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Remarks on the sobriety of Scott

topology and weak topology on posets

He Wei, Jiang Shouli

Abstract. We give some necessary and sufficient conditions for the Scott topology on a
complete lattice to be sober, and a sufficient condition for the weak topology on a poset
to be sober. These generalize the corresponding results in [1], [2] and [4].
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1. Preliminaries

Let X be a T0 space. Then there is an induced partial order defined by setting
x ≤ y if and only if x ∈ cl{y}. Conversely, any partial order on X can be deduced
in this way. In fact, if (L,≤) is a partially ordered set (briefly poset), we define
the Alexandroff topology A(L) to be the collection of all upper sets in L (i.e. sets
U satisfying x ∈ U and x ≤ y implies y ∈ U), and the weak topology W (L) to be
the smallest topology for which all sets of the form ↓ x are closed. A topology on
L is said to be compatible if it induces the given partial order. It is well known
that a topology Ω on L is compatible if and only if

W (L) ⊂ Ω ⊂ A(L).

Let L, M be two posets and f : L → M an isotone map. Then f : (L, A(L)) →
(M, A(M)) is continuous. If we do not distinguish (L, A(L)) and A(L), then A is
a functor from the category POSET of posets and isotone maps to the category
T0TOP of T0 topological spaces and continuous maps.

Lemma 1. The assignment P : X 7→ (X,≤) defines a functor from the category
T0TOP to the category POSET (where ≤ is the induced partial order) which is
a right adjoint to the functor A.

Proof: It suffices to show that any continuous map f : A(L) → X factors
uniquely through i : A(P (X)) → X by an isotone map f̄ : L → X for a T0
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topological space X and a poset L. But this is clear since f preserves order and
f̄ = f .
We call a T0 space X an Alexandroff space if its topology coincides with the

Alexandroff topology for the induced partial order. It is easy to show that X is
a Alexandroff space if and only if its topology is closed under arbitrary meets if
and only if each point of X has a smallest open neighborhood. �

Proposition 1. The category ATOP of Alexandroff topological spaces and con-

tinuous maps is isomorphic to the category POSET.

2. Main results

Let L be a poset. It is well known that if Ω is a sober topology on L inducing
the given order then W (L) ⊂ Ω ⊂ σ(L), where σ(L) is the Scott topology on L.
In [3], J. Isbell showed that there is a complete lattice for which the Scott topology
on it is not sober. In [4], it was shown that if L is a complete lattice such that
σ(L) is a continuous lattice then the Scott topology on L is sober. In [1], J. Isbell
showed that a T0 topological complete lattice is sober. We give some necessary
and sufficient conditions for the Scott topology on a complete lattice to be sober.
Let X be a T0 space. We call X a weakly Scott topological space if its topology

is contained in the Scott topology and X is a complete lattice for the induced
partial order. Every complete lattice endowed with the weak topology is a weakly
Scott topological space. If x ∈ X , a class of open sets Ψ of X is said to be a
prime open neighborhood basis of x if for any prime open neighborhood P of x
there is a Q ∈ Ψ such that x ∈ Q ⊂ P . A map f : X → Y is said to be primal
continuous if for any prime open set P of Y , f−1(P ) is an open subset of X .

Proposition 2. Let X be a weakly Scott topological space. The following con-
ditions are equivalent:

(a) X is sober;
(b) for each x, y ∈ X and z = x∨ y, the set Ψz = {P ∩Q | P is a prime open
neighborhood of x, Q is a prime open neighborhood of y} is a prime open
neighborhood basis of z;

(c) for every set I, the I-indexed supremum map sup : XI → X is primal
continuous;

(d) the supremum map sup : X × X → X is primal continuous.

Proof: (a)⇒ (b): IfX is sober, then any prime open set has the formX\{t}− =
X \ (↓ t), so if z = x ∨ y ∈ U for some prime open set U , we may assume x 6= ⊥,
y 6= ⊥, where ⊥ is the least element. Then we have either x ∈ U or y ∈ U .
Assuming x ∈ U , then U is a prime open neighborhood of x and X \ {⊥} is a
prime open neighborhood of y, U ∩ (X \ {⊥}) ⊂ U .

(b) ⇒ (c): Let P be a prime open set of X . If
∨

i∈I xi ∈ P , there exist finitely
many members xi1 , . . . , xin , such that xi1 ∨ · · · ∨ xin ∈ P since P is open in
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the Scott topology. By (b), we have prime open sets P1, . . . , Pn with xik ∈ Pk,

k = 1, . . . , n, such that P1 ∩ · · · ∩ Pn ⊂ P , i.e. P1 ∨ · · · ∨ Pn ⊂ P , so
∏

i∈I P̄i

is an open neighborhood of (xi) and
∨

P̄i ⊂ P , where P̄j = Pj for j = 1, . . . , n,

P̄i = Xi otherwise.

(c) ⇒ (d): Clear.

(d) ⇒ (a): Let A be an irreducible closed set of X . If A is directed, then
supA ∈ A, A = ↓ supA. So we need only to show that A is directed.
Let a, b ∈ A. If a ∨ b ∈ X \ A then by (d), we have open sets U, V with a ∈ U ,

b ∈ V , and U ∨ V ⊂ X \ A, i.e. U ∩ V ⊂ X \ A. Thus U ⊂ X \ A or V ⊂ X \ A.
This shows a ∈ X \ A or b ∈ X \ A, a contradiction. So a ∨ b ∈ A, A is directed.

�

Corollary 1. Let L be a complete lattice. Then the following conditions are
equivalent:

(a) the Scott topology on L is sober;
(b) for any a, b ∈ L, a ∨ b = c, the set Ψc = {P ∨ Q | P is a prime open
neighborhood of a, Q is a prime open neighborhood of b} is a prime open
neighborhood basis of c;

(c) for each set I, the I-indexed supremum map sup : LI → L is primal
continuous;

(d) the supremum map sup : L × L → L is primal continuous.

Let X be a T0 topological space. We call X a primal topological complete
sup-semi-lattice if X is a complete lattice for its induced partial order and the
supremum map sup : XI → X is primal continuous for any indexed set I.

Lemma 2. Every primal topological complete sup-semi-lattice is sober.

Proof: Let X be a primal topological complete sup-semi-lattice, A an irreducible
closed set of X , supA = a. If a ∈ X \A, then sup−1(X \A) is an open neighbor-

hood of (x)x∈A by the primal continuity of supremum map XA → X , thus there
are finitely many members a1, . . . , an of A and open sets U1, . . . , Un with xi ∈ Ui,

i = 1, . . . , n, such that U1 × · · · × Un × X{x|x∈A,x 6=ai, i=1,...,n} ⊂ sup−1(X \ A),
so U1 ∩· · ·∩Un = U1 ∨· · · ∨Un ⊂ X \A, i.e. A ⊂ (X \U1)∪· · · ∪ (X \Un). There
must be a Ui such that A ⊂ X \ Ui. Then ai ∈ A but ai /∈ Ui, a contradiction.

�

Let L be a poset. It is well known that if there is a compatible sober topology
on L, then L is directed complete. In view of Lemma 2, we have the following
result.

Proposition 3. Let L be a lattice with a compatible topology. Then L is a sober
topological space if and only if L is a primal topological complete sup-semi-lattice.

In the end of this note, we give a sufficient condition for the weak topology
on a poset to be sober. This generalizes the corresponding results in [2]. In [5],
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P.T. Johnstone showed that there is no compatible sober topology on a directed
complete poset. In [2], R.-E. Hoffmann showed that the weak topology is sober
for a complete lattice.
Let L be a poset. We call L a weakly complete poset if ∀A ⊂ L, A 6= ∅,

there are finite many members s1, . . . , sn of L such that
⋂
{↓ a | a ∈ A} =

↓ s1 ∪ · · · ∪ ↓ sn. A poset with nonempty meets is a weakly complete poset,
especially every complete lattice is weakly complete, but the converse is not true.

Example 1. Let L = {a, b, c, d, e}. The partial order on L is defined by a ≤ a,
b ≤ b, c ≤ a, b, c, d ≤ a, b, d, e ≤ a, b, c, d, e. Then L is a weakly complete poset,
but a ∧ b does not exist.

Proposition 4. Let L be a weakly complete poset. Then (L, W (L)) is sober.

Proof: Let A be an irreducible closed set of (L, W (L)). A can be expressed as
A =

⋂
{↓ s1 ∪ · · · ∪ ↓ sns | s ∈ S, ns ∈ Z}. If there is a p ∈ S with

⋂

s 6=p

{↓ s1 ∪ · · · ∪ ↓ sns} ∩ ↓ pj 6= A, j = 1, . . . , np,

then

A = (
⋂

s 6=p

{↓ s1 ∪ · · · ∪ ↓ sns} ∩ ↓ p1) ∪ · · · ∪ (
⋂

s 6=p

{↓ s1 ∪ · · · ∪ ↓ sns} ∩ ↓ pnp),

contradicting the irreducibility of A. So for each p ∈ S, there is a pjp
∈ L such

that (
⋂

s 6=p{↓ s1 ∪ · · · ∪ ↓ sns}) ∩ ↓ pjp
= A. Then we have

A ⊂
⋂

p∈S

↓ pjp
⊂

⋂
{↓ s1 ∪ · · · ∪ ↓ sns | ns ∈ Z, s ∈ S} = A,

so A =
⋂

p∈S ↓ pjp
. If L is weakly complete, then there are finite many members

a1, . . . , an such that A = ↓ a1 ∪ · · · ∪ ↓ an. But A is irreducible, so there must be
an ai, 1 ≤ i ≤ n, such that A = ↓ ai. �

The weak completeness is not necessary for sobriety of posets.

Example 2. Let A =
∐

i∈Z
2i be the disjoint union of copies of two-element sets

2 = {0, 1} and let B = Z be the set of natural numbers. Let L = A∪B ∪ {⊥} be
partially ordered by

x ≤ y if and only if either x ∈ B, y ∈
∐

i≥x

2i, or x = y, or x = ⊥.

Then it is not difficult to show that L is a directed complete poset, the weak
topology and Scott topology on L are both sober, but L is not weakly complete.

Question. Characterize those posets such that the weak topology on them is
sober.
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