cannot be asserted in ZFC that
a submaximal space cannot be embedded into a topological group which is an
AP-space.

3.10 Remark. There exist AP-spaces which are not discretely generated: the
van Douwen’s maximal countable space V [vD] is an example because every sub-
maximal space is AP ([BY]) and all discrete subspaces of V are closed. On
the other hand, any sequential non-Fréchet-Urysohn space is discretely generated
([DTTW]) and fails to be AP by Proposition 2.1(6).

4. Open problems

Still there are some very natural questions left open. Here is the list.

4.1 Problem. Does there exist in ZFC a WAP-space X such that for some

Y ⊂ X the subspace Y is not WAP?

4.2 Problem. Is it true that every subspace of a sequential space is WAP?

4.3 Problem. Suppose that CpCp(X) is AP. Is it true that X is finite?

4.4 Problem. Let X be a WAP stratifiable space. Is it true that X is M1?

4.5 Problem. Is Cp(R
ω) a WAP space?

4.6 Problem. Is an open image of an AP space an AP-space? How about open

images of WAP-spaces?

4.7 Problem. Is any pseudocompact AP-space Fréchet-Urysohn?

4.8 Problem. Suppose that Cp(X) is an AP-space. Is Cp(X) necessarily dis-
cretely generated?

4.9 Problem. Suppose X is a second countable space and Cp(X) is AP. Are all
finite powers of X Hurewicz spaces?

4.10 Problem. Suppose that Cp(X) = A ∪ B, where A and B are AP-spaces.
Is it true that Cp(X) is AP?

4.11 Problem. Suppose that Cp(X) is an AP-space. Is it true that (Cp(X))
ω

is also an AP-space?
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