Strong remote points

Sergei Logunov

Abstract. Remote points constructed so far are actually strong remote. But we construct remote points of another type.

Keywords: remote point, strong remote point, p-chain

Classification: 54D35

1. Introduction

Let $X^* = \beta X \setminus X$ be the remainder in the Čech-Stone compactification βX of a completely regular space X. A point $p \in X^*$ is called a remote point of X if it is not in the closure of any nowhere dense subset of X. In 1962, Fine and Gillman [5] introduced remote points and proved that, under CH, the real line has remote points. Van Douwen [2], and, independently, Chae and Smith [1], showed that if X is a nonpseudocompact space with countable π -weight, then X has remote points. Alan Dow [4] showed that a nonpseudocompact space X with π -weight ω_1 has remote points if either X satisfies the ccc-condition, or ω^{ω} has some additional set-theoretical properties. Some counterexamples appeared [3], [4].

An inspection of the relevant results reveals that the remote points constructed so far satisfy the following

Definition 1.1 ([7]). A point $p \in X^*$ is called a *strong remote point* of X iff p is a remote point of X and

(*) there is a p-chain σ such that for any family of open sets $\mathcal{W} \subset 2^X$ the following holds: if $\mathcal{W} < \sigma$ and $p \in \operatorname{Ex} \bigcup \mathcal{W}$, then there is a subfamily $\mathcal{W}' \subset \mathcal{W}$ such that $\mathcal{W}' <_{\operatorname{fin}} \sigma$ and $p \in \operatorname{Ex} \bigcup \mathcal{W}'$.

A countable discrete family σ of open sets is called a p-chain if $p \in \operatorname{Ex} \bigcup \sigma$. In [7] one can see that (*) is, apparently, more useful in research. In the present paper we show that not every remote point has property (*).

Theorem 1.2. Every zero-dimensional, nowhere locally compact, separable and metrizable space has a remote point that is not strongly remote.

512 S. Logunov

2. Proofs

Let 2^X be set of all subsets of X. Then $U \in 2^X$ is clopen if it is closed and open simultaneously, we write $\operatorname{Ex} U = \beta X \setminus \operatorname{Cl}_{\beta X}(X \setminus U)$. A subset π of 2^X is called clopen if it consists of clopen sets; cellular if its members are mutually disjoint and locally finite, if for every $x \in X$ there is a neighborhood $Ox \subset X$ meeting at most finitely many members of π . For any $\sigma \subset 2^X$ we say that π refines σ , denoted $\pi < \sigma$, if for every $U \in \pi$ there is a $V \in \sigma$ such that $U \subseteq V$. If, in addition, $\{U \in \pi : U \subset V\}$ is finite or empty for every $V \in \sigma$, then π finitarily refines σ , $\pi <_{\text{fin}} \sigma$. Let $\mathcal{S} = \{\mu : \mu = (i_0, \dots, i_m) \in \omega^{m+1}, m \in \omega\}$ be all finite sequences of numbers $i \in \omega$ and we let \mathcal{F} denote the set of functions from \mathcal{S} to the family of finite subsets of ω .

From now on the conditions of Theorem 1.2 hold. There is, obviously, a family $\{\mathcal{P}_m\}_{m\in\omega}$ of cellular clopen covers $\mathcal{P}_m=\{U_\mu:\mu\in\omega^{m+1}\}$, where $U_{\mu k}\subsetneq U_\mu$ for each $k\in\omega$, such that $\mathcal{B}=\bigcup_{m\in\omega}\mathcal{P}_m$ is a base in X. Let $\mathcal{B}^*=\{\pi\subset\mathcal{B}:\pi$ is a cellular cover of $X\}$ and $\pi(f)=\{U_{\mu k}:U_\mu\in\pi\text{ and }k\in\omega\setminus f(\mu)\}$ for every $\pi\in\mathcal{B}^*$ and $f\in\mathcal{F}$.

To begin we recall the remarkable construction by van Douwen [2, 4.1]: For any $U_{\mu} \in \mathcal{B}$ we index $\mathcal{B}(U_{\mu}) = \{V \in \mathcal{B} : V \subset U_{\mu}\}$ as $\mathcal{B}(U_{\mu}) = \{V_{\alpha}\}_{\alpha \in \omega}$. For a nowhere dense set $F \subset X$ put $\alpha_0 = \min\{\alpha \in \omega : V_{\alpha} \cap F = \emptyset\}$ and $\mathcal{D}(F, U_{\mu}, 0) = \{V_{\alpha_0}\}$. Let for some $j \in \omega$, $\alpha_j \in \omega$ and $\mathcal{D}(F, U_{\mu}, j) \subset \mathcal{B}(U_{\mu})$ have been constructed. Then for every $\alpha \leq \alpha_j$, $\alpha^* = \min\{\beta \in \omega : V_{\beta} \subset V_{\alpha} \setminus F\}$, $\mathcal{D}(F, U_{\mu}, j + 1) = \mathcal{D}(F, U_{\mu}, j) \cup \{V_{\alpha^*} : \alpha \leq \alpha_j\}$ and $\alpha_{j+1} = \max\{\alpha \in \omega : V_{\alpha} \in \mathcal{D}(F, U_{\mu}, j + 1)\}$. Finally, the family $\{\bigcup \mathcal{D}(F, U_{\mu}, n) : F \text{ is a nowhere dense subset of } X\}$ is n-centered for each $n \in \omega$ [2, 4.1].

Now for any $\mu, \nu \in \mathcal{S}$, $U_{\mu} \subseteq U_{\nu}$ iff $\nu = (i_0, \dots, i_t)$ is an initial segment of $\mu = (i_0, \dots, i_t, \dots, i_m)$. We set

$$\mathcal{D}_0(F, U_{\mu}, n) = \bigcup \{ \mathcal{D}(F, U_{\nu k}, n) : U_{\mu} \subseteq U_{\nu} \in \mathcal{B} \text{ and } k \in \omega \}.$$

If $\mathcal{D}_{i}(F, U_{\mu}, n)$ has been defined for some $j \in \omega$, then

$$\mathcal{D}_{j+1}(F, U_{\mu}, n) = \mathcal{D}_{j}(F, U_{\mu}, n) \cup \bigcup \{ \mathcal{D}_{0}(F, V, n) : V \in \mathcal{D}_{j}(F, U_{\mu}, n) \}.$$

And, finally,

$$\mathcal{D}(F) = \bigcup_{U_n \in \mathcal{P}_0} \mathcal{D}_{n+1}(F, U_n, n).$$

Claim 1. Let $U_{\mu} \in \mathcal{B}$. Then $\mathcal{D}_m(F, U_{\mu}, n)$ is locally finite in X for any $m, n \in \omega$ and nowhere dense $F \subset X$.

PROOF: As $\{U_{\nu k}\}_{k\in\omega}\subset\mathcal{P}_{m+1}$ for any $\nu\in\omega^{m+1}$ and \mathcal{P}_{m+1} is a cellular clopen cover of X, the family $\bigcup_{k\in\omega}\mathcal{D}(F,U_{\nu k},n)$ is locally finite in X. It follows by its definition that $\mathcal{D}_0(F,U_{\mu},n)$ is locally finite.

Let $\mathcal{D}_j(F, U_\mu, n)$ be locally finite for some $j \in \omega$. Then for any $x \in X$, $x \in U_\nu$ for some $U_\nu \in \mathcal{B}$ meeting at most finitely many sets $V \in \mathcal{D}_j(F, U_\mu, n)$. For each of them, $\mathcal{D}_0(F, V, n)$ is locally finite as above. For any other $V \in \mathcal{D}_j(F, U_\mu, n)$, $U_\nu \cap V = \emptyset$ implies by the definition of the base \mathcal{B} that

$$\{W \in \mathcal{D}_0(F, V, n) : U_{\nu} \cap W \neq \emptyset\} \subset \bigcup \{\mathcal{D}(F, U_{\eta}, n) : U_{\nu} \subseteq U_{\eta} \in \mathcal{B}\}.$$

As the last set is finite, the proof is done.

With insignificant modifications Claim 2 has been proved in [6].

Claim 2. Let $U_n \in \mathcal{P}_0$. Then

$$\bigcap_{i=0}^{n} (\bigcup \pi_i(f_i)) \cap \bigcap_{j=0}^{n} (\bigcup \mathcal{D}_{n+1}(F_j, U_n, n)) \neq \emptyset$$

for every $\pi_i \in \mathcal{B}^*$, $f_i \in \mathcal{F}$ and nowhere dense sets $F_i \subset X$.

It follows that the point p in Claim 3 does really exist.

Claim 3. Any point $p \in X^*$ such that

$$p \in \bigcap \{\operatorname{Cl}_{\beta X} \bigcup \pi(f) : \pi \in \mathcal{B}^* \text{ and } f \in \mathcal{F}\} \cap$$
$$\bigcap \{\operatorname{Cl}_{\beta X} \bigcup \mathcal{D}(F) : F \text{ is a nowhere dense subset of } X\}$$

satisfies the conditions of the theorem.

PROOF: Being in the intersection of the second family, p is a remote point. For any p-chain σ we just have to show that σ does not satisfy (*). Indeed, as X is strongly zero-dimensional, $Op \subset \operatorname{Ex} \bigcup \sigma$ for a clopen neighborhood $Op \subset \beta X$. For any $x \in X$ define $U(x) \in \mathcal{B}$ to be the maximal neighborhood with the following properties: either $U(x) \subset Op \cap V$ for some $V \in \sigma$, or $U(x) \cap Op = \emptyset$. As the sets from the cover $\{U(x) : x \in X\}$ are pairwise either disjoint or equal, there is a cellular subcover π . Let $\mathcal{W} = \{U_{\mu k} : U_{\mu} \in \pi, U_{\mu} \subset Op \text{ and } k \in \omega\}$. Then $\mathcal{W} < \sigma$, $p \in \operatorname{Ex} \bigcup \mathcal{W}$ and for any $\mathcal{W}' \subset \mathcal{W}$, $\mathcal{W}' <_{\operatorname{fin}} \sigma$ implies $\mathcal{W}' <_{\operatorname{fin}} \pi$. Define $f \in \mathcal{F}$ for any $\mu \in \mathcal{S}$ as follows: $f(\mu) = \{k : U_{\mu k} \in \mathcal{W}'\}$. Then $\bigcup \pi(f) \cap (\bigcup \mathcal{W}') = \emptyset$ and, so, $p \notin \operatorname{Ex} \bigcup \mathcal{W}'$.

Our proof is complete.

References

- [1] Chae S.B., Smith J.H., Remote points and G-spaces, Topology Appl. 11 (1980), 243-246.
- [2] van Douwen E.K., Remote points, Dissert. Math. 188 (1988).

514 S. Logunov

- [3] van Douwen E.K., van Mill J., Spaces without remote points, Pacific J. Math. 105 (1983), 69-75.
- [4] Dow A., Remote points in spaces with π -weight ω_1 , Fund. Math. 124 (1984), 197–205.
- [5] Fine N.J., Gillman L., Remote points in βR , Proc. Amer. Math. Soc. 13 (1962), 29–36.
- [6] Logunov S., On hereditary normality of zero-dimensional spaces, Topology Appl. 102 (2000), 53–58.
- [7] Logunov S., On remote points, non-normality and π -weight ω_1 , Comment Math. Univ. Carolinae **42.2** (2001), 379–384.

Department for Algebra and Topology, Udmurt State University, Krasnogeroyskaya 71, Izhevsk 426034, Russia

E-mail: postmaster@ziga.udm.ru

(Received December 13, 2001, revised February 27, 2002)