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Conformal deformations of the Riemannian

metrics and homogeneous Riemannian spaces

Eugene D. Rodionov, Viktor V. Slavskii

Dedicated to Professor Oldřich Kowalski on the occasion of his 65th birthday

Abstract. In this paper we investigate one-dimensional sectional curvatures of Riemann-
ian manifolds, conformal deformations of the Riemannian metrics and the structure of
locally conformally homogeneous Riemannian manifolds. We prove that the nonnegati-
vity of the one-dimensional sectional curvature of a homogeneous Riemannian space at-
tracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with
the help of the theorems O. Kowalski-S. Nikčević [K-N], D. Alekseevsky-B. Kimelfeld
[A-K]. The criterion for existence of the left-invariant Riemannian metrics of positive
one-dimensional sectional curvature on Lie groups is presented. Classification of the
conformally deformed homogeneous Riemannian metrics of positive sectional curvature
on homogeneous spaces is obtained. The notion of locally conformally homogeneous
Riemannian spaces is introduced. It is proved that each such space is either conformally
flat or conformally equivalent to a locally homogeneous Riemannian space.

Keywords: conformal deformations, Riemannian metrics, homogeneous Riemannian
spaces

Classification: 53C20, 53C30

1. Preliminaries

Let ∇ be the Levi-Chivita connection of the Riemannian metric ds2 = gijdxidxj

on a manifoldMn, Rijks is the curvature tensor, Rij is the Ricci tensor, Ric(ξ) =

Rijξ
iξj is the Ricci curvature in direction of a unit vector ξ, R is the scalar

curvature of the metric ds2.
At research of Riemannian manifolds, an important role is played by a tensor

which is defined with the help of the formula

(1) Aij =
1

n − 2

(

Rij −
Rgij

2(n − 1)

)

,

where Rij denotes the Ricci tensor and R the scalar curvature.
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It represents an integer part from division of the Riemannian curvature tensor
by the metric tensor with respect to the Kulkarni-Nomizu product ([B]). Using
the tensor Aij , the curvature tensor can be presented in the form

Rlkij =Wlkij + gljAki + gkiAlj − gliAkj − gkjAli,

where Wlkij is the conformal Weyl tensor.

Definition 1.1. The one-dimensional sectional curvature in the tangent direction

ξ is defined as the value

A(ξ) =
Aijξ

iξj

gijξiξj
,

where ξi is an arbitrary tangent vector generating the direction ξ.

The sectional curvature along a tangent 2-plane can be expressed as

K(ξ ∧ η) =
Rijklξ

iηjξkηl

gikξiξkgjlη
jηl
=

Wijklξ
iηjξkηl

gikξiξkgjlη
jηl
+

Aijξ
iξj

gikξiξk
+

Aklη
kηl

gjlη
jηl

,

where ξ, η form an orthonormal basis of the 2-plane. In particular, for the confor-
mally flat metric, or for a three-dimensional Riemannian manifold, this formula
has a more simple form

K(ξ ∧ η) =
Aijξ

iξj

gikξiξk
+

Aklη
kηl

gjlηjηl
.

In these notations we have the following result:

Theorem 1.1. Let (Mn, ds2) be a Riemannian manifold. Then the following
statements are true:

(i) if the one-dimensional sectional curvature A(ξ) is nonnegative everywhere
on (Mn, ds2), then the Ricci curvature is nonnegative everywhere on
(Mn, ds2). Moreover, if at some point p ∈ Mn there is a vector η ∈ TpM

n

such that Ric(η) =
∑

Rijη
iηj = 0, then the Ricci curvature at this point

is equal to zero;

(ii) there are Riemannian manifolds of nonnegative Ricci curvature and sign-
changing one-dimensional sectional curvature.

Proof: At an arbitrary point of Mn we shall consider the orthonormal basis
{ξ1, . . . , ξn} for which the Ricci quadratic form is diagonalized. Let r1, r2, . . . , rn

be the principal Ricci curvatures; then the condition of nonnegativity of the one-
dimensional sectional curvature is equivalent to the system of inequalities:











r1 −
P

ri

2(n−1)
≥ 0,

· · ·

rn −
P

ri

2(n−1)
≥ 0.
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From here it follows that

∑

k

(

rk −

∑

ri

2(n − 1)

)

=
n − 2

2(n − 1)

∑

ri ≥ 0,

i.e.
∑

ri ≥ 0, and it signifies that rk ≥
P

ri

2(n−1)
≥ 0. Thus, we see that the Ricci

curvature is nonnegative everywhere on (Mn, ds2).
Let us assume that there are a point p ∈ Mn and vector η ∈ TpM

n such that

Ric(η) = 0. Then A(η) = 1
n−2

(

− R
2(n−1)

)

≥ 0. Hence, the scalar curvature

R =
∑

ri ≤ 0, and as ri ≥ 0, i = 1, . . . , n, we see that r1 = r2 = . . . = rn = 0.
For the proof of statement (ii) of the theorem, let us consider the case when

(Mn, ds2) is a direct Riemannian product of compact Einstein manifolds:
(Mn, ds2) = (M1, ds21) × . . . × (Mk, ds2k) with Einstein constants r1 > 0, . . . ,
rk > 0. Let us consider the principal values of the one-dimensional sectional cur-

vature at an arbitrary point of the manifold: 1
n−2

(

ri −
P

ri

2(n−1)

)

, i = 1, . . . , n. If

we strongly contract the metric of the factor (Mj , ds2j ) by a homothety, leaving

the metrics on other factors without change, then we see that the one-dimensional
sectional curvature is sign-changing and the Ricci curvature is positive. �

Remark 1.1. We note that if for the one-dimensional sectional curvature the
inequality

Aijξ
iξj ≥

1

2
k0gijξ

iξj ∀ξ ∈ Tx(M),

with a constant k0 is fulfilled, then for the Ricci curvature the inequality

Rijξ
iξj ≥ (n − 1)k0gijξ

iξj ∀ξ ∈ Tx(M)

holds.

Remark 1.2. It is not difficult to see that the condition of constancy of the
Ricci curvature (which means r1 = r2 = · · · = rn), or the Einstein condition
respectively, implies the constancy of the one-dimensional sectional curvature,
i.e.

r1 −

∑

ri

2(n − 1)
= · · · = rn −

∑

ri

2(n − 1)

holds on (Mn, ds2).

Let us consider a conformal deformation ds2 = e2σ(x)gijdxidxj of the metric

ds2 on a manifold Mn. Then for such deformation the Weyl tensor is invariant,
i.e.

W ijkl = e2σ(x)Wijkl
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holds on (Mn, ds2). The tensor Aij will be transformed under the formula

Aij = Aij − σ,ij + σ,iσ,j −
1

2
σ,kσkgij = Aij − Bij ,

where Bij = σ,ij −σ,iσ,j +
1
2σ,kσkgij and σ,ij , σ,i are covariant derivatives of the

function σ with respect to the initial metric, and the Riemannian curvature of a
section under the formula

K(ξ ∧ η) = e−2σ(x)

[

K(ξ ∧ η)−
Bijξ

iξj

gikξiξk
−

Bklη
kηl

gjlηjηl

]

,

where ξi, ηj are mutually orthogonal unit vectors.

2. One-dimensional sectional curvature of homogeneous Riemannian

manifolds

Everywhere in this paragraph we suppose that M = G/H is a homogeneous
space, G is a connected Lie group acting effectively on M = G/H by diffeo-
morphisms r(y) : xH → yxH , H is a compact connected subgroup of G, g and
h are Lie algebras of groups G and H correspondingly, [·, ·] is the Lie bracket
of algebra g. Let adξ : η → [ξ, η] be an inner automorphism of the algebra g,
and let B(ξ, η) = − tr adξ ◦ adη be the minus Killing form of g. Under the as-
sumption of compactness and semisimplicity of G the form B(ξ, η) is positively
defined, and the G-homogeneous Riemannian metric ds2B on the homogeneous
space G/H , obtained from B(ξ, η) under the natural projection π : G → G/H ,
is called standard. Moreover, if we consider the p-orthogonal complement to h
in g with respect to B, then one can identify G-invariant Riemannian metrics on
G/H and Ad(H)-invariant scalar products on p. Thus, the sectional curvature,
the Ricci curvature and the scalar curvature are easily calculated with the help of
the Ad(H)-invariant scalar product on p and the Lie bracket [·, ·] of the algebra g
([B]). Hence, for the one-dimensional sectional curvature of G/H , one can obtain

an analogous formula, because A(ξ) = 1
n−2

(

Ric(ξ)− R
2(n−1)

)

.

Using these notations, we have

Theorem 2.1. Let (G/H, ds2) be a homogeneous Riemannian manifold and let
o denote the origin of G/H . Then the following statements are true:

(i) if the one-dimensional sectional curvature A(ξ) is nonnegative for any
vector ξ ∈ ToG/H , then the Ricci curvature Ric(ξ) is nonnegative for
any vector ξ ∈ ToG/H . Moreover, if there is a vector η ∈ ToG/H such
that Ric(η) =

∑

Rijη
iηj = 0, then (G/H, ds2) is isometric to the direct

Riemannian product of a flat torus and Euclidean space;

(ii) there are homogeneous Riemannian manifolds of nonnegative Ricci curva-
ture and sign-changing one-dimensional sectional curvature.



Conformal deformations of the Riemannian . . . 275

Proof: The first part of the statement (i) follows from the first part of the
proof of Theorem 1.1. Let us assume that there is a vector η ∈ TeG/H such
that Ric(η) = 0. Then from Theorem 1.1, we have Rij = 0 at o, and from

the homogeneity it follows that (G/H, ds2) is Ricci flat. According to the theo-
rem of D. Alekseevsky-B. Kimelfeld [A-K] it is flat, i.e. locally isometric to the
Riemannian product of a flat torus and Euclidean space.
To prove the last statement, we consider, for example, a three-dimensional

unimodular Lie groupG with a left-invariant Riemannian metric ds2. Let r1, r2, r3
be the principal Ricci curvatures of (G, ds2); then the conditions of nonnegativity
of the Ricci curvature and one-dimensional sectional curvature are equivalent to
the systems of inequalities:











r1 ≥ 0

r2 ≥ 0 for the Ricci curvature,

r3 ≥ 0

and


















r1 −
P

ri

4 ≥ 0

r2 −
P

ri

4 ≥ 0 for the one-dimensional sectional curvature.

r3 −
P

ri

4 ≥ 0

Obviously, the Ricci curvature is nonnegative and the one-dimensional sectional
curvature is sign-changing if and only if the point (r1, r2, r3) lies outside of a three-
faced angle bounded by the planes α : 3r1 − r2 − r3 = 0, β : −r1 + 3r2 − r3 = 0,
γ : −r1− r2+3r3 = 0, remaining in the domain of nonnegativity of the Ricci cur-
vature. To complete the proof we apply the theorem of O. Kowalskii-S. Nikčević
[K-N]: Let r1, r2, r3 be real numbers. Then a three-dimensional unimodular Lie
group with a left-invariant Riemannian metric and with the principal Ricci cur-

vatures r1, r2, r3 exists if and only if r1r2r3 > 0 or if at least two of ri, i = 1, 2, 3,
are zero. �

Using Theorem 2.1 and V. Berestovski’s theorem [Berest], we obtain the fol-
lowing result:

Theorem 2.2. Let (G/H, ds2) be a homogeneous Riemannian manifold of non-
negative one-dimensional sectional curvature which is not isometric to the direct

Riemannian product of a flat torus and Euclidean space. Then the following

statements are true:

(i) the Lie group G is compact and the Levi subgroup LG of G (i.e. maximal
connected semisimple subgroup of G) acts transitively on M ;

(ii) the fundamental group π1(M) is finite.
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Remark 2.1. It is not difficult to construct homogeneous Riemannian manifolds
of arbitrary dimension which satisfy to the condition (ii) of Theorem 2.1.

The criterion for existence of left-invariant Riemannian metrics of positive Ricci
curvature on Lie groups is well known (see J. Milnor [M, Theorem 2.2]):

Criterion. A connected Lie group G admits a left-invariant Riemannian metric
of positive Ricci curvature if and only if G is compact and its fundamental group
π1(G) is finite. In such a case, G also admits a biinvariant metric with the above
property.

In the case of one-dimensional sectional curvature, we have the following result:

Theorem 2.3. A connected Lie group G admits a left-invariant Riemannian
metric of positive one-dimensional sectional curvature if and only if G is compact
and its fundamental group π1(G) is finite. In such a case, G also admits a standard
metric with the above property.

Proof: Let us assume that A(ξ) > 0 ∀ξ ∈ TeG, then Ric(ξ) ≥ 0 ∀ξ ∈ TeG
according to Theorem 1.1. If Ric(η) = 0 for some η ∈ TeG, then (G, ds2) is flat,
therefore one-dimensional sectional curvature is equal to zero and we obtain a
contradiction with above assumption. Hence, Ric(ξ) > 0 ∀ξ ∈ TeG, and from
Criterion we see that G is compact, π1(G) is finite.
Conversely, let G be compact, and π1(G) be finite. Since G is connected, the

centre of G is trivial and G is semisimple compact connected Lie group. Thus,
G = G1 × . . . × Gsis the direct product of compact simple connected Lie groups
G1, . . . , Gs with Lie algebras g1, . . . , gs. Obviously, Bg = Bg1 +Bg2 + . . .+Bgs

,

where g = g1 ⊕ g2 ⊕ . . . ⊕ gs. Moreover,
(

Gi, Bgi

)

are standard homogeneous

Einstein manifolds with Einstein constants ri =
1
4 , i = 1, . . . , s (see, for example,

[B]). From here it follows that the principal values of one-dimensional sectional
curvature have the form

1

n − 2

(

ri −

∑

ri

2(n − 1)

)

=
1

4(n − 2)

(

1−
n

2(n − 1)

)

=
1

8(n − 1)
, i = 1, . . . , s.

This completes the proof of Theorem 2.3. �

Remark 2.2. We note that there are biinvariant Riemannian metrics on a con-
nected compact semisimple Lie group G = G1 × . . .×Gs with positive Ricci cur-
vature and sign-changing one-dimensional sectional curvature. Really, let (·, ·)g×g

be a biinvariant Riemannian metric on G, then (·, ·) = λ1Bg1 + λ2Bg2 + . . . +
λsBgs

, where λ1, λ2, . . . , λs are some positive constants. Further, we consider

the principal values of one-dimensional sectional curvature: 1
n−2

(

ri −
P

ri

2(n−1)

)

,

i = 1, . . . , s. Obviously, if λj tends to zero for some j ∈ {1, . . . , s} and other con-
stants λi, i ∈ {1, . . . , s}\{j}, are without change, then one-dimensional sectional
curvature is sign-changing and the Ricci curvature is positive.
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3. Conformal deformations of the Riemannian metrics with sections

of zero curvature on a compact manifold

The following theorem was announced in [RS1].

Theorem 3.1. Let Mn be a compact manifold with Riemannian metric ds2 =
gijdxidxj . Suppose that there exists a two-dimensional direction of zero sec-

tional curvature at each point x ∈ Mn. Then for any conformal deformation

ds2 = e2σ(x)gijdxidxj of the metric ds2 there are a point x0 ∈ Mn and a two-

dimensional direction of nonpositive sectional curvature at this point and also a

point x1 ∈ Mn and a two-dimensional direction of nonnegative sectional curvature

at this point.

Proof: The proof is carried out by contradiction. Suppose that there is a con-
formal deformation ds2 of the initial metric ds2 such that at each point of Mn

the sectional curvature K(ξ ∧ η) is positive. From here it follows that

K(ξ ∧ η)−
Bijξ

iξj

gikξiξk
−

Bklη
kηl

gjlη
jηl

> 0.

Then at the point of minimum of the function σ we have

σ,i = 0,

Bijξ
iξj = σ,ijξ

iξj ≥ 0,

Bklη
kηl = σ,klη

kηl ≥ 0.

Hence, we see that K(ξ∧η) > 0 for all bivectors ξ∧η. The case of strictly negative
curvature is treated analogously. These contradictions prove Theorem 3.1. �

Corollary 3.1. Suppose that (Mn, ds2) satisfies the conditions of Theorem 3.1.
Then for any metric ds2 which is conformally equivalent to the initial metric ds2

there are a point x ∈ Mn and a two-dimensional direction ξ∧η at this point such
that Kx(ξ ∧ η) = 0.

Proof: Let Mn
0 be a connected component of Mn. Using Theorem 3.1 we see

that there are points p, q ∈ Mn
0 and two-dimensional directions at these points

πp = ξp ∧ ηp, πq = ξq ∧ ηq such that

K(πp) ≤ 0, K(πq) ≥ 0.

Let us consider a continuous curve x(t), t ∈ [0, 1] connecting points p and q in
Mn
0 and a continuous field of bivectors πt = ξt ∧ ηt along x(t) such that π0 = πp

and π1 = πq. Then there exists θ ∈ [0, 1] such that at the point x(θ) we have
K(πθ) = 0. �
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Corollary 3.2. Let (Mn, ds2) be a direct Riemannian product of compact Rie-
mannian manifolds. Then for any metric ds2 which is conformally equivalent to
the initial metric ds2 there are a point x0 ∈ Mn and a two-dimensional direc-

tion of nonpositive sectional curvature at this point, and a point x1 ∈ Mn and a

two-dimensional direction of nonnegative sectional curvature at this point.

Corollary 3.3. The metric ds2 which is conformally equivalent to the Riemann-
ian metric ds2 of the direct Riemannian product M = M1 × M2 of compact
Riemannian manifolds has a point and a two-dimensional direction of zero sec-

tional curvature at this point.

In the case of homogeneous spaces we have the result:

Theorem 3.2. If ds2 is conformally equivalent to a homogeneous Riemannian
metric ds2 of a simply connected compact homogeneous space G/H and ds2

has positive sectional curvature, then G/H is diffeomorphic either to a compact
symmetric space of rank one (CROSS), or to one of the Aloff-Berger-Wallach
spaces ([Berger], [W]):

Sp(2)/SU(2), SU(5)/Sp(2)× S1, SU(3)/S1, SU(3)/Tmax,

Sp(3)/Sp(1)3, F4/Spin(8).

Proof: Suppose that (G/H, ds2) has positive sectional curvature. If G/H is
not diffeomorphic to a CROSS or to one of the Aloff-Berger-Wallach spaces, then
ds2 admits two-dimensional directions of zero sectional curvature at each point of
G/H and according to Corollary 3.1 the metric ds2 has a direction of zero sectional
curvature at some point of G/H . This contradiction proves Theorem 3.2. �

For the case of Lie groups we have the following theorem:

Theorem 3.3. If ds2 is conformally equivalent to a left-invariant Riemannian
metric ds2 of a compact Lie group G, and ds2 has positive sectional curvature,
then the Lie group G is locally isomorphic to the group SU(2).

The proof follows from Theorem 3.2 and Theorem of Wallach [W].

Theorem 3.4. Let Mn be a compact manifold with Riemannian metric ds2 =
gijdxidxj . Suppose that there exists a one-dimensional direction ξ such that

A(ξ) = 0 for all points x ∈ Mn. Then for any conformal deformation ds2 =

e2σ(x)gijdxidxj there are points x0, x1 ∈ Mn and one-dimensional directions

ξ0, ξ1 at these points such that the inequalities

Ax0(ξ0) ≤ 0, Ax1(ξ1) ≥ 0

are fulfilled.

The proof of this theorem is similar to the proof of Theorem 3.1.
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Theorem 3.5. LetMn be a compact manifold with Ricci flat Riemannian metric

ds2 = gijdxidxj . Then for any conformal deformation ds2 = e2σ(x)gijdxidxj

there is a point x0 ∈ Mn such that the Ricci curvature is nonnegative at this

point.

Proof: Using conditions of Theorem 3.5 we see that the one-dimensional sec-
tional curvature of (Mn, ds2) is identically equal to zero. Further, we apply the
formula for the conformal deformation of one-dimensional sectional curvature,
and we see that at the point of minimum of the function σ the one-dimensional
sectional curvature of ds2 is nonnegative. Hence, the Ricci curvature of ds2 is
nonnegative at this point too. �

Remark 3.1. If the Ricci curvature of the initial metric ds2 is nonnegative and
positive at some point, then ds2 is conformally equivalent to some metric of
strictly positive Ricci curvature ([E]).

Theorem 3.6. Let Mn be a compact manifold with Riemannian metric ds2 =
gijdxidxj . Suppose that there exists a one-dimensional direction ξ such that
A(ξ) = k0, for some constant k0, for all points x ∈ Mn. Then for any conformal

deformation ds2 = e2σ(x)gijdxidxj there are points x0, x1 ∈ M and corresponding
one-dimensional directions ξ0, ξ1 at these points such that the inequalities:

Ax0(ξ0) ≤ k0e
−2σ(x0), Ax1(ξ1) ≥ k0e

−2σ(x1)

are fulfilled.

4. Locally conformally homogeneous Riemannian manifolds

Locally homogeneous Riemannian manifolds were studied by O. Kowalski, F. Tri-
cerri, L. Vanhecke [K], [T-V], [T].

Definition 4.1. A vector field v is called a conformal Killing vector field if and
only if

(2) vi,k + vk,i = 2wgik,

where w = vk,ig
ik/n.

The system (2) was studied by many authors ([Y], [C]). In this paper, following
[Resh], we find a linear system of equations which is equivalent to the system (2).
Further, with the help of this system, we investigate conformal Killing vector
fields.
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Lemma 4.1. The equations system (2) is equivalent to the linear system

(3)

vj,p = ηjp + gjpw,

ηij,p = vaRa
pij + gipζj − gjpζi,

w,p = ζp,

ςj,p = ηpaAa
j + ηjaAa

p − Ajp,bv
b − 2wAjp,

where

Ajp =
1

n − 2

(

Rjp −
Rgjp

2 (n − 1)

)

,

{vj} are covariant components of a vector field v(x), {ηij} is a skew-symmetric
covariant tensor, w is a function, {ζp} is a covector field. The integrability con-
ditions of (3) have the form

(4)
vaWijsk,a + 2wWijsk − η.a

i Wajsk − η.a
j Wiask − η.a

s Wijak − η.a
k Wijsa = 0,

ζaW a
jps − 3wSjps − vtSjps,t + η.a

j Saps + η.a
p Sjas + η.a

s Sjpa = 0,

where W a
jps is the Weyl tensor and Sjps = Ajp,s − Ajs,p is the Schouten-Weyl

tensor.

The proof of this lemma is given in [Y], [RS2].

Remark 4.1. The integrability condition can be written in a more compact form
with the help of Lie derivatives (see [Y]):

LvWijks = 2wWijks, LvSijk =W a
.ijkw;a.

Remark 4.2. In the case n = 3, the Weyl tensor is identically equal to zero and
therefore the first equality in (4) is fulfilled, and the second equality has the form

−3wSjps − vtSjps,t + η.a
j Saps + η.a

p Sjas + η.a
s Sjpa = 0.

We note that in the case n ≥ 4 the second equality in (4) follows from first (see,
for example, [C]).

Lemma 4.2. If |W | = const 6= 0, then w ≡ 0 and ζs ≡ 0 (i.e. the conformal
Killing vector field v is Killing in this case).

Proof: Contracting the first equality in (4) with W ijsk we get equality

1

2
va

(

|W |2
)

,a
+ 2w |W |2 = 0,

and hence the statement of Lemma 4.2 follows. �
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Lemma 4.3. Let {M, ds2 = gijdxidxj} be a Riemannian manifold and V = {vi}

be a Killing vector field on (M, ds2). Then V = {vi} is a conformal Killing vector

field on (M, ds2), where ds2 = e2σ(x)gijdxidxj .

Proof: First at all, we have the equality

vk,j = vi
,jgik =

∂vi

∂tj
gik + vaΓaj,k.

From here it follows that

vk,j = e2σ
[

vk,j + va ∂σ

∂ta
gkj + gakva ∂σ

∂tj
− gajv

a ∂σ

∂tk

]

.

Hence, we have

vk,j + vj,k = 2v
a ∂σ

∂ta
gkj .

�

Definition 4.2. Let {Mn, ds2} be a Riemannian manifold such that for every
point x0 ∈ M and an arbitrary tangent vector ~v0 ∈ Tx0M there is a conformal
Killing vector field v(x) in a neighborhood of x0 ∈ M such that

v(x0) = ~v0.

Then {Mn, ds2} is called a locally conformally homogeneous Riemannian mani-
fold.

Remark 4.3. Obviously, the conformal deformation of a locally homogeneous
Riemannian space gives a locally conformally homogeneous space.

Theorem 4.1. Let {Mn, ds2} be a locally conformally homogeneous connected
Riemannian manifold. Then {Mn, ds2} is either conformally flat, or it is confor-
mally equivalent to a locally homogeneous Riemannian space.

Proof: Let us consider the case dimM > 3. Under the conformal deformation
the Weyl tensor is invariant, i.e.

W a
isk =W

a
isk,

∣

∣W
∣

∣

2
= e−6σ(t)|W |2

hold on M . Hence, if |W | 6= 0, it is possible to choose a function σ(t) so that
|W | ≡ const 6= 0. Using Lemma 4.2, we see that the manifold M is locally
homogeneous. In the case when dimM = 3, the Weyl tensor is identically equal
to zero. Contracting the second equality in (4) with Sjps, we have the following
equality:

ζaW a
jpsS

jps − 3w|S|2 −
1

2
vt

(

|S|2
)

,t
= 0.

Hence, it follows similarly that either the Schouten-Weyl tensor is identically
equal to zero, or with the help of a conformal deformation it is possible to make
its norm constant, and the manifold M is locally homogeneous. �
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