Liftings of vector fields to 1-forms on the *r*-jet prolongation of the cotangent bundle

W.M. MIKULSKI

Abstract. For natural numbers r and $n \geq 2$ all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$ transforming vector fields from *n*-manifolds M into 1-forms on $J^rT^*M = \{j_x^r(\omega) \mid \omega \in \Omega^1(M), x \in M\}$ are classified. A similar problem with fibered manifolds instead of manifolds is discussed.

Keywords: natural bundle, natural operator

Classification: 58A20

0. Introduction

Let n and r be natural numbers.

In [4], we studied how a vector field X on an n-dimensional manifold M can induce a 1-form A(X) on the r-cotangent bundle $T^{r*}M = J^r(M, \mathbb{R})_0$ of M. This problem is reflected in the concept of natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$. We proved that for $n \geq 2$ the set of all natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is a free 2r-dimensional $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -module, and we constructed explicitly the basis of this module. In particular, we reobtain a result from [1] saying that every canonical 1-form on T^*M is a constant multiple of the well-known Liouville 1-form λ .

In the present paper we study a similar problem with the r-jet prolongation $J^rT^*M = \{j_x^r\omega \mid \omega \in \Omega^1(M), x \in M\}$ of the cotangent bundle T^*M instead of $T^{r*}M$. We investigate how a vector field X on an n-manifold M can induce a 1-form A(X) on J^rT^*M . This problem is reflected in the concept of natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$ in the sense of Kolář, Michor and Slovák [2]. We prove that for $n \geq 2$ the set of all natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$ is a free (3r+2)-dimensional $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ -module, and we construct explicitly the basis of this module.

A similar problem with fibered manifolds instead of manifolds is discussed.

Analyzing constant natural operators $A: T_{|\mathcal{M}f_n} \to T^*(J^r T^*)$ we reobtain a result from [3] saying that every canonical 1-form on $J^r T^* M$ is a constant multiple of $\lambda^r = (\pi_0^r)^* \lambda$, where $\pi_0^r : J^r T^* M \to T^* M$ is the jet projection and λ is the Liouville 1-form on $T^* M$.

Some natural operators transforming functions, vector fields, forms on some natural bundles F are used practically in all papers in which problem of prolongation of geometric structures is considered. That is why such natural operators have been studied, see [2].

From now on x^1, \ldots, x^n denote the usual coordinates on \mathbb{R}^n , and $\partial_i = \frac{\partial}{\partial x^i}$ for $i = 1, \ldots, n$ are the canonical vector fields on \mathbb{R}^n .

All manifolds and maps are assumed to be of class \mathcal{C}^{∞} .

1. The *r*-jet prolongation of the cotangent bundle

For every *n*-dimensional manifold M we have the vector bundle $J^rT^*M = \{j_x^r\omega \mid \omega \in \Omega^1(M), x \in M\}$ over M. It is called the *r*-jet prolongation of the cotangent bundle T^*M . Every embedding $\varphi : M \to N$ of two *n*-manifolds induces a vector bundle map $J^rT^*\varphi : J^rT^*M \to J^rT^*N, J^rT^*\varphi(j_x^r\omega) = j_{\varphi(x)}^r(\varphi_*\omega), \omega \in \Omega^1(M), x \in M$. The correspondence $J^rT^* : \mathcal{M}f_n \to \mathcal{VB}$ is a vector natural bundle over *n*-manifolds in the sense of [2].

2. Examples of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$

Example 1. Let X be a vector field on an n-manifold M. For every $q = 0, \ldots, r$ we have a map $\stackrel{(q)}{X}: J^r T^*M \to \mathbb{R}, \stackrel{(q)}{X}(j_x^r \omega) := X^q \omega(X)(x), \ \omega \in \Omega^1(M), \ x \in M,$ where $X^q = X \circ \cdots \circ X$ (q-times). Then for every $q = 0, \ldots, r$ we have a 1-form $\stackrel{(q)}{dX}$ on $J^r T^*M$. The correspondence $\stackrel{(q)}{A}: T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^r T^*), \ X \to \stackrel{(q)}{dX}$, is a natural operator.

Example 2. Let X be a vector field on an n-manifold M. For every $p = \binom{}{0,\ldots,r-1}$ we have a 1-form $\stackrel{}{X}: TJ^rT^*M \to \mathbb{R}$ on $J^rT^*M, \stackrel{}{X}(v) = \langle d_x(X^p\omega(X)), T\pi(v) \rangle, v \in (TJ^rT^*)_xM, x \in M, \omega \in \Omega^1(M), p^T(v) = j_x^r\omega, p^T: TJ^rT^*M \to J^rT^*M$ is the tangent bundle projection, $\pi: J^rT^*M \to M$ is the bundle projection. The correspondence $\stackrel{}{A}: T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*), X \to \stackrel{}{X}$, is a natural operator.

Example 3. Let X be a vector field on an n-manifold M. For every $q = 0, \ldots, r$ we have a 1-form $\stackrel{\langle < q >>}{X} : TJ^rT^*M \to \mathbb{R}$ on $J^rT^*M, \stackrel{\langle < q >>}{X} (v) = \langle (L_X)^q \omega, T\pi(v) >, v \in (TJ^rT^*)_x M, x \in M, \omega \in \Omega^1(M), p^T(v) = j_x^r \omega$, where $(L_X)^q = L_X \circ \cdots \circ L_X$ (q-times), L_X is the Lie derivative with respect to X. The correspondence $A : T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*), X \to \stackrel{\langle < q >>}{X}$, is a natural operator.

3. A classification theorem

The set of all natural operators $T_{|\mathcal{M}f_n} \to T^*(J^r T^*)$ is a module over the algebra $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$. Actually, if $f \in \mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ and $A : T_{|\mathcal{M}f_n} \to T^*(J^r T^*)$ is a natural operator, then $fA : T_{|\mathcal{M}f_n} \to T^*(J^r T^*)$ is given by $(fA)(X) = f(X, \ldots, X)A(X), X \in \mathcal{X}(M), M \in \text{Obj}(\mathcal{M}f_n)$.

The main result of this paper is the following classification theorem.

Theorem 1. For natural numbers r and $n \ge 2$ the $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ -module of all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$ is free and (3r+2)-dimensional. The (q) (<q > >) natural operators A, A and A for $q = 0, \ldots, r$ and $p = 0, \ldots, r-1$ form the basis over $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ of this module.

The proof of Theorem 1 will occupy Sections 4 and 5.

From now on we consider a natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$.

4. Some preparations

Since the operators $A, \ldots, A, A, A, \ldots, A^{(r-1)}$ and $A^{(r-1)}, A^{(r-1)}$ are $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ -linearly independent, we prove only that A is a linear combination of $A^{(0)}$ and $A^{(r)}, \ldots, A^{(r-1)}$ and $A^{(r)}, \ldots, A^{(r-1)}$ and $A^{(r)}, \ldots, A^{(r-1)}$ and $A^{(r)}, \ldots, A^{(r-1)}$ with $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ -coefficients.

The following lemma shows that A is uniquely determined by the restriction $A(\partial_1)|(TJ^rT^*)_0\mathbb{R}^n$.

Lemma 1. If $A(\partial_1)|(TJ^rT^*)_0\mathbb{R}^n = 0$, then A = 0.

PROOF: The proof is standard. We use the naturality of A and the fact that any non-vanishing vector field is locally ∂_1 .

So, we will study the restriction $A(\partial_1)|(TJ^rT^*)_0\mathbb{R}^n$.

Lemma 2. There are maps $f_0, \ldots, f_r \in \mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ such that

$$\left(A - \sum_{q=0}^{r} f_q \stackrel{(q)}{A}\right) (\partial_1) | (VJ^r T^*)_0 \mathbb{R}^n = 0,$$

where $VJ^rT^*M \subset TJ^rT^*M$ denotes the π -vertical subbundle.

PROOF: We have $(VJ^rT^*)_0\mathbb{R}^n = (J^rT^*)_0\mathbb{R}^n \times (J^rT^*)_0\mathbb{R}^n$,

$$\frac{d}{dt}_{|t=0}(u+tw)\tilde{=}(u,w), \ u,w\in (J^rT^*)_0\mathbb{R}^n.$$

For $q = 0, \ldots, r$ we define $f_q : \mathbb{R}^{r+1} \to \mathbb{R}$,

$$f_q(a) = A(\partial_1) \left(j_0^r \left(\sum_{l=0}^r \frac{1}{l!} a_l(x^1)^l dx^1 \right), j_0^r \left(\frac{1}{q!} (x^1)^q dx^1 \right) \right),$$

where $a = (a_0, ..., a_r) \in \mathbb{R}^{r+1}$.

We prove the assertion of the lemma. For simplicity denote

$$\tilde{A} := A - \sum_{q=0}^{r} f_q \overset{(q)}{A}.$$

Consider $\omega, \eta \in \Omega^1(\mathbb{R}^n)$. Define $a = (a_0, \ldots, a_r) \in \mathbb{R}^{r+1}$ by

$$j_0^r((x^1, 0, \dots, 0)^*\omega) = j_0^r \bigg(\sum_{l=0}^r \frac{1}{l!} a_l(x^1)^l dx^1\bigg).$$

Define $b = (b_0, \ldots, b_r) \in \mathbb{R}^{r+1}$ by

$$j_0^r((x^1, 0, \dots, 0)^*\eta) = j_0^r \bigg(\sum_{l=0}^r \frac{1}{l!} b_l(x^1)^l dx^1\bigg).$$

Using the naturality of \tilde{A} with respect to the homotheties $(x^1, tx^2, \ldots, tx^n)$ for $t \neq 0$ and putting $t \to 0$ we get

$$\tilde{A}(\partial_1)(j_0^r \omega, j_0^r \eta) = \tilde{A}(\partial_1)(j_0^r ((x^1, 0, \dots, 0)^* \omega), j_0^r ((x^1, 0, \dots, 0)^* \eta)).$$
$$\tilde{A}(\partial_1)(j_0^r \omega, j_0^r \eta) = \sum_{a=0}^r b_a f_a(a) - \sum_{a=0}^r f_a(a) b_a = 0.$$

Then $\tilde{A}(\partial_1)(j_0^r\omega, j_0^r\eta) = \sum_{q=0}^r b_q f_q(a) - \sum_{q=0}^r f_q(a)b_q = 0.$

5. Proof of Theorem 1

Replacing A by $A - \sum_{q=0}^{r} f_q A$ we can assume that

$$A(\partial_1)|(VJ^rT^*)_0\mathbb{R}^n=0.$$

It remains to show that there exist maps $g_0, \ldots, g_{r-1}, h_0, \ldots, h_r \in \mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ such that

(*)
$$A = \sum_{p=0}^{r-1} g_p A^{} + \sum_{q=0}^{r} h_q A^{<">}"$$

568

Liftings of vector fields to 1-forms on the *r*-jet prolongation of the cotangent bundle

For $p = 0, \ldots, r - 1$ define $g_p : \mathbb{R}^{r+1} \to \mathbb{R}$,

$$g_p(a) = A(\partial_1) \left(J^r T^* \partial_2 \left(j_0^r \left(\sum_{l=0}^r \frac{1}{l!} a_l(x^1)^l dx^1 + \frac{1}{p!} (x^1)^p x^2 dx^1 \right) \right) \right),$$

where $a = (a_0, \ldots, a_r) \in \mathbb{R}^{r+1}$. For $q = 0, \ldots, r$ define $h_q : \mathbb{R}^{r+1} \to \mathbb{R}$,

$$h_q(a) = A(\partial_1) \left(J^r T^* \partial_2 \left(j_0^r \left(\sum_{l=0}^r \frac{1}{l!} a_l(x^1)^l dx^1 + \frac{1}{q!} (x^1)^q dx^2 \right) \right) \right),$$

where $a = (a_0, \ldots, a_r) \in \mathbb{R}^{r+1}$. We inform that $J^r T^* X$ denotes the complete lifting (flow operator) of a vector field $X \in \mathcal{X}(M)$ to $J^r T^* M$.

We are going to prove (*). By Lemma 1 and $A(\partial_1)|(VT^{r*})_0\mathbb{R}^n=0$ it is sufficient to show

$$A(\partial_1)(J^r T^* \partial(j_0^r \omega)) = \left(\sum_{p=0}^{r-1} g_p A^{} + \sum_{q=0}^r h_q A^{<"}\right)(\partial_1)(J^r T^* \partial(j_0^r \omega))"$$

for any $\omega \in \Omega^1(\mathbb{R}^n)$ and any linearly independent on ∂_1 constant vector field ∂ on \mathbb{R}^n .

For simplicity denote

$$\tilde{A} = \sum_{p=0}^{r-1} g_p \overset{\langle p \rangle}{A} + \sum_{q=0}^{r} h_q \overset{\langle \langle q \rangle \rangle}{A}.$$

Using the naturality of A and \tilde{A} with respect to linear isomorphisms $\mathbb{R}^n \to \mathbb{R}^n$ preserving ∂_1 we can assume that $\partial = \partial_2$.

Consider $\omega \in \Omega^1(\mathbb{R}^n)$.

Define $a = (a_0, \ldots, a_r) \in \mathbb{R}^{r+1}$ by

$$a_q = \partial_1^q \omega(\partial_1)(0), \ q = 0, \dots, r.$$

Define $b = (b_0, \ldots, b_{r-1}) \in \mathbb{R}^r$ by

$$b_p = \partial_2 \partial_1^p \omega(\partial_1)(0), \ p = 0, \dots, r-1.$$

Define $c = (c_0, \ldots, c_r) \in \mathbb{R}^{r+1}$ by

$$c_q = \partial_1^q \omega(\partial_2)(0), \ q = 0, \dots, r.$$

569

Using the naturality of A with respect to $(x^1, tx^2, \tau x^3 \dots, \tau x^n) : \mathbb{R}^n \to \mathbb{R}^n$ for $t, \tau \neq 0$ we get the homogeneity condition

$$tA(\partial_1)(J^rT^*\partial_2 j_0^r(\omega)) = A(\partial_1)(J^rT^*\partial_2(j_0^r(x^1, tx^2, \tau x^3, \dots, \tau x^n)^*\omega)).$$

This type of homogeneity gives

$$A(\partial_1)(J^r T^* \partial_2(j_0^r \omega)) = \sum_{p=0}^{r-1} g_p(a)b_p + \sum_{q=0}^r h_q(a)c_q$$

because of the homogeneous function theorem [2].

On the other hand

$$\tilde{A}(\partial_1)(J^r T^* \partial_2(j_0^r \omega)) = \sum_{p=0}^{r-1} g_p(a)b_p + \sum_{q=0}^r h_q(a)c_q.$$

The proof of Theorem 1 is complete.

6. Corollaries

Using the homogeneous function theorem, we have the following corollary of Theorem 1.

Corollary 1. Let r and $n \ge 2$ be natural numbers. Then for every linear natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*J^r(T^*)$ there exist real numbers $\alpha, \beta, \gamma, \delta$ such that

$$A(X) = \alpha A(X) + \beta A^{(0)}(X) + \gamma A^{(1)}(X) + \delta X^{(0)}(X) + \delta X^{(0)}(X)$$

for any vector field $X \in \mathcal{X}(M)$.

The operator $\stackrel{\langle <0 \rangle>}{A}$ can be considered as the well-known canonical 1-form λ^r on $J^r T^*$, the pull-back $(\pi_0^r)^* \lambda$ of the Liouville 1-form λ on T^* with respect to the jet projection $\pi_0^r: J^r T^* \to T^*$. Considering the values of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^r T^*)$ at X = 0 we obtain the next corollary of Theorem 1.

Corollary 2 ([3]). For natural numbers r and $n \ge 2$ every canonical 1-form on $J^r T^*$ is a constant multiple of λ^r .

Corollary 3 ([5]). For natural numbers r and $n \ge 2$ there is no canonical simplectic structure on J^rT^* .

PROOF: Using Corollary 2 and the Poincaré lemma it is easy to see that any canonical closed 2-form on J^rT^*M is a constant multiple of $d\lambda^r$.

7. A generalization to fibered manifolds

Given a fibered manifold $Y \to M$ we say that a 1-form ω on Y is horizontal if $\omega | VY = 0$, where $VY \subset TY$ is the vertical bundle of $Y \to M$. By $\Omega^{1}_{hor}(Y)$ we denote the space of all horizontal 1-forms on Y.

Let s, r be two natural numbers with $s \ge r$. We say that two horizontal 1-forms $\omega, \eta \in \Omega^1_{hor}(Y)$ on a fibered manifold $\tilde{p} : Y \to M$ determine the same (r, s)-jet $j_y^{r,s}\omega = j_y^{r,s}\eta$ at $y \in Y$ if $j_y^r\omega = j_y^r\eta$ and $j_y^s(\omega|Y_x) = j_y^s(\eta|Y_x)$, see [2]. Here Y_x is the fiber of Y over $x = \tilde{p}(y)$.

Let m, n, r, s be natural numbers, $s \geq r$. For every (m, n)-dimensional fibered manifold $Y \to M$ (dim(M) = m, dim(Y) = m + n) we have a vector bundle $J^{r,s}T^*_{hor}Y = \{j^{r,s}_y \omega \mid \omega \in \Omega^1_{hor}(Y), y \in Y\}$ over Y. Every fibered embedding $\varphi :$ $Y \to Z$ of two (m, n)-dimensional fibered manifolds induces a vector bundle map $J^{r,s}T^*_{hor}\varphi : J^{r,s}T^*_{hor}Y \to J^{r,s}T^*_{hor}Z, J^{r,s}T^*_{hor}\varphi(j^{r,s}_y \omega) = j^{r,s}_{\varphi(y)}(\varphi_*\omega), \omega \in \Omega^1_{hor}(Y),$ $y \in Y$. The correspondence $J^{r,s}T^*_{hor} : \mathcal{FM}_{m,n} \to \mathcal{VB}$ is a vector natural bundle on the category $\mathcal{FM}_{m,n}$ of (m, n)-dimensional fibered manifolds and their fibered embeddings.

Let m, n, r, s be natural numbers with $s \ge r$.

Example 1'. Let X be a projectable vector field on an (m, n)-dimensional fibered manifold $\tilde{p}: Y \to M$. (We say that a vector field X on Y is projectable if there exists a \tilde{p} -related with X vector field X_o on M.) For every $q = 0, \ldots, r$ we have a map $X: J^{r,s}T^*_{hor}Y \to \mathbb{R}$, $\stackrel{(q)}{X}(j^{r,s}_y\omega) := X^q\omega(X)(y), \ \omega \in \Omega^1_{hor}(Y), \ y \in Y$, where $X^q = X \circ \cdots \circ X$ (q-times). Then for every $q = 0, \ldots, r$ we have a 1-form $\stackrel{(q)}{dX}$ on $J^{r,s}T^*_{hor}Y$. The correspondence $\stackrel{(q)}{A}: T_{\text{proj} \mid \mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{r,s}T^*_{hor}), \ X \to \stackrel{(q)}{dX}$, is a natural operator.

Example 2'. Let X be a projectable vector field on an (m, n)-dimensional fibered manifold Y. For every $p = 0, \ldots, r-1$ we have a 1-form $\overset{\langle p \rangle}{X} : TJ^{r,s}T^*_{hor}Y \to \mathbb{R}$ on $J^{r,s}T^*_{hor}Y, \overset{\langle p \rangle}{X}(v) = \langle d_x(X^p\omega(X)), T\pi(v) \rangle$, where $v \in (TJ^{r,s}T^*_{hor})_yY, y \in Y, \omega \in \Omega^1_{hor}(Y), p^T(v) = j_y^{r,s}\omega, p^T: TJ^{r,s}T^*_{hor}Y \to J^{r,s}T^*_{hor}Y$ is the tangent bundle projection, $\pi : J^{r,s}T^*_{hor}Y \to Y$ is the bundle projection. The correspondence $\overset{\langle p \rangle}{A} : T_{\text{proj} \mid \mathcal{FM}m,n} \rightsquigarrow T^*(J^{r,s}T^*_{hor}), X \to \overset{\langle p \rangle}{X}$, is a natural operator.

Example 3'. Let X be a projectable vector field on an (m, n)-dimensional fibered manifold Y. For every $q = 0, \ldots, r$ we have a 1-form $X : TJ^{r,s}T_{hor}^*Y \to \mathbb{R}$ on $J^{r,s}T_{hor}^*Y, X(v) = \langle (L_X)^q \omega, T\pi(v) \rangle$, where $v \in (TJ^{r,s}T_{hor}^*)_y Y, y \in Y, \omega \in \Omega_{hor}^1(Y), p^T(v) = j_y^r \omega, (L_X)^q = L_X \circ \cdots \circ L_X$ (q-times), L_X is the Lie

derivative with respect to X. The correspondence $\overset{\langle \langle q \rangle \rangle}{A}$: $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{r,s}T^*_{\text{hor}}), X \rightarrow \overset{\langle \langle q \rangle \rangle}{X}$, is a natural operator.

The set of all natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \simeq T^*(J^{r,s}T^*_{\text{hor}})$ is a module over the algebra $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$. Actually, if $f \in \mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ and $A: T_{\text{proj}|\mathcal{FM}_{m,n}}$ $\sim T^*(J^{r,s}T^*_{\text{hor}})$ is a natural operator, then $fA: T_{\text{proj}|\mathcal{FM}_{m,n}} \simeq T^*(J^{r,s}T^*_{\text{hor}})$ is given by $(fA)(X) = f(X, \ldots, X)A(X), X \in \mathcal{X}_{\text{proj}}(Y), Y \in \text{Obj}(\mathcal{FM}_{m,n}).$

Theorem 1'. For natural numbers r, s, m and n with $m \ge 2$ and $s \ge r$ the $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ -module of all natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{r,s}T^*_{\text{hor}})$ is free and (3r+2)-dimensional. The natural operators A, A and A for $q = 0, \ldots, r$ and $p = 0, \ldots, r-1$ form a basis over $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ of this module.

The proof of Theorem 1' is a simple modification of the proof of Theorem 1. It is left to the reader. We propose to use the fact that every projectable vector field on Y with non-vanishing underlying vector field is locally $\frac{\partial}{\partial x^1}$ in some fibered manifold coordinates $x^1, \ldots, x^m, y_1, \ldots, y^n$ on Y.

8. Exercises

Exercise 1. Let s, r, t be natural numbers with $s \ge r \le t$. We say that two 1forms $\omega, \eta \in \Omega^1(Y)$ on a fibered manifold $\tilde{p}: Y \to M$ determine the same (r, s, t)jet $j_y^{r,s,t}\omega = j_y^{r,s,t}\eta$ at $y \in Y$ if $j_y^r\omega = j_y^r\eta, j_y^t\omega^R = j_y^t\eta^R$ and $j_y^s(\omega|Y_x) = j_y^s(\eta|Y_x)$. Here Y_x is the fiber of Y over $x = \tilde{p}(y)$ and $\omega^R : Y \to (VY)^*$ is given by the restriction $\omega_y|V_yY$ for any $y \in Y$. Define a bundle functor $J^{r,s,t}T^* : \mathcal{FM}_{m,n} \to \mathcal{VB}$ by using (r, s, q)-jets of 1-forms instead of (r, s)-jets. Classify natural operators $A: T_{\text{proj},\mathcal{FM}_{m,n} \rightsquigarrow T^*(J^{r,s,t}T^*).$

Answer: For natural numbers r, s, t, m and n with $m \ge 2$ and $s \ge r \le t$ all natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{r,s,t}T^*)$ form a free, (3r+2)-dimensional module over $C^{\infty}(\mathbb{R}^{r+1})$. The (similar as in Examples 1', 2' and 3') natural (q) < < q > > < < q > > < < q > > < A, A and A for $q = 0, \ldots, r$ and $p = 0, \ldots, r-1$ form the basis over $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ of this module.

Exercise 2. Let s, r, t, u be natural numbers with $s \ge r, u \ge t, t \ge r$ and $u \ge s$. We say that two 1-forms $\omega, \eta \in \Omega^1(Y)$ on a fibered manifold $\tilde{p}: Y \to M$ determine the same (r, s, t, u)-jet $j_y^{r,s,t,u}\omega = j_y^{r,s,t,u}\eta$ at $y \in Y$ if $j_y^r\omega = j_y^r\eta, j_y^t\omega^R = j_y^t\eta^R$, $j_y^s(\omega|Y_x) = j_y^s(\eta|Y_x)$ and $j_y^u(\omega^R|Y_x) = j_y^u(\eta^R|Y_x)$. (Y_x and ω^R as in Exercise 1.) Define a bundle functor $J^{r,s,t,u}T^*: \mathcal{FM}_{m,n} \to \mathcal{VB}$ by using (r, s, q, u)-jets of 1-forms. Classify natural operators $A: T_{\text{proj }\mathcal{FM}_{m,n}} \to T^*(J^{r,s,t,u}T^*)$.

573

Answer: For natural numbers r, s, t, u, m and n with $m \ge 2$ and $s \ge r, u \ge t, t \ge r$ and $u \ge s$ all natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{r,s,t,u}T^*)$ form a free, (3r+2)-dimensional module over $C^{\infty}(\mathbb{R}^{r+1})$. The (similar as in Examples 1', 2' and 3') natural operators A, A and A for $q = 0, \ldots, r$ and $p = 0, \ldots, r-1$ form the basis over $\mathcal{C}^{\infty}(\mathbb{R}^{r+1})$ of this module.

References

- Doupovec M., Kurek J., Liftings of tensor fields to the cotangent bundles, Proc. Conf. Differential Geom. and Appl., Brno, 1995, pp. 141–150.
- [2] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer Verlag, Berlin, 1993.
- [3] Kurek J., Mikulski W.M., The natural operators lifting 1-forms to some vector bundle functors, Colloq. Math. (2002), to appear.
- [4] Mikulski W.M., The natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ and $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^{r*}$, Colloq. Math. (2002), to appear.
- [5] Mikulski W.M., Liftings of 1-forms to the bundle of affinors, Ann. UMCS Lublin (LV)(A) (2001), 109–113.

Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

E-mail: mikulski@im.uj.edu.pl

(Received February 21, 2002)