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A characterization of Cy(q) where ¢ > 5

A. IRANMANESH, B. KHOSRAVI

Abstract. The order of every finite group G can be expressed as a product of coprime
positive integers mi,...,m¢ such that m(m;) is a connected component of the prime
graph of G. The integers mi, ..., m¢ are called the order components of G. Some non-
abelian simple groups are known to be uniquely determined by their order components.
As the main result of this paper, we show that the projective symplectic groups C2(q)
where ¢ > 5 are also uniquely determined by their order components. As corollaries of
this result, the validities of a conjecture by J.G. Thompson and a conjecture by W. Shi
and J. Be for C2(q) with ¢ > 5 are obtained.
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1. Introduction

If n is an integer, 7(n) is the set of prime divisors of n and if G is a finite
group m(G) is defined to be m(|G|). The prime graph I'(G) of a group G is a
graph whose vertex set is 7(G), and two distinct primes p and ¢ are linked by an
edge if and only if G contains an element of order pq. Let m;, i = 1,2,...,t(G)
be the connected components of I'(G). For |G| even, 71 will be the connected
component containing 2. Then |G| can be expressed as a product of some positive
integers m;, i = 1,2,...,t(G) with 7w(m;) = the vertex set of m;. The integers
m;’s are called the order components of G. The set of order components of G
will be denoted by OC(G). If the order of G is even, then mj is the even order
component and mg, ... e will be the odd order components of G. The order
components of non-abelian simple groups having at least three prime graph com-
ponents are obtained by G.Y. Chen [8, Tables 1, 2, 3]. The order components of
non-abelian simple groups with two order components are illustrated in Table 1
according to [13], [20]. The following groups are uniquely determined by their or-
der components: Suzuki-Ree groups [6], Sporadic simple groups [3], PSLa(q) [8],
Eg(q) [7], Ga(q) where ¢ = 0 (mod 3) [2], F4(q) where ¢ is even [12], PSL3(q)
where ¢ is an odd prime power [11] and A, where p and p — 2 are primes [10]. In
this paper, we prove that the projective symplectic groups Ca(q) where ¢ > 5 are
also uniquely determined by their order components. In other words we have:

The Main Theorem. Let G be a finite group, M = Cy(q) where ¢ > 5. If
OC(G) = OC(M) then G = M.
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2. Preliminary results

Definition 2.1 ([9]). A finite group G is called a 2-Frobenius group if it has a
normal series G > K > H > 1, where K and G/H are Frobenius groups with
kernels H and K/H, respectively.

Lemma 2.2 ([20, Theorem A]). If G is a finite group with its prime graph having
more than one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;

(b) a simple group;

(¢) an extension of a w1-group by a simple group;

(d) an extension of a simple group by a m1-solvable group;

(e) an extension of a w1-group by a simple group by a m1-group.

Lemma 2.3 ([20, Lemma 3]). If G is a finite group with more than one prime
graph component and has a normal series1 I H < K <4 G such that H and G/K
are m-groups and K/H is simple, then H is a nilpotent group.

The next lemma follows from Theorem 2 in [1]:

Lemma 2.4. Let G be a Frobenius group of even order and let H, K be Frobenius
complement and Frobenius kernel of G, respectively. Then t(I'(G)) = 2, and the
prime graph components of G are w(H), n(K) and G has one of the following
structures:

(a) 2 € n(K) and all Sylow subgroups of H are cyclic;

(b) 2 € m(H), K is an abelian group, H is a solvable group, the Sylow sub-
groups of odd order of G are cyclic groups and the 2-Sylow subgroups
of G are cyclic or generalized quaternion groups;

(c) 2 € n(H), K is an abelian group and there exists Hy < H such that
|H : Ho| <2, Hy=ZxSL(2,5), (|Z|,2.3.5) = 1 and the Sylow subgroups
of Z are cyclic.

The next lemma follows from Theorem 2 in [1] and Lemma 2.3:

Lemma 2.5. Let G be a 2-Frobenius group of even order. Then t(I'(G)) > 2
and G has a normal series 1 < H < K < G such that

(a) m1 =7(G/K)Un(H) and w(K/H) = ma;

(b) G/K and K/H are cyclic, |G/K| divides | Aut (K/H)|, (|G/K]|,|K/H|) =

1 and |G/K| < |K/H]|;

(¢) H is nilpotent and G is a solvable group.
Lemma 2.6 ([5, Lemma 8]). Let G be a finite group with t(I'(G)) > 2 and let N
be a normal subgroup of G. If N is a m;-group for some prime graph component

of G and my,ms,... ,m; are some order components of G but not a m;-number,
then mimg - --my is a divisor of |[N|— 1.

The next lemma follows from Lemma 1.4 in [4].
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Lemma 2.7. Suppose G and M are two finite groups satistying t(I'(M)) > 2,
N(G) = N(M), where N(G) = {n | G has a conjugacy class of size n}, and
Z(G) =1. Then |G| = |M|.

Lemma 2.8 ([4, Lemma 1.5]). Let G and G2 be finite groups satisfying |G1| =
|G2| and N(Gl) = N(Gg). Then t(F(Gl)) = t(F(Gg)) and OC(Gl) = OC(GQ).

Lemma 2.9. Let G be a finite group and let M be a non-abelian simple group
with t(M) = 2 satisfying OC(G) = OC(M).
(1) Let | M| = mymg, OC(M) = {m1,ma}, and m(m;) = m; for i =1 or 2. Then
|G| = mimg and one of the following holds:

(a) G is a Frobenius or 2-Frobenius group;

(b) G has a normal series 1 9 H < K < G such that G/K is a m1-group, H
is a nilpotent m1-group, and K/H is a non-abelian simple group. More-
over OC(K/H) = {m},mb, ... ,ml,ma}, |K/H| = m\m}...m_mgy and
mymb...mj | my where m(m}) =7}, 1< j <s.

(2) [G/K||[Out(K/H)|.

PRrROOF: (1) follows from the above lemmas. Since t(G) > 2, we have t(G/H) > 2.
Otherwise t(G/H) = 1, so that t(G) = 1. Since 2 | |H| and H is a m;-group, we
arrive to a contradiction. Moreover, we have Z(G/H) = 1. For any «H € G/H
and H ¢ K/H, xH induces an automorphism of K/H and this automorphism
is trivial if and only if xH € Z(G/H). Therefore, G/K < Out(K/H) and since
Z(G/H) =1, (2) follows. O

Lemma 2.10. Let M = C3(q). Suppose D(q) = 2—, where k = (2,q — 1).
(a) If p € (M), then |Sp| < ¢* where S}, € SyL,(M);
(b) If p € 7T1(M), p® | |[M] and p® — 1 = 0 (mod D(q)), then p* 4

(2,p%) = (3,2%).
()prEm(M) P | |M| and p® +1 = 0 (mod D(q)) then p* = ¢* or
(@:0%) = (2,3%),(3,2%),(3,2°),(3,37) or (5,2°).

I
<
Qo
S

PROOF: (a) Observe that |M| = ¢*(q +1)%(q — 1)2(qk_+1) and (¢ —1,¢+1)=1

or 2. Thus if ¢ is even, the factors are coprime and if ¢ is odd and p® | | M|, thus

p® | ¢* or p® | 4(q+1)2 or p® | 4(q — 1)% or p® | (¢% + 1). Therefore (a) follows.
(b) Let p® | |[M] and p € 71 (M) with p® —1 = 0 (mod D(gq)). Consider the

following two cases:

Case 1. ¢ is even:

(1.1) If p® | ¢* then p® — 1 > ¢% + 1 and hence ¢? | p®. Since p® — 1 = t(¢> + 1),
we have ¢? | t + 1 or ¢> — 1 < t which means that p® = ¢*.

(1.2) If p | (¢ + 1)? then since (q+ ? < ¢® + 1, p® must be equal to (¢ + 1)2.
Thus p® —1=¢> +1+2¢— 1, hence ¢2 + 1 = 2¢ — 1 which has no solution.
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(1.3) If p® | (¢ — 1)2 then p® < (¢ — 1)%2 < ¢®> + 1, but p® — 1 > ¢ 4 1, which is
a contradiction.

Case 2. ¢ is odd:

2 2 2
(2.1) If p* | ¢* then p® > qTH > % and hence ¢2 | p®. Since p* — 1 = t(qz—"_l),
we have ¢2 | t+2 or g2 —2 < t, therefore ¢> =2 <t < 2(¢> —1) or t = (¢ — 2) + s,
where 0 < s < ¢2. Similarly to Case 1 we conclude that p® = ¢*.
_1)2 2 102
(2.2) If p® | 4(¢—1)? then since % -1< q_;—l’ p® must be equal to 4(qsl)

where 1 < s < 7, but s cannot be equal to 3, 5, 6, 7. Easy calculations show that
2
if s =1 then (g, p®) = (3,2%) and in the other cases p® — 1 # 0 (mod %)

2
(2.3) If p® | 4(¢+1)? and p® — 1 = 0 (mod qu'H), then since 4(qit11) —-1< qz;l,

2
p® must be equal to w where 1 < s < 13, but s can only be equal to 1, 2, 4,

8, 9. Again easy calculations show that if s = 4 then (¢,p®) = (3,2%) and in the
2
other cases p* — 1 # 0 (mod %)

(c) Similar arguments show that (c) holds. O

Lemma 2.11. Let G be a finite group and M = Ca(q) where g > 5 and OC(G) =
OC(M). Then G is neither a Frobenius group nor a 2-Frobenius group.

PROOF: G is not a Frobenius group otherwise by Lemma 2.4, OC(G) = {|H|, | K|}
where H and K are Frobenius kernel and Frobenius complement of GG, respectively.
If 2 | |[H| then |K| = q2];|-1, and |H| = ¢*(q¢ +1)%(¢ — 1)%. Since 4(q — 1)? > 1,
there exists a prime p such that p® | 4(q — 1)2. If P is a p-Sylow subgroup of
H, then since H is nilpotent, P < G and hence by Lemma 2.6, qu'H | |P|—1.
By Lemma 2.10(b) this implies that p® = ¢*. But ¢* t 4(¢ — 1)? which is a
contradiction. If 2 | |K| then |H| = L];H and |K| = ¢*(q + 1)%(¢ — 1)%. Now if
P is a p-Sylow subgroup of H, then |P| < |K|, but |K| | (|P| — 1), which is a
contradiction. Therefore, G is not a Frobenius group.

Let G be a 2-Frobenius group and let ¢ be odd. By Lemma 2.5 there is a normal
series 1 < H < K < G such that |K/H| = @ < 4(q+1)? and |G/K| < |K/H]|.
Thus there exists a prime p such that p | 4(¢+ 1)? and p | |H|. If P is a p-Sylow
subgroup of H, since H is nilpotent, P must be a normal subgroup of K with
PCH and |K|= L,;H|H| Therefore, qzljl | (|P| —1) by Lemma 2.6 and hence
p® —1 =0 (mod D(q)), so |P| = ¢* which is impossible since ¢* { 4(q + 1)2. If ¢
is even, then we consider (q + 1)? instead of 4(q + 1) and proceed similarly. [
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Lemma 2.12. Let G be a finite group and M = Ca(q), whereq > 5. If OC(G) =
OC(M), then G has a normal series 1 < H < K < G such that H and G/K are
m1-groups and K/ H is a simple group. Moreover, the odd order component of M
is equal to an odd order component of K/H. In particular, t(T'(K/H)) > 2.

PRrOOF: The first part of the lemma follows from the above lemmas since the
prime graph of M has two prime graph components. For primes p and ¢, if K/H
has an element of order pq, then G has one. Hence, by the definition of prime
graph component, the odd order component of G must be an odd order component
of K/H. O

3. Proof of the main theorem

By Lemma 2.12, G has a normal series 1 < H < K < G such that H and G/K
are m1-groups, K/H is a non-abelian simple group, ¢(I'(K/H)) > 2 and the odd
order component of M is an odd order component of K/H. We summarize the
relevant information in Tables 1-3 below:

Table 1
The order components of simple groups! with t(G) =2

Group Orcmp 1 Orcmp 2
Ap, p#5,6 3:-4--(p=3)(p—2)(p—1) P
p and p — 2 not both prime
Ap+1, p# 4,5 3:4--(p=2)(p—-D(p+1) P
p—1 and p + 1 not both prime
Apt2, p# 3,4 3:-4--(p—D(p+1(p+2) P
p and p + 2 not both prime
pp=1) 1, . p_
Ap-1(a), (P, 9) # (3,2), (3,4) T I (g' - 1) hGeD
p(p+1) _ . _
Ap(q),g—1|p+1 ¢ (@ - -1 L
p(p—1) 1, . P
2Ap-1(q) T I (0" - (1)) (Hf)(%

1 p is an odd prime number.
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Table 1 (continued)

Group Orcmp 1 Orcmp 2
P(:D+1) . p
24p(q), g+ 1p+ 1 ¢ (P - DI (¢ - (-1 L
(p,q) # (3,3),(5,2)
2A3(2) 6.34 5
Bn(g), n=2" > 4,q odd q”z (¢" — DI (g% — 1) et
By(3) 37 (37 + HIP— (3% — 1) 3:;1
Culg), n=2m>2 g™ (" = DI (g% — 1) =ty
2 p_
Cp(q), ¢=2,3 q* (¢* + 1)H€:11( #—1) (g,qfll)
Dy(q), p>5,q=2,3,5 qf’@*l)n”*l(q?" -1 qf;:f
DP+1(q)7 q= 27 3 (2, ,1) qp(p+1)(qp + 1) (qu:ll)
(qp+1 1) i:l (q -1) "
2Dn(q), n=2" >4 g OIS (g% - 1) GarD
2Dn(2),n=2"4+1>5 on(n=1)(2n 4 1) on—1 41
x(2n—1 — DI 2 (2% - 1)
2Dy(3), p# 2™ +1,p>5 3PP DI (3% - 1) e
2Dn(3), n=2"+1+#p,m>2 13n(n=1(3n 4 1) 8w
><(3” 1 1)n" 2(3% —1)
G2(q), ¢ = e(mod 3),¢ = 1, ¢ > 2 (@ —e)(® - 1)(g+e) ? —eq+1
3Da4(q) A2 -1 (@ - D)(*+2+1) ¢t -2 +1
Fy(q), q odd ?Hq® —1)(¢® - 1)2(¢* — 1) ¢t —q¢®+1
2Fy(2) 211 .33 .52 13
6 3
E6(q) (@ - 1) -1 -1 -1) G
x(¢* = 1)(¢* — 1) . .
*Eo(a), 4> 2 @@ -1 - D@ - D@ +1) TG
x(¢® +1)(¢*> = 1)
Mo 26.33.5 11
Ja 27.33 .52 7
Ru 214.33.53.7.13 29
He 210.33.52.73 17
Mecl 7.36.5%.7 11
Coy 221.39.5%.72.11.13 23
Cos 210.37.5%.7.11 23
Figg 217.39.52.7.11 13
Fs=HN 214.36.56.7.11 19
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Table 2
The order components of simple groups! with ¢(G) > 3

Group Orcmp 1 Orcmp 2 Orcmp 3 Orcmp 4
Ap, p and p—2 3-4---(p=3)(p—-1) p—2 P
are primes
A1(q), 4] q+1 g+1 q (a—1)/2
Ai(q), 41q—1 g-1 q (g+1)/2
A1(9), 214 q q+1 q-1
Az(2) 8 3 7
Az (4) 26 5 7 9
2A5(2) 215.36.5 7 11
*Ba(q) ' a—v2q+1 q++v2q+1 g¢-1
qg= 22n+1 > 2
2Dp(3) 2.3v(=1)(3p=1 _1) (3p~141)/2 (3P 4+1)/4
p=2"+1,n>2 xIIPZ2 (32 — 1)
2Dp+1(2) 2r(pt1)(2p — 1) 2P 41 or+l 4 q
p=2"—1,n>2 xIP~ (226 — 1)
E7(2) 263 . 311 . 52.73 73 127
11-13-17-19-31-43
Fa(q) **(¢® —1)*(¢* - 1)? *+1 - +1
21q,9g>2
2Fy(q) 2 -D(E+1) -2 P+ V2
g=22""1>2 x(@+1)(g-1) +¢—+v2¢+1 +g++/2q+1
G2(9), 3 | q ¢8(¢*> — 1)? ?+q+1 ?—q+1
2Ga(q), g = 32 H1 e(?—1) a—V3¢+1 q++3q+1
223 . 363 . 52 . 73
E+(3) 112133 .19 -37-41 757 1093
-61-73 - 547
2E6(2) 236.39.52.72.11 13 17 19
My 24.32 5 11
Moo 27 .32 5 7 11
Mos 27.32.5.7 11 23
May 210.33.5.7 11 23
J1 23.3.5 7 11 19
J3 27.3%.5 17 19

1 p is an odd prime number.
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Table 2 (continued)

Group Orcmp 1 Orcmp 2 Orcmp 3 Orcmp 4 Orcmp 5 Orcmp 6
Ja 221.33.5.7.118 23 29 31 37 43
HS 29.32.53 7 11
Sz 213.37.52.7 11 13
ON 29.3%.5.73 11 19 31
Ly 28.37.56.7.11 31 37 67
Coo 218 .36.53 .7 11 23
Fa3 218.313.52.7.11.13 17 23
Fl, 221.316.52.73.11.13 17 23 29

Fy=M | 246.320.59.76.772.133 41 59 71

17-19-23-29-31-47

F, =B 241 .313.56.72.11.13 31 47

17-19-23
F3=Th 215.310.53.72.13 19 31
Table 3

The order components of Eg(q)

Group Es(q), g =0,1,4 (mod 5)
Orcmp 1 a'*°(¢"® = (¢ = 1)(¢"? = 1)*(¢"° = 1)?(¢® = 1)*(¢* + ¢* + 1)
Orcmp 2 B+ - -t - +qg+1
Orcmp 3 -+ -+ —qg+1
Orcmp 4 S - +¢*—¢?+1
Orcmp 5 ¢ —q¢*t+1
Group Es(q), g = 2,3 (mod 5)
Orcmp 1 a'*°(¢*° = 1)(¢"® = 1)(¢"* = ("> = 1)(¢"° = 1)(¢® - 1)(¢* + 1)
x(¢* +¢*+1)
Orcmp 2 C+d - -t - +ag+1
Orcmp 3 B+ - +P—q+1
Orcmp 4 @ —qgt+1

We now proceed with the proof in the following steps:
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Step 1. Let K/H = A, where n = p, p+1, p+2 and p > 5 is a prime number. If
k =1and ¢>+1 = p then |C2(q)| = p(p—1)%(p—2)?, and hence (p—3, |C2(q)|) | 2
which is a contradiction. If g2 + 1 = p — 2 then |C2(q)| = (p — 2)(p — 3)%(p — 4)?

and hence p 1 |C2(g)| which is a contradiction. If k¥ = 2 and qZT'H = p then

(p —2,|C2(q)|) | 9 which implies that p = 5 or 11 which is impossible. If qu'H =
p — 2 then p { |Ca(q)| which is a contradiction.

Step 2. If K/H = A,(¢') then we distinguish the following 6 cases:

2.1. K/H = Ay _1(¢') where (p/,¢') # (3,2),(3,4). Then ¢’ -1=0 (mod D(q))
which implies that ¢'” = q*. Since p/ is an odd prime, if p’ > 3, then K/H has a
Sylow subgroup of size greater than ¢*, which is a contradiction by Lemma 2.10(a).
If p’ = 3, then we have ¢’> = ¢% and (¢ — 1)(3,¢ — 1) = (¢> — 1)(2,¢ — 1). But
easy calculations show that these two equations have no common solution.

2.2. K/H = Ay(q') where (¢ —1) | (p' + 1), then similarly to 2.1, K/H has a
Sylow subgroup of size greater than ¢%, and it is a contradiction by Lemma 2.10(a).
2.3. K/H = Ai(¢), where 4 | (¢ +1). If D(q) = q’_2—1 then ¢ = ¢*. But
(5’2[14;11) = ‘1/2;1 and so ¢ — 1 = 1 or 2 which is impossible. If D(q) = ¢’ and k = 1
then ¢ = ¢? +1 but 41 ¢ +2. If k = 2 then

P+l P43 F-1
D) 2 4

|K/H| = ]A1(q)]

2
but this is a contradiction since % 1G]

2.4. K/H = A1(¢") where 4 | (¢ —1). If D(q) = % then ¢ = ¢>. But ¢
is odd so ¢ is odd and hence k = 2. Therefore, |A1(¢?)| = ¢*(¢%> — 1)(¢® + 1)/2
and so |G/K| - |H| = ¢*(¢> — 1). But |G/K]| | | Out(A1(¢?))| by Lemma 2.9(3),
and if ¢ = p/™ then | Out(A1(¢?))| = 4n ([19]), which implies that |H| # 1. Thus
we can consider a p-Sylow subgroup P of H. Since H is nilpotent, P < G and
hence D(q) | (|P| — 1), but |P| | ¢ or |P| | ¢> — 1. If |P| | ¢? then |P| = ¢® or
|P| < 7 But &L t¢%>—1and s 1> | P| —1 which are contradictions.
= 3 2 2 =3 =

Similarly |P| | ¢*> — 1 is not possible. If D(¢q) = ¢’ then similarly to 2.3, we get
a contradiction.

2.5. K/H = A;(q') where 4 | ¢. If D(q) equals ¢’ —1, then ¢’ = ¢* and |41 (¢')| =
q*(¢*—1)(¢*+1), which is impossible. If D(q) = ¢’+1, by Lemma 2.10(c), ¢’ = ¢>
and since ¢’ is even, ¢ is even. Since K/H = A (q2), we get a contradiction similar
to 2.4.

2.6. K/H = A3(2) or A2(4) then D(q) must be equal to 3, 5, 7, 9, none of which
is possible.
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Step 3. If K/H = 2A,(q') then we consider 2 cases:

3.1. K/H 2Ap/_1(q/) or 2Ap/(q/) where (¢ +1) | (p/ +1) and (p',q¢) #
(3,3),(5,2). Then q’p, +1 = 0 (mod D(g)). By Lemma 2.10(c), q’pl = ¢
Since

g7 +1 @ +1

@+ +1,p) (2,¢-1)°
so (2,¢—1) = (¢ +1)(¢' + 1,p'), which is impossible.

3.2. K/H = 2A3(2) or 245(2). Then D(q) must be equal to 5, 7, 11, none of
which is possible.

Step 4. If K/H = B,(q') then we consider 2 cases:

4.1. K/H = B,(q¢') wherer = 2! > 4and ¢’ is odd. Then ¢’" +1 = 0 (mod D(q)).
2

By Lemma 2.10(c), ¢’ = ¢. But since r > 4, we have ¢’" > ¢*, which is a

contradiction by Lemma 2.10(a).

4.2. K/H = Bp(3). Then 3? = ¢*, which is impossible since 3P is not a square
number.

Step 5. If K/H = Cy(q') then we consider 2 cases:

5.1. K/H = Cp(¢') where 7 = 2 > 2. Then ¢’ = ¢*. Since q’r2 > ¢*, we
conclude that 7 = 2 and hence q = ¢/, so K/H = Ca(q). Then |G| = |Ca(q)| =
|K/H| = |K|/|H| which implies that |H| = 1 and | K| = |G| = |Ca(q)|. Therefore,
K = C2(q) and hence G = Ca(q).

5.2. K/H = Cpy(q') where ¢’ = 2, 3. Then q'p, = ¢*, which is a contradiction
since ¢'* / is not a square number.

Step 6. If K/H = D,(q¢') where (r,¢') = (p',¢') (with p’ > 5, ¢ = 2,3,5) or,
(r,d) = (' +1,¢) (with ¢ = 2,3). Thus ¢’ = ¢* and since p’ is an odd prime,

K/H has a Sylow subgroup of size greater than ¢*, which is a contradiction by
Lemma 2.10(a).

Step 7. Let K/H = 2By(¢') where ¢/ = 2211 > 2,

If D(q) = ¢ — 1 then ¢’ = ¢* which is a contradiction since 7% > ¢

If D(q) =q ++/2¢' + 1. Then 7*+1=0 (mod D(q)). Therefore, % = ¢? and
hence ¢ = ¢. But ¢ + 1 = ¢+ /2¢ + 1, which is impossible.

Step 8. If K/H = 2D,(¢') then we consider 6 cases:

8.1. K/H = 2D,(¢') where r = 2! > 2. Then ¢'" = ¢2. Since r — 1 > 3 we have
¢% | |G| which is a contradiction by Lemma 2.10(a).
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8.2. K/H =2D,(2) where r = 2/ 41 > 5. Then 2"~! = ¢2. Since r > 5 we have
¢'% | |G|, which is a contradiction by Lemma 2.10(a).

8.3. K/H = 2Dy (3) where 5 < p # 2" + 1. Then 3P = ¢2, but 3P is not a square
number.

8.4. K/H = 2D,(3) where r = 2 +1 # p, t > 2. Then 3"~! = ¢ But
37(r=1) > ¢4 which is a contradiction by Lemma 2.10(a).

8.5. K/H = 2D,(3) where p = 2! + 1, t > 2. Then we proceed similarly to 8.3
and 8.4.

8.6. K/H = 2Dp+1(2) where p = 2" — 1, r > 2 then 2P = ¢2 or 2PT! = ¢2, but
similarly to last cases they are impossible.

Step 9. If K/H = G5(q’) then we consider 3 cases:

9.1. K/H = G5(¢') where 2 < ¢ =1 (mod 3). Then D(q) = ¢*>—¢ +1and
hence ¢’ +1 =0 (mod D(q)), so ¢> = ¢2, and thus (2,¢ — 1) = ¢ + 1 which is
a contradiction.

9.2. K/H = Gy(q) where 2 < ¢ = —1 (mod 3). Then ¢’> = ¢*, and hence
¢® | |G| which is a contradiction.

9.3. K/H = Go(¢') where 3 | ¢. Then D(q) = ¢’* + ¢ + 1. This is similar to
Cases 9.1 and 9.2.

Step 10. If K/H = E7(2) or E7(3) or 2Eg(2) or 2F4(2)" then D(g) must be
equal to 13, 17, 19, 73, 127, 757, 1093, none of which has a solution in Z.

Step 11. If K/H = 3D4(q') then D(q) = q/4 — q/2 + 1, and hence q/6 +1=0
(mod D(g)) which implies that q/3 = ¢, and this implies that q/2 +1=1or2
which is impossible.

Step 12. If K/H = Fy(q’) then we consider 2 cases:

12.1. If D(q) = ¢* — ¢* + 1 then we proceed similarly to Step 11.

12.2. If D(q) = ¢* + 1, then ¢’* = ¢% and ¢'2 | |G| which is again impossible.
Step 13. If K/H = 2F,;(q') where ¢/ = 22"+1 > 2 then 7% = ¢2 and hence
¢ = ¢ and ¢ is even. But ¢’® + 1 cannot be equal to ¢'> £ \/2(]74— ¢ +2¢ +1.

Step 14. If K/H = 2Gy(q') where ¢/ = 32"+ then D(q) = ¢ + /3¢ + 1. If
D(q) = ¢ — /3¢’ + 1 then ¢> = ¢% and ¢ is odd. But ¢’ — \/3¢' + 1 cannot be

13
equal to < 2+1. If D(q) = ¢ + /3¢ + 1 then ¢> = ¢* but ¢’ is not a square
number and we have a contradiction.
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Step 15. If K/H = Eg(q’) then ¢° = ¢* and hence ¢'6 | |G|, which is impossible.

Step 16. If K/H = 2Eg(q') then ¢ = ¢%. But D(q) cannot be equal to (q'g +
1)/(2,¢' — 1), and we have a contradiction.

Step 17. If K/H is a sporadic simple group then D(q) must be equal to 5, 7, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71. There is a solution greater than
5 in the form of power of a prime number if D(q) =41 and ¢ = 9. By the table
of sporadic simple groups, 41 is an odd order component of F7. But 29 | |F1| and
29 1 |C2(9)| which is a contradiction.

The proof of the main theorem is now completed. O

Remark 3.1. It is a well known conjecture of J.G. Thompson that if G is a finite
group with Z(G) = 1 and M is a non-abelian simple group satisfying N(G) =
N(M), then G = M.

We can give a positive answer to this conjecture for the groups under discussion
by our characterization of these groups.

Corollary 3.2. Let G be a finite group with Z(G) =1, M = Cy(q) where ¢ > 5
and N(G) = N(M), then G = M.

PRrROOF: By Lemmas 2.7 and 2.8, if G and M are two finite groups satisfying the
conditions of Corollary 3.2, then OC(G) = OC(M). So the main theorem implies
this corollary. ([

Remark 3.3. Wujie Shi and Bi Jianxing in [17] put forward the following con-
jecture:

Conjecture. Let G be a group, M a finite simple group, then G = M if and
only if

(i) |G| = |M], and,

(ii) 7e(G) = me(M), where m(G) denotes the set of orders of elements in G.
This conjecture is valid for sporadic simple groups ([14]), groups of alternating
type ([18]), and some simple groups of Lie type ([15], [16], [17]). As a consequence
of the main theorem, we prove the validity of this conjecture for the groups under
discussion.

Corollary 3.4. Let G be a finite group and M = C(q) whereq > 5. If |G| = |M]|
and 7e(G) = we(M), then G =2 M.

PROOF: By assumption we must have OC(G) = OC(M). Thus the corollary
follows by the main theorem. (|
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