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An example of a C1,1 function, which is not a d.c. function

Miroslav Zelený

Abstract. Let X = ℓp, p ∈ (2,+∞). We construct a function f : X → R which has
Lipschitz Fréchet derivative on X but is not a d.c. function.
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We start with the following two definitions.

Definition 1. Let X be a normed linear space and f : X → R be a function. We
say that f is a d.c. function if f is a difference of two continuous convex functions
on X .

It is easy to see that f : X → R is a d.c. function if and only if there exists a
continuous convex function h on X such that f + h and −f + h are continuous
convex functions. Every such h is called a control function for f .

Definition 2. Let X be a normed linear space and f : X → R be a function.
We say that f is a C1,1 function if its Fréchet derivative f ′(x) exists at each point
x ∈ X and the mapping f ′ is Lipschitz on X .

The reader may consult [VZ] and [DVZ] for basic properties and also for gene-
ralizations of these notions.
The main aim of this note is to answer the following question posed in [DVZ].

Question. Does there exists a Banach space X and a C1,1 function on X , which
is not d.c.?

The question is answered in the positive by the following theorem.

Theorem. Let X = ℓp, p ∈ (2,+∞). Then there exists a C1,1 function f : X →
R, which is not a d.c. function.

Remark. Let us remark that the class of d.c. functions contains the class of C1,1
functions on ℓp, where p ∈ (1, 2]. This result is a consequence of a more general
theorem due to Duda, Veselý and Zaj́ıček ([DVZ, Theorem 11]).
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We denote the set of all finite sequences from {0, 1} by Seq{0, 1} and if s ∈
Seq{0, 1}, then ŝ0 (ŝ1, respectively) stands for the concatenation of the se-
quences s and (0) (s and (1), respectively). The length of s ∈ Seq{0, 1} is denoted
by |s|. Let X be a normed linear space. The open ball with center x ∈ X and
radius r > 0 is denoted by B(x, r).
The following auxiliary notion will be helpful in the sequel.

Definition 3. Let X be a Banach space. We say that points xs, s ∈ Seq{0, 1},
form an S-family in X , if there exists a sequence {rn}∞n=0 of positive real numbers
such that the following conditions are satisfied:

(a) 12 (xŝ 0 + xŝ 1) = xs for every s ∈ Seq{0, 1},
(b) the set {xs; s ∈ Seq{0, 1}} is bounded,
(c) ‖xs − xt‖ ≥ max{r|s|, r|t|} for every s, t ∈ Seq{0, 1}, s 6= t,
(d)

∑∞
n=0 r

2
2n = +∞,

(e) lim rn = 0.

Lemma 1. Let X be a Banach space, let T = (xs)s∈Seq{0,1} be an indexed set

with elements in X . Let {cn}∞n=1 be a sequence of real numbers. If h : X → R is

a function satisfying

(⋆) ∀ s ∈ Seq{0, 1} : 1
2
(h(xŝ 0) + h(xŝ 1))− h(xs) ≥ c|s|+1,

then for every n ∈ N∪{0} there exists s ∈ {0, 1}n with h(xs) ≥ h(x∅)+
∑n

j=1 cj .

Proof: We will proceed by induction over n. The case n = 0 is obvious. (Note

that we use the convention saying that
∑0

j=1 cj = 0.) Suppose that the assertion

holds for n and we will deal with the case “n + 1”. Using induction hypothesis
we have h(xs) ≥ h(x∅) +

∑n
j=1 cj for some s ∈ {0, 1}n. According to (⋆) we have

h(xŝ i) ≥ h(xs) + cn+1 for some i ∈ {0, 1}. Thus we conclude

h(xŝ i) ≥ h(x∅) +




n∑

j=1

cj



+ cn+1

and we are done. �

The next lemma is very easy to prove, so the proof will be omitted.

Lemma 2. Let X be a Banach space and f be a d.c. function on X with a control
function h. Then for every x ∈ X and v ∈ X we have

1

2
(h(x + v) + h(x− v))− h(x) ≥

∣∣∣∣
1

2
(f(x + v) + f(x− v)) − f(x)

∣∣∣∣ .

The next lemma uses the notion of bump function, which means a function
with nonempty bounded support.
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Lemma 3. Let X be a Banach space with a C1,1 bump function. Suppose that
there exists an S-family in X . Then there exists a C1,1 function f : X → R which

is not a d.c. function.

Proof: Let T = (xs)s∈Seq{0,1} be an S-family in X and let {rn}∞n=0 be the
corresponding sequence of real numbers from Definition 3. Let ϕ be a C1,1 bump
function on X . We may assume that the support of ϕ is contained in the unit
ball of X and ϕ(0) = 1. We may also assume that 0 ≤ ϕ(x) ≤ 1 for every x ∈ X .
Indeed, we can use h ◦ϕ, where h : R → [0, 1] is a C∞ function with h(0) = 0 and
h(1) = 1, instead of ϕ, if necessary. Denote E = {s ∈ Seq{0, 1}; |s| is even}. For
every s ∈ E we define a function ψs : X → R by

ψs(x) = r
2
|s|ϕ

(
4

r|s|
(x− xs)

)
.

We denote Bs = B(xs,
1
4r|s|) for s ∈ E. Now we define a function ψ : X → R

putting ψ(x) =
∑

s∈E ψs(x). We will verify the following properties of ψ:

(i) ψ is well defined on X ,
(ii) Fréchet derivative ψ′(x) exists for each x ∈ X ,
(iii) the mapping x 7→ ψ′(x) is Lipschitz.

(i) We have suppψs ⊂ Bs for every s ∈ E. The system {Bs; s ∈ E} of balls is
disjoint by the property (c) of S-family T and thus ψ is well defined on X .

(ii) If x ∈ Bs for some s ∈ E, then ψ′(x) exists since ψ = ψs on some neigh-

borhood of x. If x ∈ X \ ⋃s∈E Bs, then ψ
′(x) exists since ψ = 0 on some

neighborhood of x.

It remains to deal with x ∈ ⋃s∈E Bs \
⋃

s∈E Bs. Then we have ψ(x) = 0. We

show that ψ′(x) = 0. Take y ∈ X , y 6= x. We distinguish two cases.
a) If y /∈ ⋃s∈E Bs, then ψ(y) = 0 and we have |ψ(x)− ψ(y)|/‖x− y‖ = 0.
b) If y ∈ Bs for some s ∈ E, then ‖x− y‖ ≥ 1

4r|s| since B(xs,
1
2r|s|) intersects

no ball Bt, t ∈ E, t 6= s. We obtain

|ψ(x)− ψ(y)|
‖x− y‖ ≤

r2|s|
1
4r|s|

= 4r|s|.

Let ε > 0. Then there exists n0 ∈ N such that for every n ∈ N, n ≥ n0, we
have 4rn < ε. Then we can find δ > 0 such that B(x, δ) intersects only those Bs’s
with |s| ≥ n0. Now the above discussion gives

|ψ(x) − ψ(y)|
‖x− y‖ < ε
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for every y ∈ B(x, δ) \ {x}. This proves ψ′(x) = 0.

(iii) LetK0 > 0 be the Lipschitz constant of the mapping x 7→ ϕ′(x). According
to the definition of ψ we have that the mapping x 7→ ψ′(x) is Lipschitz on Bs,
s ∈ E, with the Lipschitz constant K1 = 16K0. Now take x, y ∈ X such that
these points are not elements of the same Bt, t ∈ E. If x ∈ Bs for some s ∈ E,
then we find x̃ ∈ X such that x̃ is an element of the segment with endpoints x
and y and lies on the boundary of Bs. If x ∈ X \

⋃
t∈E Bt we put x̃ = x. The

element ỹ is defined in the analogical way. We have ψ′(x̃) = 0 and ψ′(ỹ) = 0. We
estimate

‖ψ′(x)− ψ′(y)‖ ≤ ‖ψ′(x) − ψ′(x̃)‖+ ‖ψ′(x̃)− ψ′(ỹ)‖+ ‖ψ′(ỹ)− ψ′(y)‖
≤ K1‖x− x̃‖+ 0 +K1‖ỹ − y‖ ≤ K1‖x− y‖.

Thus we have verified the property (iii).
Since T is a bounded set and lim rn = 0 we have that suppψ is bounded. So

take R > 0 with suppψ ⊂ B(0, R). We find a sequence {B(zn, dn)}∞n=1 of balls
with disjoint closures such that lim zn = 0 and 0 < 2dn < ‖zn‖. The desired
function f is defined as follows:

f(x) =

∞∑

n=1

fn(x), where fn(x) = d
2
nψ

(
R

dn
(x− zn)

)
.

We have to verify the following properties:

(iv) f is well defined on X ,
(v) f ′(x) exists for each x ∈ X ,
(vi) the mapping x 7→ f ′(x) is Lipschitz,
(vii) f is not a d.c. function.

(iv) The supports of fn’s are disjoint and thus f is well defined.

(v) The function ψ is obviously bounded. Let C be a constant such that
|ψ(x)| ≤ C for every x ∈ X . If x ∈ X \ {0}, then f = fn for some n ∈ N on
some neighborhood of x. Thus the derivative f ′(x) clearly exists for every x 6= 0.
We show that f ′(0) = 0. We have f(0) = 0, therefore it is sufficient to show that
limy→0 |f(y)|/‖y‖ = 0.
Fix ε > 0. Then there exists n0 ∈ N such that Cdn < ε for every n ∈ N,

n ≥ n0. Find δ > 0 such that B(0, δ) intersects no ball B(zn, dn) with n < n0.
Take y ∈ B(0, δ) \ {0}. If y /∈

⋃∞
n=1B(zn, dn), then f(y) = 0 and therefore

|f(y)|/‖y‖ = 0. If y ∈ B(zn, dn) for some n ∈ N, then n ≥ n0 and we have
|f(y)|/‖y‖ ≤ Cd2n/dn = Cdn < ε. Thus we have |f(y)|/‖y‖ < ε for every
y ∈ B(0, δ) \ {0}. This gives f ′(0) = 0.
(vi) The mapping x 7→ f ′n(x) is Lipschitz on B(zn, dn) with the Lipschitz

constant K1R
2. Using the same method as in the proof of the property (iii) we

obtain that x 7→ f ′(x) is Lipschitz with the constant K1R
2.
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(vii) Suppose to the contrary that f is a d.c. function. Let h be a control
function for f . Since h is continuous there exists τ > 0 such that |h(x)| < 1 for
every x ∈ B(0, τ). Then there exists m ∈ N with B(zm, dm) ⊂ B(0, τ). Put

ys :=
dm

R
xs + zm, s ∈ Seq{0, 1} .

Using Lemma 2 we have that

1

2
(h(yŝ 0) + h(yŝ 1))− h(ys) ≥

∣∣∣∣
1

2
(f(yŝ 0) + f(yŝ 1))− f(ys)

∣∣∣∣

for every s ∈ Seq{0, 1} and i ∈ {0, 1}. The construction of f and ψs’s gives

f(ys) = fm(ys) = d
2
mψ(xs) =

{
0, |s| is odd;
d2mr

2
|s|, |s| is even.

Thus we have

1

2
(h(yŝ 0) + h(yŝ 1))− h(ys) ≥

{
d2mr

2
|s|+1, |s| is odd;

d2mr
2
|s|, |s| is even.

Put c2n−1 = d2mr
2
2n−2 and c2n = d2mr

2
2n for n ∈ N. For every s ∈ Seq{0, 1} we

have
1

2
(h(yŝ 0) + h(yŝ 1))− h(ys) ≥ c|s|+1.

Using Lemma 1 and the fact that
∑∞

n=0 r
2
2n = +∞ we obtain that there exists

ys ∈ B(zm, dm) ⊂ B(0, τ) with h(ys) > 1, a contradiction. �

For the sake of completeness we prove the following well-known result.

Lemma 4. Let X = ℓp, p ∈ (2,+∞). Then there exists a C1,1 bump function
on X .

Proof: Fix p ∈ (2,+∞). Using [DGZ, Theorem 1.1., p. 184] it is easy to see
that the function w : X → R defined by w(x) = ‖x‖p has bounded second Fréchet
derivative on the unit ball. (The symbol ‖.‖ stands for the canonical norm on ℓp.)
Let τ : R → R be a C∞ bump with supp τ ⊂ [−1, 1]. Putting g = τ ◦w we obtain
the desired bump. �

Proof of Theorem: According to Lemma 4 there exists a C1,1 bump on X .
Thus it is sufficient to show that X contains an S-family. Such a set can be
defined as follows. We put

x∅ = (0, 0, 0, . . . )

xs =
(
(−1)s1 , (−1)s2/

√
2, . . . , (−1)sn/

√
n, 0, 0, . . .

)
, s = (s1, . . . , sn) ∈ {0, 1}n.

The corresponding rn’s are defined by rn = 1/
√
n+ 1, n ∈ N ∪ {0}. A direct

calculation shows that T = (xs)s∈Seq{0,1} satisfies the conditions (a)—(e) from

Definition 3. Using Lemma 3 we are done. �
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