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Addition theorems and D-spaces

A.V. Arhangel’skii, R.Z. Buzyakova∗

Abstract. It is proved that if a regular space X is the union of a finite family of metrizable
subspaces then X is a D-space in the sense of E. van Douwen. It follows that if a regular
space X of countable extent is the union of a finite collection of metrizable subspaces
then X is Lindelöf. The proofs are based on a principal result of this paper: every space
with a point-countable base is a D-space. Some other new results on the properties of
spaces which are unions of a finite collection of nice subspaces are obtained.
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1. Introduction

Briefly, the aim of this article is twofold: to expand our knowledge on D-
spaces and, on this basis, to obtain new addition theorems for metrizable and
paracompact spaces.
How complex can be the structure of a (Tychonoff) space which is the union

of two (of a finite family, of a countable family) of “nice” subspaces? This is a
most natural question, it is especially important to know an answer to it when
we are constructing concrete spaces with a certain combination of properties.
In particular, how “bad” can be a space which is the union of two metrizable
subspaces? How “bad” can be a σ-metrizable space, that is, a space which is the
union of a countable family of metrizable subspaces? What can we say about
spaces which are unions of a finite collection of paracompact subspaces?
Quite a few interesting facts in this direction are already known for some time.

A very delicate result was established by Howard Wicke and John Worrell: each
σ-metrizable countably compact space is compact (see [18], [19], [20]). For a
series of strong general addition theorems involving countable unions of not nec-
essarily metrizable spaces from certain classes, see [17]. A. Ostaszewski proved
another astonishing theorem: every regular locally countably compact Hausdorff
σ-metrizable space is sequential (in ZFC!) [15]. The Alexandroff compactification
A(ω1) of the uncountable discrete space ω1 is the union of two metrizable (in fact,
discrete) subspaces, while A(ω1) is not first countable and, therefore, not metriz-
able. Of course, it is essential here that the metrizable spaces we consider are
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not necessarily separable, since every pseudocompact space which is the union of
a countable family of separable metrizable subspaces is compact and metrizable.
M. Ismail and A. Szymanski introduced the notion of the metrizability number
m(X) of a topological space as the smallest cardinal number k (finite or infinite)
such that X can be represented as a union of k many metrizable subspaces (see
[12], [13]). In particular, they proved, by an elegant argument, that every lo-
cally compact Hausdorff space X with the finite metrizability number contains
an open dense metrizable subspace. Interesting results on the metrizability num-
ber of powers of spaces were obtained in [3]. In particular, it was established
in [3] that if X is a regular Lindelöf space, n a positive integer, and Xn can be
represented as the union of n metrizable subspaces, then X is metrizable.

A natural question that arises after one learns that every countably compact
σ-metrizable space is compact is whether every σ-metrizable space of countable
extent is Lindelöf. A negative answer to this question is provided by an amazing
example constructed (in ZFC) by E. van Douwen and H.H. Wicke [11]. However,
the answer to the following question remained unknown:

Question A. Suppose that X is the union of a finite family of metrizable spaces
and the extent of X is countable. Is then X Lindelöf?

This question is at the origins of this paper. The key idea in our approach
to addition theorems is to use in their proofs the not so well known notion of a
D-space, introduced by E. van Douwen (see [10]). Though, at the first glance, the
notion of a D-space seems to be quite a bit exotic, we show it to be instrumental
in obtaining addition theorems.

One of our principal results is the theorem that every regular space X which
is the union of a finite collection of metrizable spaces is a D-space (Theorem 5).
The proof of this fact is based on another central result of this paper: every
space with a point-countable base is a D-space (Theorem 2). This combination
of results leads to a positive solution of Question A.

We also discuss a weaker and more “handy” version of the notion of a D-space,
the notion of an aD-space related to the notion of an irreducible space introduced
by R. Arens and J. Dugundji in [1] and studied in a more systematic way by
J. Boone [4] and U. Christian [9]. Using the notion of aD-space, we establish that
if a regular spaceX is the union of a finite collection of paracompact subspaces and
the extent of X is countable, then X is Lindelöf (Corollary 16). However, we do
not know whether every regular space X , which is the union of two paracompact
D-subspaces, is a D-space.

In Section 3 we prove some addition theorems under weaker separation axioms,
with somewhat weaker conclusions. The arguments here are based on a different
approach.

In terminology and notation we follow [6]. However, we define the extent e(X)
in a slightly different manner than in standard texts and in [6]. Recall that



Addition theorems and D-spaces 655

a subset A of a space X is said to be discrete in X (locally finite in X) if every
point x ∈ X has an open neighborhood Ox containing not more than one element
(only finitely many elements) of A. The extent e(X) of a space X is the smallest
infinite cardinal number τ such that |A| ≤ τ , for every subset A of X which is
locally finite in X . Note that this definition obviously coincides with the usual
definition of the extent of X for all T1-spaces. Indeed, if X is a T1-space, then a
subset A ⊂ X is locally finite in X if and only if A is discrete in itself and closed
in X .

2. The main results and their proofs

A neighborhood assignment on a topological space X is a mapping φ of X into
the topology T of X such that x ∈ φ(x), for each x ∈ X . A space X is called a
D-space if, for every neighborhood assignment φ on X , there exists a locally finite
in X subset A of X such that the family φ(A) covers X . One of the principal
properties of D-spaces is that the extent coincides with the Lindelöf number in
such spaces. In particular, every countably compact D-space is compact and
every D-space with countable extent is Lindelöf. These facts make the notion of
a D-space a useful tool in studying covering properties.

It is known that all metrizable spaces and even all Moore spaces are D-
spaces [5]. A much more general result was recently obtained by R.Z. Buzyakova:
every strong Σ-space is a D-space (see the definition and some further refer-
ences in [7]). However, it is still an open problem (a fascinating one) whether
every regular Lindelöf space is a D-space (it is even unknown whether every
hereditarily Lindelöf regular T1-space is a D-space). This problem was posed by
E. van Douwen (see [10]). He also asked whether there exists a subparacompact
or metacompact space which is not a D-space [10]. These questions are still open.
Lemma 1 below will help to expand further our knowledge on D-spaces.

Lemma 1. Let X be a topological space and φ an arbitrary neighborhood as-
signment. Suppose that the family φ(X) is point-countable. Then there exists a
locally finite in X subset D ⊂ X such that X =

⋃
d∈D φ(d).

Proof: For each x ∈ X denote by Φx the set of all elements U ∈ φ(X) such that
x ∈ U . Enumerate Φx by natural numbers (recall that each Φx is countable). We
also enumerate (well order) X = {xα : α < |X |}. By transfinite induction, we
will define countable subsets Dα of X the union of which will be D: D =

⋃
{Dα :

α < |X |}.

Step 0. Let D0 = ∅.

Suppose that for each β < α, Dβ is already defined.

Step α. We will define Dα by induction. During our inductive definition, once
we chose a dn at step n, we will need to return to dn infinitely many times. To
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ensure that dn is considered as many times as we need, we agree to return to it
at each step pn, where p is some prime number.

Sub-step 1. Take the first d1 in X such that

d1 /∈W =
⋃

{φ(d) : d ∈ Dβ for some β < α}.

If no such d1 exists, put Dα = ∅ and stop both the external and internal induc-
tions.

Sub-step n. If n is divisible by at least two distinct primes, let dn be the first in
X such that dn /∈W ∪ φ(d1) ∪ · · · ∪ φ(dn−1).
If n = pm for some prime p and an integer m > 1, take the first U ∈ Φdm

satisfying the following requirement.

Requirement (α, n): there exists dn ∈ X \ (W ∪ φ(d1) ∪ · · · ∪ φ(dn−1)) such that
U = φ(dn).

Whether such a dn exists or not, move to the next sub-induction step.

Let Dα be the set of all dn’s defined in the above sub-induction process.

Put D =
⋃
{Dα : α < |X |}. Let us show that X =

⋃
d∈D φ(d). Let xα ∈ X .

We claim that our construction ensures that

xα ∈
⋃

{φ(d) : d ∈
⋃

{Dγ : γ ≤ α}}.

Indeed, arguing by transfinite induction, assume that the above formula is satisfied
when we replace α with any smaller ordinal β. Then, if xα /∈ φ(d) for each d ∈ D
chosen before Step α, we obviously have xα = d1 ∈ Dα (see Sub-step 1).
Let us show that D is locally finite in X . Take any x ∈ X . Take the first

α such that x ∈
⋃

d∈Dα

φ(d). Let n be the first sub-step of Step α such that
x ∈ φ(dn). Then, by our construction, φ(dn) separates x from all d’s in D chosen
after Sub-step n of Step α. Since there are only finitely many of d’s chosen at
Step α before dn, we need only to show that x can be separated from

⋃
β<αDβ .

Let us show that φ(x) does not intersect
⋃

β<αDβ . Assume the contrary. Then

there exists d ∈ Dβ , where β < α, such that d ∈ φ(x). Then φ(x) ∈ Φd. The
element d is selected in our construction at some Sub-step m of Step β. Then at
each Sub-step pm, where p is a prime, φ(x) satisfies Requirement (β, pm). And,
at some Step pm, φ(x) must be the first in Φd that satisfies the requirement. And
therefore, x must be covered at Step β. The latter contradicts to the fact that
α > β is the first step at which x is covered by some φ(d). Thus, φ(x) separates
x from all d’s chosen before Step α. �

Theorem 2. Every space X with a point-countable base B is a D-space.

Proof: Let φ be any neighborhood assignment on X . Since B is a base of X ,
for each x ∈ X we can fix ψ(x) ∈ B such that x ∈ ψ(x) ⊂ φ(x). Then ψ is also
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a neighborhood assignment on X , and the family ψ(X) is point-countable, since
ψ(X) is contained in B. By Lemma 1, there exists a locally finite in X subset A
of X such that ψ(A) covers X . Then, clearly, φ(A) also covers X . �

Quite a few corollaries can be derived from Theorem 2.

Corollary 3. If a regular space X is the union of a countable family γ of dense
metrizable subspaces, then X is a D-space.

Proof: Indeed, each Y ∈ γ has a σ-disjoint base BY . For each V ∈ BY we fix
an open subset U(V ) of X such that U(V ) ∩ Y = V . For any disjoint elements
V1 and V2 of BY the sets U(V1) and U(V2) are disjoint, since Y is dense in X .
Therefore, the family PY = {U(V ) : V ∈ BY } is σ-disjoint. Since X is regular,
the family PY contains a base ofX at y, for every y ∈ Y . It follows that the family
P =

⋃
{PY : Y ∈ γ} is a σ-disjoint base of X . It remains to apply Theorem 2.

�

Corollary 4. If a space X is the union of a countable family of open metrizable
subspaces, then X is a D-space.

Proof: Clearly, X has a σ-disjoint base. Hence, X is a D-space, by Theorem 2.
�

Note that Theorem 2 also explains a result of A.S. Mischenko that every count-
ably compact space with a point-countable base is compact. Indeed, we now can
say that this happens because every countably compact D-space is compact. In
connection with Corollary 4, note that a locally metrizable space need not be a
D-space, since there exists a countably compact locally metrizable normal space
which is not compact (take ω1, for example).

Theorem 5. Suppose X =
⋃
{Xi : i = 1, . . . , n}, for some n ∈ ω, where X is

regular and Xi has a σ-disjoint base, for each i = 1, . . . , n. Then X is a D-space.

To prove this statement, we need two technical results.

Lemma 6. Suppose X =
⋃
{Xi : i = 1, . . . , n}, for some n ∈ ω, and let Yi =

X1∩Xi∩ (X1∪Xi), for each i = 2, . . . , n. Then the set Z1 =
⋃
{Yi : i = 2, . . . , n}

is closed in X .

Proof: Take any y ∈ Z1. Then y ∈ Yi, for some i, where 2 ≤ i ≤ n, which
implies that y ∈ X1 and y ∈ Xi. Also y ∈ Xk, for some k, where 1 ≤ k ≤ n. Now
we have to consider two cases.
Case 1: k = 1. Then y ∈ Yi = X1 ∩Xi ∩ (X1 ∪Xi) ⊂ Z1.

Case 2: 2 ≤ k ≤ n. Then y ∈ X1 ∩Xk ∩ (X1 ∪Xk) = Yk ⊂ Z1.

Hence, y ∈ Z1 and Z1 is closed in X . �

The next fact was noticed by E. Michael and M.E. Rudin. It was established
in the proof of Theorem 1.1 in [14].
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Lemma 7. If X = Y ∪Z where each of the subspaces Y and Z has a σ-disjoint
base (in itself ) and X is regular, then the subspace Y ∩ Z also has a σ-disjoint
base.

Proof of Theorem 5: We argue by induction. For n = 1 the statement is
true, since every space with a point-countable base is a D-space, by Theorem 2.
Assume now that for less than n summands the assertion holds. For any i and j
such that 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j put Yi,j = Xi ∩Xj ∩ (Xi ∪Xj). By
Lemma 6, the set Zj =

⋃
{Yi,j : i 6= j, 1 ≤ i ≤ n} is closed in X . By Lemma 7,

each Yi,j is a space with a σ-disjoint base. Therefore, the space Zj is the union of
less than n spaces with a σ-disjoint base. By the inductive assumption, it follows
that Zj is a D-space, for each j = 1, . . . , n. Therefore, since each Zj is closed in
X , the subspace Z =

⋃
{Zj : j = 1, . . . , n} of X is a D-space.

The family µ = {Vi : 1 ≤ i ≤ n}, where Vi = Xi \Z, is a disjoint family of open
subsets of X . Indeed, X \Z is open in X , and no point x of Vi can belong to the
closure of Vj for i 6= j, since otherwise x would belong to Yi,j which is contained
in Z. Therefore, X \ Z has a σ-disjoint base and is a D-space. It follows that X
is a D-space, as the union of an open D-space and a closed D-space. �

Corollary 8. If a regular space X is the union of a finite family of metrizable
subspaces, then X is a D-space.

Proposition 9. There exists a Tychonoff σ-metrizable space which is not a D-
space.

Proof: Take the space Γ constructed by E. van Douwen and H.H. Wicke in [11].
Though it is not explicitly mentioned there, it is clear from the list of properties
of Γ given in [11, Section 1] that Γ is the union of a countable family of discrete
subspaces (not closed in Γ). Thus, Γ is σ-metrizable. The extent of Γ is countable
(such spaces are called ω1-compact). It follows that Γ is not a D-space, since
otherwise Γ would have been Lindelöf. Notice, that the space Γ has, in addition,
many other nice properties; in particular, it is locally compact, locally countable,
separable, first countable, submetrizable, realcompact, has the diagonal Gδ, and
is Tychonoff. On the other hand, the space Γ is not countably metacompact [11].
Recall that a space X is linearly Lindelöf if, for every uncountable subset A

of X of regular cardinality, there exists a point of complete accumulation in X .
It is known that every Lindelöf space is linearly Lindelöf and the extent of arbi-
trary linearly Lindelöf space is countable; neither one of these implications can
be reversed. The space Γ is not linearly Lindelöf, since it was shown in [2] that
every locally metrizable linearly Lindelöf Tychonoff space is Lindelöf. Note that
Γ is locally metrizable since it is locally compact and can be mapped by a one-
to-one continuous mapping onto the usual real line. Now it is natural to pose the
following question:

Problem 10. Is every Tychonoff (regular) σ-metrizable linearly Lindelöf space
Lindelöf?
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For a positive answer to this question it would be enough to prove that ev-
ery regular σ-metrizable space is countably paracompact (see, for example, [2]);
however, the space Γ is a counterexample to this conjecture, since it is not even
countably metacompact.
P. de Caux [8] constructed a consistent example of a collectionwise normal

σ-discrete T1-space S of the countable extent such that S is not Lindelöf. The
space S is also not linearly Lindelöf (since it is locally metrizable, see [2]) and not
countably metacompact (see also [16]).

Problem 11. Is there a σ-discrete linearly Lindelöf Dowker space?

Note that the space Γ in [11] is not normal and it is not clear whether a
normal space with all other properties of Γ can be constructed in ZFC alone.
Observe also, that there exists a locally countable locally compact pseudocom-
pact Hausdorff space X which is the union of two discrete subspaces and is not
subparacompact and not metacompact — see Example 4.5 in [6]. This space X
is a D-space, by Corollary 8. Hence, not every D-space is subparacompact or
metacompact.
Sometimes it is quite difficult to verify whether a space is a D-space. This

is witnessed, in particular, by a number of open problems on D-spaces, such
as whether every regular Lindelöf space is a D-space. We will now consider a
property formally weaker than that of being a D-space. This property is much
easier to verify, and it is still strong enough to imply compactness for countably
compact spaces.
Let us say that a space X is an aD-space if for each closed subset F of X

and each open covering γ of X there exist a locally finite in F subset A of F
and a mapping φ of A into γ such that a ∈ φ(a), for each a ∈ A, and the family
φ(A) = {φ(a) : a ∈ A} covers F . A similar but weaker property was considered
in [5]; it turned out to be almost equivalent to irreducibility of spaces introduced
in [1]. It is easily proved by a standard argument that every paracompact space
is an aD-space. For more general statements and connections to other covering
properties, see [4] and [5].
The next statement is our basic addition result on aD-spaces.

Theorem 12. Suppose that X is a regular space and X = Y ∪ Z, where Y is a
paracompact subspace of X and Z is an aD-space. Then X is an aD-space.

To prove Theorem 12, we need the next two easy to prove statements (the first
of which is used in the proof of the other one).

Proposition 13. Every closed subspace of an aD-space is an aD-space.

Lemma 14. If X = Y ∪Z, where Y and Z are aD-spaces and Y is closed in X ,
then X is also an aD-space.

Proof of Theorem 12: By Lemma 14, we can assume that Y is dense in X .
Take any open covering γ of X , and let F be any closed subset of X . Let us verify
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the definition of an aD-space with regards to these γ and F . First, observe that,
in view of Proposition 13, we can also assume that F = X .
Since X is regular, we can find an open covering γ1 such that the family of

closures of elements of γ1 refines γ. Since Y is paracompact and Y is dense in X ,
there exists a family η of open subsets of X such that:

1) η is locally finite at each point of Y ;

2) η covers Y (and, probably, something else); and

3) η refines γ1.

Let H be the set of all points of X at which the family η is not locally finite.
Clearly, H is closed in X , and H ∩Y = ∅, by condition 1). Proposition 13 implies
that H is an aD-space. Since γ1 covers H , we can find a locally finite in H subset
A of H and a mapping ψ : A→ γ1 such that ψ(A) covers H . Then W =

⋃
ψ(A)

is an open subset of X containing H .
Take the family η0 of all elements V of η such that V ∩ (X \W ) 6= ∅. Let us

show that
X \W ⊂

⋃
{V : V ∈ η0}.

Take any x0 ∈ X \W . Then x0 is not in H , that is, η is locally finite at x0.

Since Y is dense inX and η covers Y , it follows that x0 ∈
⋃
η. Therefore, since η is

locally finite at x0, there exists V0 ∈ η such that x0 ∈ V0. Then x0 ∈ V0∩(X \W )
which implies that V0 ∈ η0 and, hence, X \W ⊂

⋃
{V : V ∈ η0}.

Put ξ = {(X \W ) ∩ V : V ∈ η0}. Clearly, ξ is a locally finite covering of
the space X \W . Since we can select a minimal subcovering of ξ [1], we can
assume that ξ itself is minimal. Take any P ∈ ξ. By minimality of ξ, we can fix
xP ∈ P such that xP does not belong to any other element of ξ. We can also
select UP ∈ γ such that P ⊂ UP , since η refines γ1 and the closure of any element
of γ1 is contained in some element of γ. Put φ(xP ) = UP , for each P ∈ ξ. The
set B = {xP : P ∈ ξ} is locally finite in X \W , since ξ is locally finite in X \W .
Therefore, B is locally finite in X , since W is open in X . It is also clear that
φ(B) ⊃ X \W . Now for x ∈ A∪B let f(x) = ψ(x), if x ∈ A, and f(A∪B) = φ(x),
if x ∈ B. Note that A and B are disjoint and A∪B is a locally finite subset of X .
Obviously, f(x) covers X . Thus, X is an aD-space. �

Theorem 15. If a regular space X is the union of a finite collection of paracom-
pact subspaces, then X is an aD-space.

Proof: This follows by induction from Theorem 12. �

Corollary 16. If X is a regular space of countable extent and X is the union of
a finite family of paracompact spaces, then X is Lindelöf.

Proof: This follows from Theorem 15, since obviously every aD-space of count-
able extent is Lindelöf.

�
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3. An alternative addition theorem and some open questions

Some of the above results depend on regularity or Hausdorffness of the spaces
considered. It is not clear whether we can completely get rid of these restric-
tions. We present a few results in this direction below. If we restrict ourselves to
Tychonoff spaces, all these results are already contained in the theorems proved
above. However, the separation axioms we use are much weaker.

Lemma 17. Suppose X is a paracompact space and A is a subset of X of regular
cardinality. Then either there exists a point of complete accumulation for A in X
or there exists a subset B of A such that B is locally finite in X and |B| = |A|.

Proof: Assume that none of the points of X is a point of complete accumulation
for A. Then there exists an open covering γ of X such that |U ∩ A| < |A|, for
each U ∈ γ. Since X is paracompact, we can refine γ by a locally finite open
covering η. The subfamily ξ = {V ∈ η : V ∩ A 6= ∅} has the same cardinality as
the set A, since the cardinality of A is regular. For each V ∈ ξ we pick a point
xV ∈ V ∩A. Since the family ξ is locally finite in X , the set B = {xV : V ∈ ξ} of
all selected points is locally finite in X . We also have: |B| = |ξ| = |A|, since the
family ξ is point-finite. �

The next lemma is well known [6] and very easy to prove.

Lemma 18. Every paracompact space of countable extent is Lindelöf.

Theorem 19. Suppose that X is a space of countable extent such that X =
Y ∪ Z, where Y and Z are paracompact spaces. Then X is linearly Lindelöf.

Proof: Take any uncountable subset A of X such that |A| is regular. We have to
show that there exists a point of complete accumulation for A in X . Assume the
contrary. Clearly, at least one of the sets A∩Y and A∩Z has the same cardinality
as A. Thus, we can also assume that A ⊂ Y . By Lemma 17, there exists a locally
finite in Y subset B of Y such that B is contained in A and |B| = |A|. Let C be
the set of all points of X at which the set B is not locally finite. Clearly, C ⊂ Z
and C is closed in X (and, therefore, closed in Z). Since Z is paracompact and
the extent of X is countable, it follows that C is a paracompact space of countable
extent. Hence, by Lemma 18, C is Lindelöf.
For each z ∈ C, fix an open neighborhoodOz of z in X such that |Oz∩B| < |A|

(this is possible by the assumption). Since C is Lindelöf, there exists a countable
subfamily η of the family {Oz : z ∈ C} such that C is covered by η. PutW =

⋃
η.

Clearly, W is an open subset of X , C ⊂ W and |W ∩ B| < |B|, since |B| = |A|
is a regular cardinal. It follows that B \ (W ∩ B) is an uncountable subset of X
which is locally finite in X , — a contradiction with e(X) = ω. �

Corollary 20. Suppose that X is a space of countable extent such that X =
Y ∪ Z, where Y and Z are metrizable spaces. Then X is linearly Lindelöf.
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Again, the space Γ constructed by van Douwen and Wicke (see Section 2) shows
that Corollary 20 does not extend to σ-metrizable spaces of countable extent.

Problem 21. Can Theorem 19 and Corollary 20 be extended to finite unions of
spaces?

Problem 22. Can the conclusion in Theorem 19 be strengthened to the conclu-
sion that X is Lindelöf?

The next delicate question was communicated to the authors by M.V. Matveev.

Problem 23. Suppose that X is a compact Hausdorff space and let Cp(X) be
the space of real-valued continuous functions on X in the topology of pointwise
convergence. Is then Cp(X) a D-space? Is every subspace of Cp(X) a D-space?

We modify this question as follows:

Problem 24. Is the space Cp(X) of real-valued continuous functions on arbitrary
compact Hausdorff spaceX in the topology of pointwise convergence an aD-space?
Is every subspace Y of Cp(X) an aD-space when X is compact?

The answer to the next question remains unknown:

Problem 25. Is every countably metacompact σ-metrizable (σ-discrete) space a
D-space? An aD-space?
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