Locally solid topologies on spaces of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka

Abstract. Let X be a completely regular Hausdorff space and E a real normed space. We examine the general properties of locally solid topologies on the space $C_b(X, E)$ of all E-valued continuous and bounded functions from X into E. The mutual relationship between locally solid topologies on $C_b(X, E)$ and $C_b(X)$ (= $C_b(X, \mathbb{R})$) is considered. In particular, the mutual relationship between strict topologies on $C_b(X)$ and $C_b(X, E)$ is established. It is shown that the strict topology $\beta_{\sigma}(X, E)$ (respectively $\beta_{\tau}(X, E)$) is the finest σ -Dini topology (respectively Dini topology) on $C_b(X, E)$. A characterization of σ -Dini and Dini topologies on $C_b(X, E)$ in terms of their topological duals is given.

Keywords: vector-valued continuous functions, strict topologies, locally solid topologies, Dini topologies

Classification: 47A70, 46E05, 46E10

0. Introduction

Let X be a completely regular Hausdorff space, βX its Stone-Čech compactification and let $(E, \|\cdot\|_E)$ be a real normed space. Let S_E stand for the closed unit sphere in E. Let $C_b(X, E)$ be the space of all bounded continuous functions f from X into E. We will write $C_b(X)$ instead of $C_b(X, \mathbb{R})$, where \mathbb{R} is the field of all real numbers. For a function $u \in C_b(X)$, \overline{u} denotes its unique continuous extension to βX . For a function $f \in C_b(X, E)$ we will write $\|f\|(x) = \|f(x)\|_E$ for all $x \in X$. Then $\|f\| \in C_b(X)$ and the space $C_b(X, E)$ can be equipped with a norm $\|f\|_{\infty} = \sup_{x \in X} \|f\|(x) = \|\|f\|\|_{\infty}$, where $\|u\|_{\infty} = \sup_{x \in X} |u(x)|$ for $u \in C_b(X)$.

A subset H of $C_b(X, E)$ is said to be *solid* whenever $||f_1|| \le ||f_2||$ (i.e. $||f_1(x)||_E \le ||f_2(x)||_E$ for all $x \in X$) and $f_1 \in C_b(X, E)$, $f_2 \in H$ implies $f_1 \in H$. A linear topology τ on $C_b(X, E)$ is said to be *locally solid* if it has a local base at 0 consisting of solid sets (see [Ku], [KuO]). The so-called strict topologies on $C_b(X, E)$ and some subspaces of $C_b(X, E)$ have been considered by many authors (see [A], [F], [K₁], [K₂], [K₃], [Ku], [KuO], [KuV₁], [KuV₂]). It is well known that the strict topologies $\beta_t(X, E)$, $\beta_\tau(X, E)$, $\beta_\sigma(X, E)$, $\beta_\sigma(X, E)$, $\beta_g(X, E)$ and $\beta_p(X, E)$ on $C_b(X, E)$ are locally solid (see [Ku, Theorem 8.1], [KuO, Theorem 6], [KuV₁, Theorem 5]).

In Section 1 we examine some general properties of solid sets in $C_b(X, E)$ and next, in Section 2, general properties of locally solid topologies on $C_b(X, E)$. It is shown that a locally convex topology τ on $C_b(X, E)$ is locally solid iff τ is generated by some family of solid seminorms defined on $C_b(X, E)$. Recall here that a seminorm ρ on $C_b(X, E)$ is called solid whenever $\rho(f_1) \leq \rho(f_2)$ if $f_1, f_2 \in C_b(X, E)$ and $||f_1|| \le ||f_2||$. In Section 3 we introduce a general method which establishes a mutual relationship between locally solid topologies on $C_b(X)$ and $C_b(X, E)$. In particular, in Section 4, the mutual relationship between strict topologies defined on $C_h(X)$ and $C_h(X,E)$ is established. In Section 5 we distinguish some important classes of locally convex-solid topologies on $C_b(X, E)$. Namely, a locally convex-solid topology τ on $C_b(X, E)$ is said to be a σ -Dini topology whenever for a sequence (f_n) in $C_b(X,E)$, $||f_n|| \downarrow 0$ (i.e. $||f_n(x)||_E \downarrow 0$ for each $x \in X$) implies $f_n \to 0$ for τ . Replacing sequences by nets in $C_b(X, E)$ we obtain a Dini topology on $C_b(X, E)$. It is shown that the strict topology $\beta_{\sigma}(X, E)$ (resp. $\beta_{\tau}(X,E)$) is the finest σ -Dini topology (resp. Dini topology) on $C_b(X,E)$. We obtain a characterization of both the σ -Dini and the Dini-topologies on $C_b(X, E)$ in terms of their topological duals.

1. The solid structure of spaces of vector-valued continuous functions

In this section we examine the solid structure of the space $C_b(X, E)$.

Definition 1.1 (see [Ku]). A subset H of $C_b(X, E)$ is said to be *solid* whenever $||f_1|| \le ||f_2||$ and $f_1 \in C_b(X, E)$, $f_2 \in H$ implies $f_1 \in H$.

The following lemma will be of a key importance for an examination of the solid structure of $C_b(X, E)$.

Lemma 1.1 [The solid decomposition property]. Assume that for $f, g_1, \ldots, g_n \in C_b(X, E)$, $||f|| \le ||g_1 + \ldots + g_n||$. Then there exist $f_1, \ldots, f_n \in C_b(X, E)$ satisfying: $||f_i|| \le ||g_i||$ $(i = 1, 2, \ldots, n)$ and $f = f_1 + \cdots + f_n$.

PROOF: By using induction it is enough to establish the result for n=2. Thus assume first that $||f(x)||_E \leq ||g_1(x) + g_2(x)||_E$ for all $x \in X$, where $f, g_1, g_2, \in C_b(X, E)$.

Let us put (for i = 1, 2)

$$f_i(x) = \begin{cases} \frac{\|g_i\|(x)}{\|g_1\|(x) + \|g_2\|(x)} f(x) & \text{if } \|g_1\|(x) + \|g_2\|(x) > 0, \\ 0 & \text{if } \|g_1\|(x) + \|g_2\|(x) = 0. \end{cases}$$

It is seen that $f_i \in C_b(X, E)$ and $f_1 + f_2 = f$. To show that $||f_i|| \le ||g_i||$ for

i = 1, 2, assume first that $||g_1||(x_0) + ||g_2||(x_0) > 0$ for $x_0 \in X$. Then

$$||f_i||(x_0) = \frac{||g_i||(x_0)}{||g_1||(x_0) + ||g_2||(x_0)} ||f||(x_0)$$

$$\leq \frac{||g_i||(x_0)}{||g_1||(x_0) + ||g_2||(x_0)} (||g_1||(x_0) + ||g_2||(x_0)) = ||g_i||(x_0).$$

Next, let $||g_1||(x_0) + ||g_2||(x_0) = 0$ for some $x_0 \in X$. Then $||f_i||(x_0) = 0 \le ||g_i||(x_0)$ (i = 1, 2). Thus the proof is complete.

Theorem 1.2. The convex hull (conv H) of a solid subset H of $C_b(X, E)$ is solid.

PROOF: Let H be a solid subset of $C_b(X, E)$, and let $||f|| \leq ||g||$, where $f \in C_b(X, E)$ and $g \in \text{conv } H$. Then there exist $g_1, \ldots, g_n \in H$ and numbers $\alpha_1, \ldots, \alpha_n \geq 0$ with $\sum_{i=1}^n \alpha_i = 1$ such that $g = \sum_{i=1}^n \alpha_i g_i$. Hence by Lemma 1.1 there exist $f_1, \ldots, f_n \in C_b(X, E)$, such that $||f_i|| \leq \alpha_i ||g_i||$ for $i = 1, 2, \ldots, n$ and $f = \sum_{i=1}^n f_i$. Putting $h_i = \alpha_i^{-1} f_i$ we get $||h_i|| \leq ||g_i||$, so $h_i \in H$, $(i = 1, 2, \ldots, n)$. But then $f = \sum_{i=1}^n f_i = \sum_{i=1}^n \alpha_i h_i \in \text{conv } H$, so conv H is solid, as desired.

2. Locally solid topologies on spaces of vector-valued continuous functions

We start this section with the definition of locally solid topologies on $C_h(X, E)$.

Definition 2.1 (see [Ku]). A linear topology τ on $C_b(X, E)$ is said to be *locally solid* if it has a local base at zero consisting of solid sets.

Theorem 2.1. Let τ be a locally solid topology on $C_b(X, E)$. Then the τ -closure \overline{H} of a solid subset H of $C_b(X, E)$ is solid.

PROOF: Let \mathcal{B}_{τ} be a local base at 0 for τ consisting of solid sets. Then $\overline{H} = \bigcap \{H+V: V \in \mathcal{B}_{\tau}\}$. Assume that $\|f\| \leq \|g\|$, where $f \in C_b(X, E)$, $g \in \overline{H}$, and let $V_0 \in \mathcal{B}_{\tau}$. Then $g = g_1 + g_2$ where $g_1 \in H$ and $g_2 \in V_0$. Since $\|f\| \leq \|g\|$, by Lemma 1.1 there exist $f_1, f_2 \in C_b(X, E)$ such that $f = f_1 + f_2$ and $\|f_i\| \leq \|g_i\|$ (i = 1, 2). Hence $f_1 \in H$ and $f_2 \in V_0$, because both sets H and V_0 are solid. Thus $f \in H + V$ for every $V \in \mathcal{B}_{\tau}$, so $f \in \overline{H}$. This means that \overline{H} is solid, as desired.

Definition 2.2. A linear topology τ on $C_b(X, E)$ that is at the same time locally solid and locally convex will be called a *locally convex-solid topology* on $C_b(X, E)$.

In view of Theorems 1.2 and 2.1 we see that for a locally convex-solid topology on $C_b(X,E)$ the collection of all τ -closed, convex and solid τ -neighborhoods of zero forms a local base at 0 for τ .

Definition 2.3. A seminorm ρ on $C_b(X, E)$ is said to be *solid* whenever $\rho(f_1) \leq \rho(f_2)$ if $f_1, f_2 \in C_b(X, E)$ and $||f_1|| \leq ||f_2||$.

Theorem 2.2. For a locally convex topology τ on $C_b(X, E)$ the following statements are equivalent:

- (i) τ is generated by some family of solid seminorms;
- (ii) τ is a locally convex-solid topology.

PROOF: (i) \Rightarrow (ii). It is obvious.

(ii) \Rightarrow (i). Let $\mathcal{B}_{\tau} = \{V_{\alpha} : \alpha \in \mathcal{A}\}$ be a basis of zero for τ consisting of τ -closed, solid and convex sets. Let ρ_{α} stand for the Minkowski functional generated by V_{α} , that is

$$\rho_{\alpha}(f) = \inf\{\lambda > 0 : f \in \lambda V_{\alpha}\} \text{ for } f \in C_b(X, E).$$

Then ρ_{α} is a solid τ -continuous seminorm and $\{f \in C_b(X, E) : \rho_{\alpha}(f) < 1\} \subset V_{\alpha} = \{f \in C_b(X, E) : \rho_{\alpha}(f) \leq 1\}$. This means that the family $\{\rho_{\alpha} : \alpha \in A\}$ generates the topology τ .

3. The relationship between topological structures of $C_b(X)$ and $C_b(X,E)$

In this section, using Theorem 2.2 we introduce a general method which establishes a mutual relationship between locally solid topologies on $C_b(X)$ and $C_b(X, E)$.

Recall that the algebraic tensor product $C_b(X) \otimes E$ is the subspace of $C_b(X, E)$ spanned by the functions of the form $u \otimes e$, $(u \otimes e)(x) = u(x)e$, where $u \in C_b(X)$ and $e \in E$.

Given a Riesz seminorm p on $C_b(X)$ let us set

$$p^{\vee}(f) := p(||f||)$$
 for all $f \in C_b(X, E)$.

It is easy to verify that p^{\vee} is a solid seminorm on $C_b(X, E)$.

From now on let $e_0 \in S_E$ be fixed. Given a solid seminorm ρ on $C_b(X, E)$, let us put

$$\rho^{\wedge}(u) := \rho(u \otimes e_0)$$
 for all $u \in C_b(X)$.

It is seen that ρ^{\wedge} is well defined because $\rho(u \otimes e_0)$ does not depend on $e_0 \in S_E$, due to solidness of ρ . It is easy to check that ρ^{\wedge} is a Riesz seminorm on $C_b(X)$.

Lemma 3.1. (i) If ρ is a solid seminorm on $C_b(X, E)$, then $(\rho^{\wedge})^{\vee}(f) = \rho(f)$ for all $f \in C_b(X, E)$.

(ii) If p is a Riesz seminorm on $C_b(X)$, then $(p^{\vee})^{\wedge}(u) = p(u)$ for $u \in C_b(X)$.

PROOF: (i) For $f \in C_b(X, E)$ we have $(\rho^{\wedge})^{\vee}(f) = \rho^{\wedge}(\|f\|) = \rho(\|f\| \otimes e_0)$, where $\|(\|f\| \otimes e_0)(x)\|_E = \|f\|(x)e_0\|_E = \|f\|(x) = \|f(x)\|_E$ for all $x \in X$. In view of the solidness of ρ we get $(\rho^{\wedge})^{\vee}(f) = \rho(f)$.

(ii) For $u \in C_b(X)$ we have $(p^{\vee})^{\wedge}(u) = p^{\vee}(u \otimes e_0) = p(\|u \otimes e_0\|)$, where $\|u \otimes e_0\|(x) = \|(u \otimes e_0)(x)\|_E = \|u(x)e_0\|_E = |u(x)| = |u|(x)$ for $x \in X$. Since p is a Riesz seminorm, we get $(p^{\vee})^{\wedge}(u) = p(|u|) = p(u)$.

Let τ be a locally convex-solid topology on $C_b(X, E)$. Then in view of Theorem 2.2 τ is generated by some family $\{\rho_\alpha : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_b(X, E)$. By τ^{\wedge} we will denote the locally convex-solid topology on $C_b(X)$ generated by the family $\{\rho_{\alpha}^{\wedge} : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$. One can check that τ^{\wedge} does not depend on the choice of a family $\{\rho_{\alpha} : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_b(X, E)$ generating τ .

Next, let ξ be a locally convex-solid topology on $C_b(X)$. Then ξ is generated by some family $\{p_\alpha : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$ (see [AB, Theorem 6.3]). By ξ^{\vee} we will denote the locally convex-solid topology on $C_b(X, E)$ generated by the family $\{p_{\alpha}^{\vee} : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_b(X, E)$. One can verify that ξ^{\vee} does not depend on the choice of a family $\{p_\alpha : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$ that generates ξ .

In view of Lemma 3.1 we can easily get:

Theorem 3.2. (i) For a locally convex-solid topology τ on $C_b(X, E)$ we have: $(\tau^{\wedge})^{\vee} = \tau$.

(ii) For a locally convex-solid topology ξ on $C_b(X)$ we have: $(\xi^{\vee})^{\wedge} = \xi$.

Theorem 3.3. Let ξ be a locally convex-solid topology on $C_b(X)$ and let τ be a locally convex-solid topology on $C_b(X, E)$.

- (i) For a net (f_{σ}) in $C_b(X, E)$ we have: $f_{\sigma} \xrightarrow{\tau} 0$ if and only if $||f_{\sigma}|| \xrightarrow{\tau^{\wedge}} 0$.
- (ii) For a net (u_{σ}) in $C_b(X)$ we have: $u_{\sigma} \xrightarrow{\xi} 0$ if and only if $u_{\sigma} \otimes e_0 \xrightarrow{\xi^{\vee}} 0$.

Theorem 3.4. Let τ_1 and τ_2 be locally convex-solid topologies on $C_b(X, E)$ and let ξ_1 and ξ_2 be locally convex-solid topologies on $C_b(X)$. Then

- (i) if $\tau_1 \subset \tau_2$, then $\tau_1^{\wedge} \subset \tau_2^{\wedge}$;
- (ii) if $\xi_1 \subset \xi_2$, then $\xi_1^{\vee} \subset \xi_2^{\vee}$.
- PROOF: (i) Let $\{\rho_{\alpha}: \alpha \in \mathcal{A}\}$ and $\{\rho_{\beta}: \beta \in \mathcal{B}\}$ be generating families of solid seminorms for τ_1 and τ_2 respectively. Since $\tau_1 \subset \tau_2$, for each $\alpha \in \mathcal{A}$ there exist $\beta_1, \ldots, \beta_n \in \mathcal{B}$ such that $\rho_{\alpha}(f) \leq a \max_{1 \leq i \leq n} \rho_{\beta_i}(f)$ for some a > 0 and all $f \in C_b(X, E)$. It easily follows that $\rho_{\alpha}^{\wedge}(u) \leq a \max_{1 \leq i \leq n} \rho_{\beta_i}^{\wedge}(u)$ for all $u \in C_b(X)$, and this means that $\tau_1^{\wedge} \subset \tau_2^{\wedge}$.
- (ii) Let $\{p_{\alpha} : \alpha \in \mathcal{A}\}$ and $\{p_{\beta} : \beta \in \mathcal{B}\}$ be generating families of Riesz seminorms for ξ_1 and ξ_2 respectively. Since $\xi_1 \subset \xi_2$ for each $\alpha \in \mathcal{A}$ there exist $\beta_1, \ldots, \beta_n \in \mathcal{B}$ such that $p_{\alpha}(u) \leq a \max_{1 \leq i \leq n} p_{\beta_i}(u)$ for some a > 0 and all

 $u \in C_b(X)$. It follows that $p_{\alpha}^{\wedge}(f) \leq a \max_{1 \leq i \leq n} p_{\beta_i}^{\wedge}(f)$ for all $f \in C_b(X, E)$, and this means that $\xi_1^{\vee} \subset \xi_2^{\vee}$.

4. Strict topologies on spaces of continuous functions

In this section, by making use of the results of Section 3, we establish a mutual relationship between strict topologies on $C_b(X)$ and $C_b(X, E)$ which allows us to examine in a unified manner strict topologies on $C_b(X, E)$ by means of strict topologies on $C_b(X)$.

First we recall some definitions (see [S], [W], [Ku], [KuO], [KuV₁]). For a compact subset Q of $\beta X \setminus X$ let $C_Q(X) = \{v \in C_b(X) : \overline{v} | Q \equiv 0\}$. For each $v \in C_Q(X)$ let

$$p_v(u) = \sup_{x \in X} |v(x)u(x)| \text{ for } u \in C_b(X)$$

and

$$\rho_v(f) = \sup_{x \in X} |v(x)| \|f\|(x) \text{ for } f \in C_b(X, E).$$

Then p_v is a Riesz seminorm on $C_b(X)$ and ρ_v is a solid seminorm on $C_b(X, E)$. For each $u \in C_b(X)$ and a fixed $e_0 \in S_E$ we have:

(4.1)
$$\rho_v^{\wedge}(u) = \rho_v(u \otimes e_0) = \sup_{x \in X} |v(x)| |u(x)| = p_v(u)$$

and moreover, for each $f \in C_b(X, E)$ we get:

(4.2)
$$p_v(||f||) = \sup_{x \in X} |v(x)| ||f||(x) = \rho_v(f).$$

Let $\beta_Q(X)$ be the locally convex-solid topology on $C_b(X)$ defined by $\{p_v : v \in C_Q(X)\}$ and let $\beta_Q(X, E)$ be the locally convex-solid topology on $C_b(X, E)$ defined by $\{\rho_v : v \in C_Q(X)\}$.

Thus $\beta_Q(X) = \beta_Q(X, \mathbb{R})$ and by (4.1) and (4.2) we get:

$$(4.3) \beta_Q(X)^{\vee} = \beta_Q(X, E)$$

and

$$(4.4) \beta_Q(X, E)^{\wedge} = \beta_Q(X).$$

Now let \mathcal{C} be some family of compact subsets of $\beta X \setminus X$. The *strict topology* $\beta_{\mathcal{C}}(X,E)$ on $C_b(X,E)$ determined by \mathcal{C} is the greatest lower bound (in the class of locally convex topologies) of the topologies $\beta_Q(X,E)$, as Q runs over \mathcal{C} . Thus $\beta_{\mathcal{C}}(X,E)$ is an inductive limit topology, and we denote it by LIN $\{\beta_Q(X,E):Q\in\mathcal{C}\}$.

We will shortly write $\beta_{\mathcal{C}}(X)$ instead of $\beta_{\mathcal{C}}(X,\mathbb{R})$. It is well known that the strict topology $\beta_{\mathcal{C}}(X)$ on $C_b(X)$ is locally solid (see [W, Theorem 11.6]). Observe that the strict topology $\beta_{\mathcal{C}}(X,E)$ on $C_b(X,E)$ has a local base at 0 consisting of all sets of the form:

$$(+) \qquad \qquad \text{abs conv} \left(\bigcup_{Q \in \mathcal{C}} W_{v_Q} : \text{ for some } v_Q \in C_Q(X) \right)$$

where for $v_Q \in C_Q(X)$, $W_{v_Q} = \{ f \in C_b(X, E) : \rho_{v_Q}(f) \le 1 \}$.

By making use of Lemma 1.1 it is easy to check that the sets of the form (+) are solid. Thus we get:

Theorem 4.1. The strict topologies $\beta_{\mathcal{C}}(X, E)$ on $C_b(X, E)$ are locally solid.

Remark. The property of local solidness of strict topologies $\beta_{\mathcal{C}}(X, E)$ on $C_b(X, E)$ for some important classes \mathcal{C}_{τ} , \mathcal{C}_{σ} (see definition below) was obtained in a different way in [Ku].

The following theorem establishes a mutual relationship between strict topologies $\beta_{\mathcal{C}}(X, E)$ on $C_b(X, E)$ and $\beta_{\mathcal{C}}(X)$ on $C_b(X)$.

Theorem 4.2. We have:

$$\beta_{\mathcal{C}}(X)^{\vee} = \beta_{\mathcal{C}}(X, E)$$
 and $\beta_{\mathcal{C}}(X, E)^{\wedge} = \beta_{\mathcal{C}}(X)$.

PROOF: By the definition of strict topologies and (4.3) and (4.4) we get

$$\beta_{\mathcal{C}}(X) \subset \beta_{\mathcal{O}}(X) = \beta_{\mathcal{O}}(X, E)^{\wedge}$$
 and $\beta_{\mathcal{C}}(X, E) \subset \beta_{\mathcal{O}}(X, E) = \beta_{\mathcal{O}}(X)^{\vee}$.

Hence by Theorem 3.2 and Theorem 3.3 for each $Q \in \mathcal{C}$ we have

$$\beta_{\mathcal{C}}(X)^{\vee} \subset (\beta_{\mathcal{C}}(X,E)^{\wedge})^{\vee} = \beta_{\mathcal{C}}(X,E), \text{ so } \beta_{\mathcal{C}}(X)^{\vee} \subset \beta_{\mathcal{C}}(X,E)$$

and

$$\beta_{\mathcal{C}}(X, E)^{\wedge} \subset (\beta_{\mathcal{C}}(X)^{\vee})^{\wedge} = \beta_{\mathcal{C}}(X), \text{ so } \beta_{\mathcal{C}}(X, E)^{\wedge} \subset \beta_{\mathcal{C}}(X).$$

Thus

$$\beta_{\mathcal{C}}(X, E) = (\beta_{\mathcal{C}}(X, E)^{\wedge})^{\vee} \subset \beta_{\mathcal{C}}(X)^{\vee} \subset \beta_{\mathcal{C}}(X, E), \text{ so } \beta_{\mathcal{C}}(X, E) = \beta_{\mathcal{C}}(X)^{\vee}$$
 and

$$\beta_{\mathcal{C}}(X) = (\beta_{\mathcal{C}}(X)^{\vee})^{\wedge} \subset \beta_{\mathcal{C}}(X, E)^{\wedge} \subset \beta_{\mathcal{C}}(X), \text{ so } \beta_{\mathcal{C}}(X) = \beta_{\mathcal{C}}(X, E)^{\wedge}.$$

Thus the proof is complete.

As an application of Theorem 4.1, Theorem 4.2 and Theorem 3.3 we get:

Corollary 4.3. (i) For a net (f_{σ}) in $C_b(X, E)$ we have: $f_{\sigma} \to 0$ for $\beta_{\mathcal{C}}(X, E)$ if and only if $||f_{\sigma}|| \to 0$ for $\beta_{\mathcal{C}}(X)$.

(ii) For a net (u_{σ}) in $C_b(X)$ we have: $u_{\sigma} \to 0$ for $\beta_{\mathcal{C}}(X)$ if and only if $u_{\sigma} \otimes e_0 \to 0$ for $\beta_{\mathcal{C}}(X, E)$.

Now we distinguish some important families of compact subsets of $\beta X \setminus X$. Let

 \mathcal{C}_{τ} = the family of all compact subsets of $\beta X \setminus X$.

 \mathcal{C}_{σ} = the family of all zero subsets of $\beta X \setminus X$.

The strict topologies $\beta_{\tau}(X, E)$ and $\beta_{\sigma}(X, E)$ on $C_b(X, E)$ are now obtained by choosing \mathcal{C}_{τ} and \mathcal{C}_{σ} as \mathcal{C} appropriately (see [W, Definition 7.8, Definition 10.13], [Ku]). In particular, in view of Theorem 4.2 we get:

Corollary 4.4. We have:

$$\beta_{\tau}(X)^{\vee} = \beta_{\tau}(X, E), \quad \beta_{\sigma}(X)^{\vee} = \beta_{\sigma}(X, E),$$

and

$$\beta_{\tau}(X, E)^{\wedge} = \beta_{\tau}(X), \quad \beta_{\sigma}(X, E)^{\wedge} = \beta_{\sigma}(X).$$

Remark. The statement (i) of Corollary 4.3 was obtained in a different way for topologies $\beta_{\tau}(X, E)$ and $\beta_{\sigma}(X, E)$ in [Ku, Lemma 2.4].

Remark. The important classes of strict topologies $\beta_s(X, E)$, $\beta_p(X, E)$ and $\beta_g(X, E)$ on $C_b(X, E)$ can also be defined as inductive limit topologies by taking appropriate classes \mathcal{C} of subsets of $\beta X \setminus X$ (see [W, Definitions 10.13, 10.15], [KuV], [KuO]).

5. Dini topologies on spaces of vector-valued continuous functions

The well known Dini's theorem is telling us that whenever a topological space X is pseudocompact then for a net (u_{σ}) in $C_b(X)$, $u_{\sigma} \downarrow 0$ (i.e., $u_{\sigma}(x) \downarrow 0$ for each $x \in X$) implies $||u_{\sigma}||_{\infty} \to 0$. F.D. Sentilles (see [S, Theorem 6.3]) showed that a Dini type theorem holds for topologies $\beta_{\sigma}(X)$ and $\beta_{\tau}(X)$ for X being a completely regular Hausdorff space, that is, $\beta_{\sigma}(X)$ (resp. $\beta_{\tau}(X)$) is the finest of all locally convex topologies ξ on $C_b(X)$ such that $u_n \downarrow 0$ implies $u_n \stackrel{\xi}{\longrightarrow} 0$ (resp. $u_{\sigma} \downarrow 0$ implies $u_{\sigma} \stackrel{\xi}{\longrightarrow} 0$). These properties of strict topologies justify the following definition of σ -Dini and Dini topologies in the vector-valued setting.

Definition 5.1. (i) A locally convex-solid topology τ on $C_b(X, E)$ is said to be a σ -Dini topology whenever for a sequence (f_n) in $C_b(X, E)$, $||f_n|| \downarrow 0$ (i.e., $||f_n||(x) \downarrow 0$ for each $x \in X$) implies $f_n \to 0$ for τ .

(ii) A locally convex-solid topology τ on $C_b(X, E)$ is said to be a Dini topology whenever for a net (f_{σ}) in $C_b(X, E)$, $||f_{\sigma}|| \downarrow 0$ (i.e., $||f_{\sigma}||(x) \downarrow 0$ for each $x \in X$) implies $f_{\sigma} \to 0$ for τ .

Thus $\beta_{\sigma}(X)$ (resp. $\beta_{\tau}(X)$) is the finest σ -Dini (resp. Dini) topology on $C_b(X)$. In this section, by making use of the results of Sections 3 and 4 we show that $\beta_{\sigma}(X, E)$ (resp. $\beta_{\tau}(X, E)$) is the finest σ -Dini (resp. Dini) topology on $C_b(X, E)$. We need the following technical results.

- **Lemma 5.1.** (i) If ξ is a σ -Dini topology (resp. a Dini topology) on $C_b(X)$, then ξ^{\vee} is a σ -Dini topology (resp. a Dini topology) on $C_b(X, E)$.
- (ii) If τ is a σ -Dini topology (resp. a Dini topology) on $C_b(X, E)$, then τ^{\wedge} is a σ -Dini topology (resp. a Dini topology) on $C_b(X)$.
- PROOF: (i) Assume that ξ is a σ -Dini topology on $C_b(X)$ generated by a family $\{p_\alpha: \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$. Then for a sequence (f_n) in $C_b(X, E)$ with $\|f_n\| \downarrow 0$ we get $p_\alpha^\vee(f_n) \to 0$, because $p_\alpha^\vee(f_n) = p_\alpha(\|f_n\|)$ for each $\alpha \in \mathcal{A}$ and $n \in \mathbb{N}$. This means that $f_n \to 0$ for ξ^\vee , as desired.

Similarly we get $f_{\sigma} \to 0$ for ξ^{\vee} whenever ξ is a Dini topology.

(ii) Assume that τ is a σ -Dini topology on $C_b(X, E)$ generated by a family $\{\rho_\alpha : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_b(X, E)$. Then for a sequence (u_n) in $C_b(X)$ with $u_n \downarrow 0$ and a fixed $e_0 \in S_E$ we get $||u_n \otimes e_0|| \downarrow 0$, because $||u_n \otimes e_0||(x) = ||u_n(x)e_0||_E = |u_n(x)|$. Since $\rho_\alpha^\wedge(u_n) = \rho_\alpha(u_n \otimes e_0)$ for each $\alpha \in \mathcal{A}$ and $n \in \mathbb{N}$, we have that $u_n \to 0$ for τ^\wedge , as desired.

Similarly, we obtain that $u_{\sigma} \to 0$ for τ^{\wedge} whenever τ is a Dini topology.

The next theorem is an extension of the Sentilles results (see [S, Theorem 6.3], [W, Corollary 11.16, Corollary 11.28]).

Theorem 5.2. (i) The strict topology $\beta_{\sigma}(X, E)$ is the finest σ -Dini topology on $C_b(X, E)$.

(ii) The strict topology $\beta_{\tau}(X, E)$ is the finest Dini topology on $C_b(X, E)$.

PROOF: (i) Since $\beta_{\sigma}(X)$ is a σ -Dini topology on $C_b(X)$, by Lemma 5.1 and Corollary 4.4 we obtain that $\beta_{\sigma}(X, E)$ is a σ -Dini topology on $C_b(X, E)$. Now assume that τ is a σ -Dini topology on $C_b(X, E)$. Then by Lemma 5.1 τ^{\wedge} is a σ -Dini topology on $C_b(X)$. Hence $\tau^{\wedge} \subset \beta_{\sigma}(X)$, because $\beta_{\sigma}(X)$ is the finest σ -Dini topology on $C_b(X)$ (see [S, Theorem 6.3]). By making use of Theorem 3.2, Theorem 3.4 and Corollary 4.4 we get $\tau = (\tau^{\wedge})^{\vee} \subset \beta_{\sigma}(X)^{\vee} = \beta_{\sigma}(X, E)$, as desired.

|--|

Now we are going to characterize σ -Dini topologies and Dini topologies on $C_h(X, E)$ in terms of their topological duals.

For a linear topology τ on $C_b(X, E)$ by $(C_b(X, E), \tau)'$ we denote the topological dual of $(C_b(X, E), \tau)$. In particular, let $C_b(X, E)'$ stand for the topological dual of $(C_b(X, E), \|\cdot\|_{\infty})$.

We shall need the following definitions.

Definition 5.2. (i) A functional $\Phi \in C_b(X, E)'$ is said to be σ -additive whenever for a sequence (f_n) in $C_b(X, E)$, $||f_n|| \downarrow 0$ implies $\Phi(f_n) \to 0$. The set consisting of all σ -additive functionals on $C_b(X, E)$ will be denoted by $L_{\sigma}(C_b(X, E))$.

(ii) A functional $\Phi \in C_b(X, E)'$ is said to be τ -additive whenever for a net (f_{σ}) in $C_b(X, E)$, $||f_{\sigma}|| \downarrow 0$ implies $\Phi(f_{\sigma}) \to 0$. The set consisting of all τ -additive functionals on $C_b(X, E)$ will be denoted by $L_{\tau}(C_b(X, E))$.

Now we are in position to state our desired result.

Theorem 5.3. For a locally convex-solid Hausdorff topology τ on $C_b(X, E)$ the following statements are equivalent:

- (i) $(C_b(X, E), \tau)' \subset L_{\sigma}(C_b(X, E));$
- (ii) τ is a σ -Dini topology.

PROOF: (ii) \Rightarrow (i). It is obvious.

(i) \Rightarrow (ii). Let $\{\rho_{\alpha} : \alpha \in \mathcal{A}\}$ be the family of solid seminorms on $C_b(X, E)$ that generates τ (see Theorem 2.2), and let τ^{\wedge} denote the locally convex-solid topology generated by the family $\{\rho_{\alpha}^{\wedge} : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$, where $\rho_{\alpha}^{\wedge}(u) = \rho(u \otimes e_0)$ for some fixed $e_0 \in S_E$ and $u \in C_b(X)$.

We shall first show that $(C_b(X), \tau^{\wedge})' \subset L_{\sigma}(C_b(X))$. Indeed, let $\varphi \in (C_b(X), \tau^{\wedge})'$ and let $u_n \downarrow 0$ (i.e. $u_n(x) \downarrow 0$ for all $x \in X$), where $u_n \in C_b(X)$. Define a linear functional Φ_{φ} on a subspace $C_b(X)(e_0)$ (= $\{u \otimes e_0 : u \in C_b(X)\}$) of $C_b(X, E)$ by putting $\Phi_{\varphi}(u \otimes e_0) = \varphi(u)$. Since $\varphi \in (C_b(X), \tau^{\wedge})'$ there exist c > 0 and $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ such that $|\Phi_{\varphi}(u \otimes e_0)| = |\varphi(u)| \leq c \max_{1 \leq i \leq n} \hat{\rho}_{\alpha_i}(u) = c \max_{1 \leq i \leq n} \rho_{\alpha_i}(u \otimes e_0)$ for all $u \in C_b(X)$. This means that

 $\Phi_{\varphi} \in (C_b(X)(e_0), \tau|_{C_b(X)(e_0)})'$, so by the Hahn-Banach extension theorem there is $\overline{\Phi}_{\varphi} \in (C_b(X, E), \tau)'$ such that $\overline{\Phi}_{\varphi}(u \otimes e_0) = \varphi(u)$ for all $u \in C_b(X)$. By our assumption $\overline{\Phi}_{\varphi} \in L_{\sigma}(C_b(X, E))$, so $\overline{\Phi}_{\varphi}(u_n \otimes e_0) \to 0$, because $||u_n \otimes e_0|| = u_n \downarrow 0$. It follows that $\varphi(u_n) \to 0$, so $\varphi \in L_{\sigma}(C_b(X))$.

Thus in view of [K₂, Theorem 5.6] (applied to a Banach lattice $E = \mathbb{R}$), τ^{\wedge} is a σ -Dini topology on $C_b(X)$, so by Lemma 5.1 $(\tau^{\wedge})^{\vee}$ is a σ -Dini topology on $C_b(X, E)$. But by Theorem 3.2 $\tau = (\tau^{\wedge})^{\vee}$, and the proof is complete.

We have an analogous result for Dini topologies with a similar proof.

Theorem 5.4. For a locally convex-solid Hausdorff topology τ on $C_b(X, E)$ the following statements are equivalent:

- (i) $(C_b(X,E),\tau)' \subset L_\tau(C_b(X,E));$
- (ii) τ is a Dini topology.

Remark. In case E is a Banach lattice, the spaces $C_b(X, E)$ and $C_{rc}(X, E)$ (= the space of all $f \in C_b(X, E)$ for which f(X) is relatively compact in E) became vector lattices under the natural ordering: $f \leq g$ whenever $f(x) \leq g(x)$ in E for all $x \in X$. Thus one can consider the concepts of solidness and a locally

solid topology for $C_b(X, E)$ and $C_{rc}(X, E)$ in terms of the theory of Riesz spaces (see [AB]). Moreover, in [K₂, Section 5] a functional $\Phi \in C_{rc}(X, E)'$ is called σ -additive if $\Phi(f_n) \to 0$ for a sequence (f_n) in $C_{rc}(X, E)$ such that $f_n(x) \downarrow 0$ in E for all $x \in X$. Similarly τ -additive functionals on $C_{rc}(X, E)$ are defined. The above Theorems 5.3 and 5.4 are analogous to [K₂, Theorem 5.6, Theorem 5.5].

References

- [A] Aguayo-Garrido J., Strict topologies on spaces of continuous functions and u-additive measure spaces, J. Math. Anal. Appl. 220 (1998), 77–89.
- [AB] Aliprantis C.D., Burkinshaw O., Locally Solid Topologies, Academic Press, New York, San Francisco, London, 1978.
- [F] Fontenot R.A., Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841–853.
- [K₁] Katsaras A.K., Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313–328
- [K₂] Katsaras A.K., Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1976), 367– 387.
- [K₃] Katsaras A.K., Locally convex topologies on spaces of continuous vector functions, Math. Nachr. 71 (1976), 211–226.
- [Ku] Khurana S.S., Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195–211.
- [KuO] Khurana S.S., Othman S.I., Grothendieck measures, J. London Math. Soc. (2) 39 (1989), 481–486.
- [KuV₁] Khurana S.S., Vielma J.E., Strict topology and perfect measures, Czechoslovak Math. J. 40 (1990), 1–7.
- [KuV2] Khurana S.S., Vielma J.E., Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions, J. Math. Anal. Appl. 195 (1995), 251– 260.
- [S] Sentilles F.D., Bounded continous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311–336.
- [W] Wheeler R.F., Survey of Baire measures and strict topologies, Exposition Math. 2 (1983), 97–190.
- [W₁] Wheeler R.F., The strict topology, separable measures, and paracompactness, Pacific J. Math. 47 (1973), 287–302.

Institute of Mathematics, University of Zielona Góra, ul. Podgórna 50, 65–246 Zielona Góra, Poland

E-mail: M.Nowak@snse.uz.zgora.pl

(Received March 29, 2001, revised April 4, 2002)