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Holomorphic subordinated semigroups

Adel Saddi

Abstract. If (e−tA)t>0 is a strongly continuous and contractive semigroup on a complex
Banach space B, then −(−A)α, 0 < α < 1, generates a holomorphic semigroup on B.
This was proved by K. Yosida in [7]. Using similar techniques, we present a class
H of Bernstein functions such that for all f ∈ H, the operator −f(−A) generates a
holomorphic semigroup.
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Introduction

According to K. Yosida [7], if A is a generator of a bounded semigroup on a
complex Banach space, we can define −(−A)α, 0 < α < 1, as a generator of a
holomorphic semigroup. It is also known through G. Lumer’s and L. Paquet’s
works [5], that some solutions of evolutionary equations for the Cauchy problem
constitute some holomorphic semigroups. In 1989, L. Paquet has proved in [6]
that the distributions T with support in R+ such that LT = −(

∫

(·)−α dν(α))−1,
where ν is a positive measure on [0, 1] and ν([0, 1]) > 0, are generators of pseu-
doholomorphic semigroups of measures on R+ in the sense of [6]. We will study
in this work the holomorphy of the subordinated semigroups. More precisely, we
will present a class of Bernstein functions such that for any strongly continuous
and contractive semigroup (Tt)t>0 on a complex Banach space the subordinated
semigroup to (Tt)t>0 is holomorphic.
Being inspired by the holomorphy of fractionary semigroups [7], we consider

the set of Bernstein functions f verifying Re f(z) ≥ c| Im z|α in a sector of the
complex plane and for | Im z| > ρ > 0. Such functions have a semigroup of
subprobability measures (ρt)t>0 which is absolutely continuous with respect to
Lebesgue measure on [0,+∞ [ .
In Theorem 1, we give an integral representation of the density ft(s) by means

of the function f . Moreover, we show that for all s > 0 the density ft(s) is
differentiable with respect to t, on [0,+∞ [ .
We are also interested in the holomorphy of the semigroup (ρt)t>0. Using

the homogeneity of the function sα, 0 < α < 1, K. Yosida has shown that the
associated semigroup is holomorphic. In the general case many difficulties arise in
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the study of this last property. For this reason we add the hypothesis of regularity
on the Bernstein function f , f(s) ≤ c′sα, s > 1, that allows us to deduce the
holomorphy of the subordinated semigroup (T ft )t>0 to a strongly continuous and
contractive semigroup (Tt)t>0. We may note that we can find again the result in
the case of the fractional powers.

1. Bernstein functions and associated convolution semigroups

Definition 1. A positive function f on [0,+∞ [ is called a Bernstein function if
f is C∞ on [0,+∞ [ and for all n ∈ N∗, (−1)nf (n) ≤ 0.

In the following f denotes a Bernstein function.

According to [2, Theorem 9.8, p. 64] we have the following property:

Every Bernstein function f possesses the following representation

(1) f(s) = a+ bs+

∫ +∞

0
(1− e−rs)µ(dr)

where a, b are two positive reals and µ is a positive measure on [0,+∞ [ such that
∫ +∞
0

r
1+rµ(dr) < +∞.

If the measure in (1) is absolutely continuous with respect to Lebesgue measure
on [0,+∞ [ and the density is completely monotone, then f is said to be a complete
Bernstein function and by applying Bernstein theorem ([2, Theorem 9.3, p. 62])
to the density and Fubini’s theorem, representation (1) becomes

(2) f(s) = a+ bs+

∫ +∞

0

s

s+ r
ρ(dr)

where ρ is a positive measure on [0,+∞ [ verifying
∫ +∞
0

1
1+rρ(dr) < +∞.

For every t > 0 and for every Bernstein function f , the function defined on

[0,+∞ [ by s → e−tf(s) is completely monotone. From [2, Proposition 9.2 and
Theorem 9.3] there exists one positive measure ρt on [0,+∞ [ such that

∫ +∞

0
e−rsρt(dr) = e−tf(s) ∀ s > 0,

and by [2, Theorem 9.18] the family of measures (ρt)t>0 forms a convolution
semigroup on R+.
For every complex number z such that Re z ≥ 0 and for every r ≥ 0, we have

(2′) |1− e−rz| ≤ r|z| and |1− e−rz| ≤ 2
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which shows according to (1) that every Bernstein function is extendable to a
continuous function on C+ := {z ∈ C,Re z ≥ 0} and to a holomorphic function
on C∗

+ := {z ∈ C,Re z > 0}. This extension verifies

(3) f(z) = f(z) and Re f(z) ≥ 0 ∀ z ∈ C+.

Moreover it follows easily from (1) and (2′) that every Bernstein function is in
modulus dominated by an affine function of |z| on C∗

+.

It is known that if the function ϕt defined on C+ by ϕt(z) := e−tf(z) (t > 0)
is integrable on the line D = {σ + iy, y ∈ R} for some σ ≥ 0, then the semigroup
(ρt)t>0 is absolutely continuous with respect to the Lebesgue measure and the
density ft is given by

(4) ft(s) =
1

2iπ

∫ σ+i∞

σ−i∞
esz−tf(z)dz.

Moreover for all s, t > 0, we have

(5)

∫ +∞

0
ft(r) dr = e

−tf(0) and ft ∗ fs = ft+s.

For θ ∈ ]0, π [ , denote Λ(θ) = {z ∈ C∗, |Arg z| < θ}.
In the following assume that

(H1): There exists ϕ ∈ ] π2 , π [ such that the Bernstein function f has a holomor-
phic extension on Λ(ϕ), and for all z ∈ Λ(ϕ) ∩ {z ∈ C, | Im z| > ρ}, we
have Re f(z) ≥ c| Im z|α, for some ρ > 0, c > 0 and α > 0.

Remark 1. Every complete Bernstein function has a holomorphic extension on
C \ R−.

Examples of Bernstein functions verifying (H1):

Bernstein function f(s) ρ(dr)

sα, 0 < α < 1 sinαπ
π rα−1 dr

s1/2(1 − exp(−4s1/2)) 2
π r

−1/2(sin 2r1/2)2dr

s1/2 log(1 + coth s1/2) 1
2π r
1/2 log(1 + cotg r1/2)2dr

s
(s1/4−1)
s−1 , f(1) = 14

√
2
2π

r1/4

1+r dr

s1/2 log(s1/2 + 1) 2
2π r

−1/2 log(1 + r) dr

1− e−βs + sα, 0 < α < 1, β > 0 ∄
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Theorem 1. Let f be a Bernstein function satisfying assumption (H1). For all
π
2 ≤ θ < ϕ, s > 0 and t > 0 we have:

ft(s) =
1

π

∫ +∞

0
exp(rs cos θ − tRe f(reiθ)) sin(sr sin θ − t Im f(reiθ) + θ)dr.

Proof: Choose the closed contour (Γθ) below.

Since for all t > 0 the function z → e−tf(z) is holomorphic on a neighborhood of
(Γθ), we have by Cauchy theorem

0 =
1

2iπ

∫

Γθ

esz−tf(z) dz =
1

2π

∫ β

−β
es(1+iy)−tf(1+iy) dy

+
1

2iπ

∫ 0

1
es(r+iβ)−tf(r+iβ) dr

+
1

2π

∫ θ

π/2
esβe

iψ−tf(βeiψ)βeiψ dψ +
1

2iπ

∫ ε

β
esre

iθ−tf(reiθ)eiθ dr

+
1

2π

∫ −θ

θ
esεe

iψ−tf(εeiψ)εeiψ dψ +
1

2iπ

∫ β

ε
esre

−iθ−tf(re−iθ)e−iθ dr

+
1

2π

∫ −π/2

−θ
esβe

iψ−tf(βeiψ)βeiψ dψ +
1

2iπ

∫ 1

0
es(r−iβ)−tf(r−iβ) dr

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8,

where

I2 + I8 =
1

2iπ

∫ 1

0

(

es(r−iβ)−tf(r−iβ) − es(r+iβ)−tf(r+iβ)
)

dr

=
1

2iπ

∫ 1

0
esr−tRe f(r+iβ)

(

ei(−sr+t Im f(r+iβ)) − ei(sr−t Im f(r+iβ))
)

dr

=
1

π
exp(sr − tRe f(r + iβ)) sin(−sr + t Im f(r + iβ)) dr.
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Assumption (H1) implies that for sufficiently large β, we have

|I2 + I8| ≤
1

π

∫ 1

0
esr−ctβ

α
dr

which tends to zero when β reaches to the infinity.

I3 + I7 =
1

2π

∫ θ

π/2

[

esβe
iψ−tf(βeiψ)βeiψ − esβe

−iψ−tf(βe−iψ)βe−iψ
]

dψ.

Thus

|I3 + I7| ≤
1

π

∫ θ

π/2
βesβ cosψ−ct|β sinψ|

α
∣

∣

∣
sin(sβ sinψ − t Im f(βe−iψ) + ψ)

∣

∣

∣
dψ

≤ 1
π

∫ θ

π/2
e−ctβ

α(sin θ)α dψ,

which tends to zero when β reaches to the infinity.

I5 =
1

2π

∫ −θ

θ
esεe

iψ−tf(εeiψ)
εeiψ dψ,

which reaches to zero when ε tends to zero. And

I4 + I6 =
1

2iπ

∫ ε

β
esre

iθ−tf(reiθ)+iθ dr − 1

2iπ

∫ ε

β
esre

−iθ−tf(re−iθ)−iθ dr

=
1

π

∫ ε

β
exp(sr cos θ − tRe f(reiθ)) sin(sr sin θ − t Im f(reiθ) + θ) dr

which proves that

ft(s) =
1

π

∫ +∞

0
exp(sr cos θ − tRe f(reiθ)) sin(sr sin θ − t Im f(reiθ) + θ) dr.

�

Corollary. For all s > 0 and for all Bernstein functions f satisfying assumption
(H1), we have:
t→ ft(s) is differentiable on [0,+∞ [ and

(6)
∂

∂t
ft(s)

= − 1
π

∫ +∞

0

∣

∣

∣
f(reiθ)

∣

∣

∣
exp(sr cos θ − tRe f(reiθ)) sin(sr sin θ − t Im f(reiθ)

+ Arg f(reiθ) + θ) dr,
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where π2 ≤ θ < ϕ.

Proof: For all z ∈ Λ(ϕ) and s > 0, the function g defined by g(t) = esz−tf(z) is
differentiable on [0,+∞ [ and the derivative g′ is given by g′(t) = −f(z)g(t).
Let z = 1+ iy, |y| > ρ > 0 and 0 < a < t, there exist two positive constants A

and B such that for all s > 0 we have

|g′(t)| = |f(z)g(t)| ≤ (A+By)e−ac|y|α+s,

which is integrable with respect to y on R. Using the derivation theorem, the
function t→ ft(s) is differentiable on [0,+∞ [ and we have

∂

∂t
ft(s) = − 1

2iπ

∫ σ+i∞

σ−i∞
f(z)esz−tf(z) dz, where s, σ > 0.

By integrating on the same contour (Γθ), we obtain

∂

∂t
ft(s) = − 1

π

∫ +∞

0

[

Re f(reiθ) exp(sr cos θ − tRe f(reiθ))

× sin(sr sin θ − t Im f(reiθ) + θ)

+ Im f(reiθ) exp(sr cos θ − tRe f(reiθ)) cos(sr sin θ − t Im f(reiθ) + θ)
]

dr.

So

∂

∂t
ft(s)

= − 1
π

∫ +∞

0

∣

∣

∣
f(reiθ)

∣

∣

∣
exp(sr cos θ − tRe f(reiθ)) sin(sr sin θ − t Im f(reiθ)

+ Arg f(reiθ) + θ) dr.
�

Proposition 1. Let f be a Bernstein function verifying (H1). Then g : t →
∫ ∞
0 ft(s) ds is differentiable on [0,+∞ [ and if moreover we have

(H2):
∫ 1
0

|f(reiθ)|
r dr < +∞ for some π2 < θ < ϕ,

then
∫ +∞
0

∂
∂tft(s) ds = 0.

Proof: The differentiability of the function g follows directly form (5). Now if

f verifies
∫ 1
0

|f(reiθ)|
r dr < +∞, then this last assumption implies necessarily that

f(0) = 0 and that the derivative of g verifies

g′(t) =
∫ +∞

0

∂

∂t
ft(s) ds =

∂

∂t

(
∫ +∞

0
ft(s) ds

)

=
∂

∂t

(

e−tf(0)
)

= 0.
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�

Remark 2. We note that the complete Bernstein function f defined by f(s) =
∫ 1/2
0

s
(s+r)r(log r)2

dr verifies
∫ 1
0

|f(reiθ)|
r dr = +∞ for all π2 < θ < π.

2. Holomorphic semigroups

In this part, we will consider a strongly continuous semigroup (Tt)t>0 of con-
tractive operators on a complex Banach space (B, ‖ · ‖).
Definition 2. The semigroup (Tt)t>0 is said to be θ-holomorphic, 0 < θ ≤ π

2 , if
there exists a holomorphic extension z → Tz to Sθ = {z ∈ C∗; |Arg z| < θ} such
that

(i) ∀ z, z′ ∈ sθ, Tz+z′ = Tz ◦ Tz′;
(ii) ∀ θ′ ∈ ]0, θ [ , ∀u ∈ B, limz∈sθ

z→0
Tzu = u.

For a Bernstein function f and the associated convolution semigroup (ρt)t>0,
we give the following definition.

Definition 3. The family of operators (T
f
t )t>0, defined on B by

T
f
t u =

∫ +∞

0
Tsuρt(ds), u ∈ B

forms a semigroup on B, it is called the semigroup subordinated to (Tt)t>0 with
respect to f (or (ρt)t>0).

Now assume that f is a Bernstein function verifying (H1), (H2) and that

(H3): there exists a positive constant c
′ such that f(r) < c′rα for r > ρ′ > 0, α

being the constant in (H1).

For any function we deduce the central result of this work.

Theorem 2. The subordinated semigroup (T
f
t )t>0 is holomorphic.

Proof: We will use the holomorphic semigroup characterization given in [7].

Let t > 0, u ∈ B be as in Theorem 1. T
f
t u is given by

T
f
t u =

1

π

∫ +∞

0
Tsu

∫ +∞

0
exp(sr cos θ − tRe f(reiθ))

× sin(sr sin θ − t Im f(reiθ) + θ) dr ds

where π2 < θ < ϕ, fixed by (H2).
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Assumption (H2) implies that the function t→ T
f
t u is differentiable on [0,+∞ [

and we have

(7) (T
f
t )

′u =
∂

∂t
T
f
t u

= − 1
π

∫ +∞

0
Tsu

∫ +∞

0

∣

∣

∣
f(reiθ)

∣

∣

∣
exp(sr cos θ − tRe f(reiθ))

× sin(sr sin θ − t Im f(reiθ) + Arg f(reiθ) + θ) dr ds.

Since (Tt)t>0 is a contractive semigroup on B, then by Fubini theorem we will
have

‖(T ft )′u‖ ≤ ‖u‖
‖ cos θ‖

∫ +∞

0

|f(reiθ)|
r

exp(−tRe f(reiθ)) dr.

Let now t ∈ ]0, 1[ for sufficiently large β > 0. We have

t‖(T ft )′u‖ ≤ ‖u‖
‖ cos θ‖

(
∫ β

0

M |f(reiθ)|
r

dr +

∫ +∞

β

c′trα

r
exp(−tcrα sinα θ) dr

)

,

where M = sup exp{−tRef(reiθ), (t, r) ∈ ]0, 1[×[0, β]}. Since
∫ 1
0

|f(reiθ)|
r dr is

finite, the first integral is finite as well.
For the second integral, by a change of variable v = tcrα, we obtain

∫ +∞

β

c′trα

r
exp(−tcrα sinα θ) dr ≤ c′

c sinα θ

∫ +∞

0

e−v

α
dv =

c′

α sinα θ
.

Then we can find a positive constant K such that

∀ t ∈ ]0, 1[, ‖t(T ft )′‖ ≤ K.

That implies, according to K. Yosida’s theorem ([7, p. 254]) that the subordinated
semigroup is holomorphic on the section Ω defined by Ω := {z ∈ C∗, |Arg z| <
tg−1( 1eK )}, and for all z ∈ Ω, u ∈ B, T

f
t u is given locally by

T
f
t u =

∑

n≥0

(z − t)n

n!
(T

f
t )
(n)u.

�

Remark 3. (1) Let f be a Bernstein function. If the convolution semigroup
associated with f is (ρt)t>0, then for all positive constants λ, the convolution

semigroup associated to f + λ is (µt)t>0 where µt = e−λtρt. The semigroup
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(ρt)t>0 is holomorphic if and only if (µt)t>0 is holomorphic ([6]). In particular
we can assume that f(0) = 0.
(2) We note that Theorem 2 is also true for the Bernstein function f(s) =√
s log(1 +

√
s), though, condition (H3) is not satisfied.

Below we shall present a direct proof.

For π2 < θ < π, we have in this case

Re f(reiθ) ∼= cos θ
2

√
r log

√
r, (r → +∞),

|f(reiθ)| ∼=
√
r log

√
r, (r → +∞),

and
|f(reiθ)| ∼= r, (r → 0).

By using in (7) the change of variable, sr = v, we obtain

(T ft )
′u = − 1

π

∫ +∞

0
T v
r
u

∫ +∞

0

|f(reiθ)|
r

exp(v cos θ − tRe f(reiθ))

× sin(v sin θ − t Im f(reiθ) + Arg(reiθ) + θ) dr dv.

That gives for all t > 0

‖(T ft )′u‖ ≤ ‖u‖
π

∫ +∞

0

|f(reiθ)|
r

exp(−tRe f(reiθ)) dr ·
∫ +∞

0
exp(v cos θ) dv.

Let 0 < t ≤ 1, and a smooth positive real β

‖(T ft )′u‖ ≤ ‖u‖
π| cos θ|

∫ +∞

0

|f(reiθ)|
r

exp(−tRe f(reiθ)) dt

≤ k‖u‖
π| cos θ|

[

1 +

∫ +∞

β

t log
√
r√

r
exp(−t

√
r log

√
r) dr

]

where k is a positive constant.

A second change of variable ω = t
√
r log

√
r gives ‖t(Ttf)′u‖ ≤ 2k‖u‖

π| cos θ| , t ∈
]0, 1[ and u ∈ B. The proof is achieved according to K. Yosida [7]. �

Now we start from a Bernstein function f , (ρt)t>0 is the associated convolution
semigroup and we suppose that the semigroup (ρt∗, ·)t>0 is holomorphic on C0(R),
the Banach space of continuous functions on R vanishing at infinity, and (ρt∗, ·)t>0
acts on C0(R) by

(ρt ∗ h)(x) =
∫ +∞

0
h(x− s)ρt(ds).

A necessary condition is proved in [1] and we have the following characterization
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Theorem 3. If the semigroup (ρt∗, ·)t>0 is holomorphic on C0(R), then the
Bernstein function f satisfies the condition

|f(z)| ≤ C|z|γ , Re z > 0, |z| ≥ 1, 0 < γ < 1 and C =
3(1 + f(1))

1− e−1
.

Remark 4. (1) This result shows that the introduced hypothesis (H3) is natural.

(2) If f is a Bernstein function, then the function g defined by g(s) = [f(1s )]
−1

is also a Bernstein function (see [3, Lemma 5]). In particular if ν is a measure on
[0, 1] of the form

∑

n cnδαn such that 0 ≤ αn ≤ 1 and
∑

n cn < +∞, then the
Bernstein function (

∫

(·)−α dν(α))−1 verifies (H1), (H2) and (H3) if and only if
supn αn < 1.
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Paris Série A 284 (1977), 237–240.

[6] Paquet L., Semi-groupes holomorphes en norme sup, Séminaire de théorie du potentiel
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Gabès 6029, Tunisie

E-mail : Adel.Saddi@fsg.rnu.tn

(Received May 7, 2001, revised November 26, 2001)


