Normal cones and C^* -m-convex structure

A. EL KINANI, M.A. NEJJARI, M. OUDADESS

Abstract. The notion of normal cones is used to characterize C^* -m-convex algebras among unital, symmetric and complete m-convex algebras.

Keywords: m-convexity, normal cone, C^* -structure, C^* -m-convex structure

Classification: 46K05, 46L99

Introduction

In the first section, we consider unital, symmetric and complete m-convex algebras A which are Sym-s.b. We show (Theorem 2.1) that if the cone of positive elements is normal, then Pták's function is a C^* -norm and stronger than the initial topology; it is complete in the commutative case. The two topologies coincide in each of the following situations: A is a Q-algebra (Corollary 2.2), A is commutative and Fréchet (Corollary 2.4), A is barreled (Corollary 2.6). Noticing that the cone of positive elements is always normal in a C^* -m-convex algebra, we get Theorem 8.15 of [5]. We also obtain a generalization, to our context, of a result of Pták ([7, Theorem 8.4, p. 277]). Without Sym-s.b. condition but assuming commutativity we define, in Section 2, the notion of a normal cone for a family $(|.|_{\lambda})_{\lambda}$ of seminorms; and show that it characterizes the cone of positive elements of a C^* -m-convex algebra. We also exhibit three independent conditions, on any cone which is stable by product, characterizing C^* -m-convex algebras among unital and complete m-convex ones.

1. Preliminaries

In a locally convex space E, a convex cone K is said to be normal if there is a family $(|.|_{\lambda})_{\lambda}$ of seminorms, defining the topology of E, such that, for every λ , one has $|y|_{\lambda} \geq |x|_{\lambda}$ whenever $x, y \in K$ and $y - x \in K$. Let $(A, (|.|_{\lambda})_{\lambda})$ be an m-convex algebra (l.m.c.a.) which is unital and complete. It is known that $(A, (|.|_{\lambda})_{\lambda})$ is the projective limit of the normed algebras $(A_{\lambda}, ||.||_{\lambda})$, where $A_{\lambda} = A/N_{\lambda}$ with $N_{\lambda} = \{x \in A : |x|_{\lambda} = 0\}$; and $||\overline{x}||_{\lambda} = |x|_{\lambda}$. An element x of A is written $x = (x_{\lambda})_{\lambda} = (\pi_{\lambda}(x))_{\lambda}$, where $\pi_{\lambda} : A \longrightarrow A_{\lambda}$ is the canonical surjection. The algebra $(A, (|.|_{\lambda})_{\lambda})$ is also the projective limit of the Banach algebras $\widehat{A_{\lambda}}$, the completions of A_{λ} 's. The norm in $\widehat{A_{\lambda}}$ will also be denoted by $||.||_{\lambda}$. We will denote

by *-l.m.c.a. any l.m.c.a. A with a continuous involution $x \mapsto x^*$; it will be said symmetric if $e + xx^*$ is invertible for every x in A. The sets of hermitian elements and of positive elements, will be denoted by $\operatorname{Sym}(A)$ and A_+ respectively. It is known that A_+ is a convex cone in any symmetric, unital and complete l.m.c.a. ([4, Proposition 8.6, p. 39]). An involutive algebra is said to be symmetrically spectrally bounded (Sym-s.b.) if the spectrum of every hermitian element is bounded. In the sequel ρ and p_A will stand respectively for the spectral radius and Pták's function that is $\rho(x) = \sup\{|\lambda| : \lambda \in \operatorname{Sp} x\}$ and $p_A(x) = \rho(xx^*)^{\frac{1}{2}}$.

2. Normality of A_+ and C^* -algebra structure

The cone of positive elements in a C^* -l.m.c.a is always normal. The algebra $(C^{\infty}[0,1],(|.|n)_n)$, where $|f|_n = \sum_{k=0}^n \frac{1}{k!} \sup\{|f^{(k)}(t)|: t \in [0,1]\}$, shows that this is not, in general, the case for symmetric *-l.m.c.a.'s. Actually, the normality of A_+ is strong enough as to ensure a C^* -algebra structure under suitable conditions. We first give a result on Pták's function.

Theorem 2.1. Let $(A, (|.|_{\lambda})_{\lambda})$ be a symmetric, unital and complete l.m.c.a. which is Sym-s.b. If A_+ is normal, then Pták's function is a C^* -norm and stronger than the topology of A.

PROOF: A_+ being normal, there is a family $(\|.\|_{\mu})_{\mu}$ of seminorms, not necessarily submultiplicative, defining the topology of A such that $\|x\|_{\mu} \leq \|y\|_{\mu}$ for every μ whenever $x, y \in A_+$ and $y - x \in A_+$. Whence, A being symmetric, $\|h\|_{\mu} \leq 3\|e\|_{\mu}\rho(h)$ for every $h \in \operatorname{Sym}(A)$ and every μ . Indeed, since $\operatorname{Sp} h \subset R$, one has $-\rho(h) \leq h \leq \rho(h)$, i.e., $0 \leq h + \rho(h) \leq 2\rho(h)$; and one uses the normality of A_+ . Since x = h + ik, with $h, k \in \operatorname{Sym}(A)$, one gets $\|x\|_{\mu} \leq 3\|e\|_{\mu}(\rho(h) + \rho(k))$, for every x in A. This implies, by Proposition 8.8 of [4], that $\|x\|_{\mu} \leq 3\|e\|_{\mu}p_A(x)$ for every x in A. On the other hand, p_A is a C^* -seminorm by Theorem 4.4 of [3].

Corollary 2.2. Let $(A, (|.|_{\lambda})_{\lambda})$ be a Q-*-l.m.c.a. which is unital, complete and symmetric. If A_+ is normal, then A is a C^* -algebra.

PROOF: Follows from the fact that Pták's function is continuous ([4, Corollary 8.9]).

Example 2.3. The Q-property is essential in this corollary. Indeed, consider the algebra $l^{\infty}(N)$ with the usual operations, the family $(|.|_n)_n$ of seminorms where $|(x_p)_p|_n = \sup\{|x_p|: p \le n\}$ and the involution given by $((x_p)_p)^* = (\overline{x_p})_p$.

Proposition 2.4. If in Theorem 2.1 the algebra A is commutative, then $Pt\acute{a}k$'s function p_A is a Banach algebra norm.

PROOF: If $(x_n)_n$ is a Cauchy sequence for p_A , it is also Cauchy for the topology of A and hence converges to an element x in A. But A is the projective limit of

Banach algebras $\widehat{A_{\lambda}}$. The involution being continuous and due to commutativity, $\widehat{A_{\lambda}}$ can be endowed with a hermitian involution by $(\lim_n \pi_{\lambda}(a_n))^* = \lim_n \pi_{\lambda}(a_n^*)$. Denoting by $p_{\widehat{A_{\lambda}}}$ Pták's function in $\widehat{A_{\lambda}}$, one has, for every λ , $\lim_n p_{\widehat{A_{\lambda}}}(\pi_{\lambda}(x_n - x)) = 0$. Indeed

$$p_{\widehat{A_{\lambda}}}(\pi_{\lambda}(x_n-x)) \le c_{\lambda}\widehat{p_{\lambda}}(\pi_{\lambda}(x_n-x)) = c_{\lambda}p_{\lambda}(x_n-x),$$

for a given $c_{\lambda} > 0$. But, $p_{A}(a) = \sup_{\lambda} p_{\widehat{A_{\lambda}}}(\pi_{\lambda}(a))$ for every a in A. Finally, we obtain, by standard technics, that $\lim_{n} p_{A}(x_{n} - x) = 0$.

We have the following consequence.

Corollary 2.5. Let $(A,(|.|_{\lambda})_{\lambda})$ be a commutative symmetric and Fréchet *-l.m.c.a. which is Sym-s.b. If A_+ is normal, then A is a C^* -algebra.

Remark 2.6. In Proposition 2.4, commutativity is used to ensure that the extended involution, from A_{λ} to $\widehat{A_{\lambda}}$, remains hermitian. This is the case, for example, when we deal with any C^* -l.m.c.a. Indeed, A_{λ} is then complete by Theorem 2.4 of [1].

Corollary 2.7. Let $(A, (|.|_{\lambda})_{\lambda})$ be a unital, symmetric and barreled complete l.m.c.a. which is Sym-s.b. If A_+ is normal, then A is a C^* -algebra.

PROOF: By Theorem 2.1, there is a family $(\|.\|_{\mu})_{\mu}$ of seminorms, not necessarily submultiplicative, defining the topology of A and such that $\|x\|_{\mu} \leq p_A(x)$ for every x and every μ . Put $\|x\| = \sup\{\|x\|_{\mu} : \mu\}$, $x \in A$. Then $\|.\|$ is a norm which is finer than the topology of A. But $\{x \in A : \|x\| \leq 1\}$ is a barrel, which implies that $(A, (|.|_{\lambda})_{\lambda})$ is a normed algebra. Finally, it is a C^* -algebra, since $\|x\| \leq p_A(x)$ for every x ([5, Theorem 7.9]).

As a consequence, we obtain a result of M. Fragoulopoulou.

Corollary 2.8 ([5, Corollary 7.11]). Let $(A, (|.|_{\lambda})_{\lambda})$ be a unital and complete l.m.c.a. The following assertions are equivalent.

- (i) A is a $Q-C^*-l.m.c.a$.
- (ii) A is a barreled C^* -l.m.c.a. which is Sym-s.b.
- (iii) A is a Fréchet C^* -l.m.c.a. which is Sym-s.b.
- (iv) A is a C^* -algebra.

PROOF: Due to the fact that A_+ is normal in any complete C^* -l.m.c.a.

If in a hermitian Banach algebra $(A, \|.\|)$, there is $\alpha > 0$ such that $\rho(h) \ge \alpha \|h\|$, for every h in Sym(A), then A is a C^* -algebra for an equivalent norm ([6, Theorem 8.4]). In m-convex algebras, we have the following results.

Theorem 2.9. Let $(A, (|.|_{\lambda})_{\lambda})$ be a symmetric and complete l.m.c.a. which is Sym-s.b. If, for every λ , there is $\alpha_{\lambda} > 0$ such that $\rho(h) \geq \alpha_{\lambda} |h|_{\lambda}$ for every $h \in \text{Sym}(A)$, then Pták's function is a C^* -norm which is stronger than the topology of A.

Theorem 2.10. Let $(A, (|.|_{\lambda})_{\lambda})$ be a symmetric and complete *-l.m.c.a. which is Sym-s.b. The following assertions are equivalent.

- (i) A is a C^* -algebra.
- (ii) A is a Q-algebra and, for every λ , there is $\alpha_{\lambda} > 0$ such that $\rho(h) \geq \alpha_{\lambda} |h|_{\lambda}$ for every $h \in \text{Sym}(A)$.
- (iii) A is barreled and, for every λ , there is $\alpha_{\lambda} > 0$ such that $\rho(h) \geq \alpha_{\lambda} |h|_{\lambda}$ for every $h \in \text{Sym}(A)$.

3. Normality of A_+ and commutative C^* -m-convex structure

In a complete C^* -l.m.c.a., the family $(|.|_{\lambda})_{\lambda}$ of seminorms defining the topology satisfy $|y|_{\lambda} \geq |x|_{\lambda}$, for $x, y \in A_+$ such that $y - x \in A_+$. This fact suggests the following definition.

Definition 3.1. Let $(A, (|.|_{\lambda})_{\lambda})$ be an l.m.c.a., C a convex cone in A and $(\|.\|_{\lambda})_{\lambda}$ a family of seminorms on A. The cone C is said to be normal for the family $(\|.\|_{\lambda})_{\lambda}$ if, for every λ , there is $\beta_{\lambda} > 0$ such that $\|y\|_{\lambda} \geq \beta_{\lambda} \|x\|_{\lambda}$ whenever $x, y \in C$ and $y - x \in C$.

Proposition 3.2. Let $(A, (|.|_{\lambda})_{\lambda})$ be a commutative, unital complete and symmetric *-l.m.c.a. If A_+ is normal for $(|.|_{\lambda})_{\lambda}$, then A is a C^* -l.m.c.a. for an equivalent family of seminorms.

PROOF: Consider the Banach algebras $\widehat{A_{\lambda}}$ of which A is the projective limit. We show that every $\widehat{A_{\lambda}}$ is a C^* -algebra for an equivalent norm. First, notice that every $\widehat{A_{\lambda}}$ is hermitian. Indeed, for $h \in \operatorname{Sym}(\widehat{A_{\lambda}})$, there is a sequence $(h_n)_n \subset \operatorname{Sym}(A)$ such that $h = \lim_n \pi_{\lambda}(h_n)$; hence $\operatorname{Sp} h \subset R$ for $\widehat{A_{\lambda}}$ is commutative. Now, one shows that $(\widehat{A_{\lambda}})_+ = \overline{\pi_{\lambda}(A_+)}$. Finally, $(\widehat{A_{\lambda}})_+$ is normal, since A_+ is so. We conclude by Corollary 2.2.

Let $(A, (|.|_{\lambda})_{\lambda})$ be a commutative, unital and complete l.m.c.a., K a convex cone which is stable by product and H = K - K the real sub-algebra spanned by K. We consider the following conditions which are satisfied by the cone of positive elements in a C^* -l.m.c.a.

- $(P_1) A = H + iH.$
- (P_2) K is normal for $(|.|_{\lambda})_{\lambda}$.
- (P_3) $(e+u)^{-1} \in K$, for every $u \in K$.

We show that these conditions characterize the cone of positive elements in a C^* -l.m.c.a. Let us begin with the Banach case.

Proposition 3.3. Let $(A, \|.\|)$ be a commutative, unital, Banach algebra and K a convex cone which is stable by product. If conditions (P_1) , (P_2) and (P_3) are fulfilled, then A is a C^* -algebra for an equivalent norm.

PROOF: We may suppose K closed for the closure \overline{K} of K also satisfies (P_1) , (P_2) and (P_3) . By Theorem 2, p. 260, of [2], one has

- (1) $K = H \cap \operatorname{Splsa}(A)$; where $\operatorname{Splsa}(A) = \{x \in A : \operatorname{Sp} x \subset R_+\}$,
- (2) Sp $h \subset R$, for every $h \in H$.

Now K, being normal, is salient and so $H \cap iH = \{0\}$. Then, the map $(h+ik)^* = h-ik$ defines, on A, a hermitian involution. The cone A_+ , of positive elements, for this involution, is exactly K. The conclusion follows from Corollary 2.2. \square

This result extends to m-convex algebras as follows.

Proposition 3.4. Let $(A, (|.|_{\lambda})_{\lambda})$ be a commutative, unital; complete l.m.c.a. and K a convex cone which is stable by product. If conditions (P_1) , (P_2) and (P_3) are fulfilled, then A is a C^* -l.m.c.a. for an equivalent family of seminorms.

PROOF: For every λ , the closed convex cone $K_{\lambda} = \overline{\pi_{\lambda}(K)}$ is stable by product and satisfies (P_2) and (P_3) . The real subalgebra $H_{\lambda} = K_{\lambda} - K_{\lambda}$ is closed in $\widehat{A_{\lambda}}$ ([2, Theorem 2, p. 260]). On the other hand, one shows that, for every λ , there is $\beta_{\lambda} > 0$ such that $|h|_{\lambda} \leq \beta_{\lambda}|h + ik|_{\lambda}$, for $h, k \in A_{\lambda}$. So the subalgebra $H_{\lambda} + iH_{\lambda}$ is closed in $\widehat{A_{\lambda}}$ and hence $\widehat{A_{\lambda}} = H_{\lambda} + iH_{\lambda}$. We conclude by Proposition 3.3. \square

Remark 3.5. Without condition (P_1) , one obtains that $\varprojlim (H_{\lambda} + iH_{\lambda})$ is a C^* -l.m.c.a., containing H + iH and contained in A. An application of this fact is the following.

Let $(A, (|.|_{\lambda})_{\lambda})$ be a commutative, unitary and complete l.m.c.a. The set $P = \{x \in A : \operatorname{Sp} x \subset R_+\}$ is a convex cone which is stable by product. Put H = P - P the real subalgebra spanned by P.

Proposition 3.6. If the cone P is normal for $(|.|_{\lambda})_{\lambda}$, then the complex algebra H + iH is a C^* -l.m.c.a.

PROOF: It is sufficient to show that H + iH is closed in the C^* -l.m.c.a. $B = \lim_{\longleftarrow} (H_{\lambda} + iH_{\lambda})$. First, H is closed, since $H = \{x \in A : \operatorname{Sp} x \subset R\}$. Let $(h_n + ik_n)_n$ be a sequence, in H + iH, converging to x in B. Since, for every λ , $H_{\lambda} + iH_{\lambda}$ is a C^* -algebra for an equivalent norm $\|.\|_{\lambda}$, there is $\alpha_{\lambda} > 0$ such that $\|h_{\lambda} + ik_{\lambda}\|_{\lambda} \ge \alpha_{\lambda} \|h_{\lambda}\|_{\lambda}$, for $h_{\lambda}, k_{\lambda} \in H_{\lambda}$. So the sequences $(h_n)_n$ and $(k_n)_n$ are Cauchy, in A, and hence converge, to h and k in H, respectively. Finally x = h + ik.

References

- [1] Apostol C., b*-algebras and their representation, J. London Math. Soc. 3 (1971), 30–38.
- [2] Bonsall F.F., Duncan J., Complete normed algebras, Ergebnisse der Mathematik, Band 80, Springer Verlag, 1973.
- [3] Birbas D.G., Pták' function and symmetry, Rend. Circ. Math. Palermo, Série II, (1998), pp. 431–446.
- [4] Fragoulopoulou M., Symmetric topological *-algebras; applications, Schriftenreihe Math. Inst. Grad. Univ. Münster, 3. Ser., Heft 9 (1993).
- [5] Fragoulopoulou M., An introduction to the representation theory of topological *-algebras, Schriftenreihe Math. Inst. Univ. Münster, 2. Ser. 48 (1988).
- [6] Mallios A., Topological Algebras, Selected Topics, North Holland, Amsterdam, 1986.
- [7] Pták V., Banach algebras with involution, Manuscripta Math. 6 (1972), 245–290.

ECOLE NORMALE SUPÉRIEURE, B.P. 5118-TAKADDOUM, 10105 RABAT, MAROC

(Received October 12, 2001, revised April 5, 2002)