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Characterization of ω-limit sets

of continuous maps of the circle

David Pokluda

Abstract. In this paper we extend results of Blokh, Bruckner, Humke and Smı́tal [Trans.
Amer. Math. Soc. 348 (1996), 1357–1372] about characterization of ω-limit sets from
the class C(I, I) of continuous maps of the interval to the class C(S, S) of continuous
maps of the circle. Among others we give geometric characterization of ω-limit sets and
then we prove that the family of ω-limit sets is closed with respect to the Hausdorff
metric.
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1. Introduction

Continuous maps of the interval and continuous maps of the circle have many
properties in common. Some of them are proved in [6]. In this paper we extend
results proved in [3] from the class C(I, I) of continuous maps of the interval to
the class C(S, S) of continuous maps of the circle by using the same technique used
in [6]. Other results concerning continuous maps of the circle can be found in [1]
or [5].

Throughout the paper, the symbols I and S denote the unit interval [0, 1] and
the circle {z ∈ C; |z| = 1}, respectively, and X denotes either I or S. Denote by
Sb the circle cut at a point b ∈ S, i.e. Sb = S \ {b}. Let e : R → S be the natural
projection defined by e(x) = exp(2πix). Note that the map ẽ : (v, v + 1)→ Se(v)

obtained by restricting e to the interval (v, v+1), is a homeomorphism. It is clear

that if we define a map hv(x) := e(x + v), where v ∈ R, then h̃v := hv|(0,1) is a

homeomorphism from (0, 1) onto S\ {e(v)} (see Lemma 3.1.3 in [1]). We say that

h̃v(x) ≤ h̃v(y) whenever x ≤ y. For an interval A ⊂ Se(v) a point a is called the

left endpoint , resp. the right endpoint , of A if a ≤ x, resp. x ≤ a, for every x ∈ A.
Recall that the trajectory of a point x under a map f is the sequence {fn(x)}∞n=0,
where fn is the n-th iteration of f . The set of limit points of the trajectory of
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x is called ω-limit set and we denote the set by ωf (x). A set {U0, . . . , Un−1}
of mutually disjoint intervals is called a cycle of intervals if f(Ui) = Ui+1 for
i = 0, 1, . . . , n − 2 and f(Un−1) = U0. The map f is transitive if for every two
non-empty open sets V, W there is a positive integer n such, that fn(V )∩W 6= ∅.
Two maps f : Y1 → Y1 and g : Y2 → Y2 are topologically conjugate if there exists
a homeomorphism ϕ : Y1 → Y2 such that ϕ ◦ f(x) = g ◦ ϕ(x) for any x ∈ Y1. For
more terminology see standard books like [1] or [2].

Now we introduce some notions used in [3] and modified for maps from C(S, S).
We say that a set A ⊂ S is T -side or T -unilateral neighborhood (T means either
“left” or “right”) of an x ∈ S if the set A is a closed interval and the point x is T
endpoint of the set A.
Let U = U0 ∪ . . . ∪ UN−1 be a union of pairwise disjoint non-degenerate closed
intervals and f ∈ C(S, S). For any set K ⊂ U let fU (K) = f(K) ∩ U (this may

be empty). Inductively define fn
U (K) = fU (f

n−1
U (K)). Define K̃ ≡ K̃(U) =

⋃

∞

i=1 f i
U (K); although K̃ depends on U , to avoid convoluted notation we use K̃

whenever the set U is evident. Let A ⊂ S be a closed set and x ∈ A. We say
that a side T of a point x is A-covering if for any union of finitely many closed
intervals U such that A ⊂ Int(U) and any closed T -unilateral neighborhood V (x)

there are finitely many components of Ṽ (x) such that the closure of their union
covers A. If T is an A-covering side of x then any T -unilateral neighborhood V (x)
is also said to be A-covering. We call the set A locally expanding according to
the map f if every x ∈ A has an A-covering side.

The main theorems of this paper are the following.

Theorem 1.1. Let f be a map in C(X, X). A closed set A ⊂ X is an ω-limit set
if and only if it is locally expanding.

Theorem 1.2. Let {ωn}∞n=1 = {ωf (xn)}∞n=1 be a sequence of ω-limit sets of a
continuous map f ∈ C(X, X) and let a point a have a side T , such that for any
T -unilateral neighborhood V of a, there exists a positive integer N such that for

each n ≥ N , the orbit of xn enters V infinitely many times. Then
⋂

∞

k=1

⋃

∞

n=k ωn

is an ω-limit set.

Theorem 1.3. Let f be a map in C(X, X). Then the family of all ω-limit sets
of f endowed with the Hausdorff metric is compact.

2. Proof of the main theorems

Let b ∈ S and f ∈ C(S, S). We denote by e−1(b) the point x ∈ [0, 1) such that

e(x) = b. In the rest of the paper by h we denote the map h̃e−1(b) whenever the

point b ∈ S is evident and by A∗ we mean the preimage of the set A ⊂ Sb under
the map h̃e−1(b). Denote by S the set S\

⋃

∞

n=0 f−n(b). Now we can define a map

f∗ ∈ C(S∗, S∗) as

f∗ := h−1 ◦ f ◦ h|S∗ .
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The map f∗ is defined only on the subset S∗ of the interval (0, 1), but we overcome
this difficulty using Lemma 2.1.

Lemma 2.1. Let f ∈ C(X, X) and A ⊂ X be a locally expanding set according
to the map f . Then the set A is invariant, i.e. f(A) ⊂ A.

Proof: In the case when X = I the lemma is proved in [3] (Lemma 2.5). It
remains to consider the case X = S. The case A = S is trivial. Let A ⊂ Sb,
x ∈ A and f(x) /∈ A. Then there exists a union of finitely many intervals U =
U0 ∪ . . . ∪ Un−1, U ⊃ A such that for any sufficiently small neighborhood V

of x we have f(V ) ∩ U = ∅. The definition of Ṽ implies that Ṽ = ∅ which is
a contradiction. �

Lemma 2.2. A set A ⊂ S is a T -side of a point x ∈ S if and only if the set A∗

is a T -side of the point x∗.

The proof is omitted.

Lemma 2.3. If the whole circle S is locally expanding with respect to a map

f ∈ C(S, S) then f is transitive.

Proof: Take two nonempty open sets V, W . Since a point x ∈ Int(V ) has
S covering side then Ṽ = S and hence there is a positive integer n such that
fn(V ) ∩ W 6= ∅. This proves that the map f is transitive. �

Lemma 2.4. Let f be a map in C(S, S). A closed set A ⊂ Sb is locally expanding

according to the map f if and only if the set A∗ ⊂ (0, 1) is locally expanding
according to the map f∗.

Proof: First assume that the set A∗ is locally expanding. Hence the sets A∗, A
are closed and by Lemma 2.1 the set A∗ is invariant and A∗ ⊂ S∗. Take a point
x ∈ A. Since the set A∗ is locally expanding the point x∗ has an A∗-covering
side T ∗. By Lemma 2.2 the set T is a side of the point x. Take a union of finitely
many closed intervals U ⊂ Sb such that A ⊂ Int(U) and any closed T -unilateral
neighborhood V (x). Using the assumptions there are finitely many components

of W̃ whereW = V (x)∗ such that the closure of their union covers A∗ and clearly

W̃ ⊂ (0, 1). Hence the set Ṽ (x) has finitely many components such that the
closure of their union covers A as well. Thus the set A is locally expanding.
The proof of the converse is analogous. �

Lemma 2.5. A set A ⊂ Sb is an ω-limit set of the map f ∈ C(S, S) if and only if
the set A∗ is an ω-limit set of the map f∗.

Proof: First consider the closed set A ⊂ Sb to be an ω-limit set. There is a point
x0 ∈ S such that ωf (x0) = A. If there are two positive integers m1 < m2 such
that fm1(x0) = fm2(x0) = b then the ω-limit set A is finite and b ∈ A which is
a contradiction. We may assume that fn(x0) 6= b for every positive integer n (in
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the case when there is just one positive integerm such that fm(x0) = b we replace
x0 by fm+1(x0)) and thus {f

n(x0)}
∞
n=0 ⊂ S. Hence ({fn(x0)}

∞
n=0)

∗ ⊂ S∗ and
we have ωf∗(x∗0) = (ωf (x0))

∗ = A∗.
The proof of the converse is analogous. �

Before stating the next lemma, let us recall one of Blokh’s results from [4].

Proposition 2.6. Suppose that f ∈ C(S, S) is a transitive map. Then there is

a positive integer m, such that S =
⋃m−1

i=0 Ki, where all the Ki are connected

compact sets, Ki ∩ Kj is finite for i 6= j, f(Ki) = Ki+1, i = 0, 1, . . . , m − 2,
f(Km−1) = K0 and two cases are possible:

(1) P (f) 6= ∅; then fmq|Ki
is transitive for any i = 0, 1, . . . , m − 1 and any

positive integer q,
(2) P (f) = ∅; thenm = 1,K0 = S and f is conjugate to an irrational rotation.

Lemma 2.7 (Lemma 2.6 in [3] for C(I, I)). Let f be a map in C(S, S) and A ⊂ S

be a locally expanding set according to the map f with non-empty interior. Then
A is a cycle of intervals and f |A is transitive.

Proof: Suppose that A = S. By Lemma 2.3 the map f is transitive and by
Proposition 2.6 the set A must be a cycle of intervals. Suppose that A ⊂ Sb.
Since A is locally expanding then by Lemma 2.1 A ⊂ S and by Lemma 2.4 the
set A∗ ⊂ S∗ is locally expanding. By Lemma 2.6 in [3] the set A∗ is a cycle of
intervals A∗

0, . . . , A∗
n−1 and f∗|A∗ is transitive. The map h is a homeomorphism

and hence the set A = h(A∗) = h(A∗
0) ∪ . . . ∪ h(A∗

n−1) and

f(Ai) =
(

h ◦ f∗ ◦ h−1|S

)

(Ai) =
(

h ◦ f∗ ◦ h−1|S

)

(h(A∗
i ))

= h(f∗(A∗
i )) = h(A∗

i+1) = Ai+1,

where Aj = h(A∗
j ) and j is taken modulo n. This means that A is a cycle of

intervals. It remains to show that f |A is transitive when A ⊂ Sb. Take two open
sets V, W ⊂ A. Then the sets V ∗, W ∗ ⊂ S∗ are open sets and so there is a positive
integer n such that (f∗)n(V ∗) ∩ W ∗ 6= ∅. Hence

fn(V ) ∩ W = (h ◦ (f∗)n ◦ h−1|S)(V ) ∩ W = h((f∗)n(V ∗) ∩ W ∗) 6= ∅.

�

Lemma 2.8 (Lemma 2.7 in [3] for C(I, I)). Let f be a map in C(S, S) and A ⊂ S

be a locally expanding or an ω-limit set. Then f(A) = A.

Proof: The case of an ω-limit set is trivial and well known. Let A be a locally
expanding set. When A = S then f is transitive (Lemma 2.3) and the lemma is
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proved. It remains to consider the case when A ⊂ Sb. By Lemma 2.1 A ⊂ S, and
by Lemma 2.7 in [3] we have f∗(A∗) = A∗. Clearly

f(A) =
(

h ◦ f∗ ◦ h−1|S

)

(A) = h(f∗(A∗)) = h(A∗) = A.

�

We continue by proving the main theorems.

Proof of Theorem 1.1: In the case when X = I the theorem is proved in [3]
(Theorem 2.12). It remains to consider the case when X = S. First we show that
if A = ωf (x) is an ω-limit set then A is locally expanding. In the case A ⊂ Sb, A

∗

is an ω-limit set by Lemma 2.5, hence A∗ is locally expanding (see Theorem 2.12
in [3]) and by Lemma 2.4, the set A is locally expanding as well. It remains to
consider the case when A = S. Since A is an ω-limit set and it has a non-empty
interior, A is a cycle of intervals (see Theorem 1.1 in [6]). From this it follows
that if W ⊂ A is an interval, then W has a dense orbit in A and hence there is an
n ∈ N such that fn(W ) ∩ W 6= ∅. Therefore the union

⋃

∞
i=1 f i(W ) is dense in A

and has finitely many component intervals. As this is true for every such interval
W , it follows that A is locally expanding.
Assume that A is locally expanding. In the case A ⊂ Sb we can again prove the

theorem by using our Lemmas 2.4 and 2.5, and Theorem 2.12 in [3]. It remains
to consider the case when A = S. By Lemma 2.7 the set A is a cycle of intervals
and f |A is transitive. Thus the set A is an ω-limit set. �

Proof of Theorem 1.2: In the case when X = I the theorem is proved in [3]
(Theorem 3.1). It remains to consider the case when X = S. We will prove this
in several steps.

Case 1. Assume that
⋂

∞
k=1

⋃

∞
n=k ωn ⊂ Sb. Using our Lemma 2.5 and Theo-

rem 3.1 in [3] we get that the set
⋂

∞

k=1

⋃

∞

n=k ω∗
n is an ω-limit set. By Lemma 2.5

the set
⋂

∞

k=1

⋃

∞

n=k ωn is an ω-limit set as well.

Case 2. Next assume that
⋂

∞

k=1

⋃

∞

n=k ωn = S. Then it suffices to show that
f is transitive. Take two non-empty open sets V, W ⊂ S.

Subcase 2.1. If there is anm such that ωm intersects both V andW we are done
since there are positive integers p < q such that fp(xm) ∈ V and fq(xm) ∈ W
and consequently, fq−p(V ) ∩ W 6= ∅.

Subcase 2.2. If there is no such m, then V ∩ W = ∅. Let {ωni
}∞i=1 be the

subsequence of {ωn}∞n=1 consisting of ω-limit sets intersecting V . Then ωV =
⋂

∞

k=1

⋃

∞

i=k ωni
⊂ Sb for any b ∈ W , hence, according to the first part, ωV = ωf (v)

is an ω-limit set, ωf (v) ∩ W = ∅, and a ∈ ωf (v) is its cluster point from the
side T . Similarly, for some w, ωf (w) is an ω-limit set intersecting W such that
ωf (w)∩V = ∅ and a is its cluster point from the side T . Let A = ωf (v)∪ωf (w).
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Subcase 2.2.1. If A 6= S then A ⊂ Sb for some b. We apply the result by
Sharkovsky [7] which is also stated in [3]: If, for a map in C(I, I), two ω-limit sets
have a common cluster point from the same side then their union is an ω-limit
set. So, by Lemma 2.5 A is an ω-limit set since both (ωV )

∗ and (ωW )
∗ are and

have a point a∗ as a common cluster point from side T . We have the situation
described in Subcase 2.1.

Subcase 2.2.2. A = ωf (v) ∪ ωf (w) = S. Since any ω-limit set in S is either
nowhere dense or a finite union of non-degenerate intervals, and since ωf (v) ∩
W = ∅ = ωf (w) ∩ V , both ωf (v) and ωf (w) are finite unions of intervals. If
ωf (v) ∩ ωf (w) is infinite then the two ω-limit sets have an interval in common
and the transitivity is easily proven. If the intersection ωf (v) ∩ ωf (w) would be
finite then the condition with the T -side must be violated since the intersection
contains a. �

Proof of Theorem 1.3: In the case when X = I the theorem is proved in [3]
(Theorem 3.2). It remains to consider the case when X = S. Let {ω1, ω2, . . . } be a
sequence of ω-limit sets converging in the Hausdorff metric to a set A. Choosing a
subsequence (if necessary) we may also assume that there exists a point a, a side T
of a and points an ∈ ωn, an 6= a converging to a from T . As the original sequence
converges to A, the subsequence does as well. To finish the proof it remains to use

Theorem 1.2 and to show that
⋂

∞

k=1

⋃

∞

n=k ωn = A. Since we consider Hausdorff
metric and all the sets ωn are closed then the set A is closed as well. Hence it
is clear that

⋂

∞

k=1

⋃

∞

n=k ωn ⊃ A. Consider the sequence of open sets {A1/n}
∞
n=1

where Aε := {x ∈ X ; dist(x, A) < ε}, dist(x, A) := inf{d(x, a); a ∈ A} and d is
the metric on X , and note that for every m there is a positive integer k such that
⋃

∞
n=k ωn ⊂ A1/m. Therefore

⋂

∞
k=1

⋃

∞
n=k ωn ⊂ A. �
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