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Abstract. In this paper a fixed point theorem for contraction multivalued maps due to
Covitz and Nadler is used to investigate the existence of solutions for first and second
order nonresonance impulsive functional differential inclusions in Banach spaces.
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1. Introduction

This paper is concerned with the existence of solutions for nonresonance prob-
lems for first and second order functional differential inclusions with impulsive
effects. More specifically, in Section 3, we consider the nonresonance problem for
the first order impulsive functional differential inclusions in a Banach space with
periodic boundary conditions

y′(t)− λy(t) ∈ F (t, yt), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m,(1.1)

∆y|t=tk = Ik(y(t
−
k
)), k = 1, . . . ,m,(1.2)

y(t) = φ(t), t ∈ [−r, 0], y(0) = y(T ),(1.3)

where λ ∈ R, 0 < r < ∞, F : J × D → P(E) is a multivalued map, D = {ψ :
[−r, 0]→ E; ψ is continuous everywhere except for a finite number of points t̃ at
which ψ(t̃−) and ψ(t̃+) exist and ψ(t̃−) = ψ(t̃)}, φ ∈ D, P(E) is the family of all
subsets of E, 0 = t0 < t1 < . . . < tm < tm+1 = T , Ik : E → E (k = 1, 2, . . . ,m),

∆y|t=tk = y(t+
k
) − y(t−

k
), y(t−

k
) and y(t+

k
) represent the left and right limits of

y(t) at t = tk, respectively, and E a real separable Banach space with norm ‖ · ‖.
For any continuous function y defined on [−r, T ] \ {t1, . . . , tm} and any t ∈ J ,

we denote by yt the element ofC([−r, 0], E) defined by yt(θ) = y(t+θ), θ ∈ [−r, 0].
Here yt(·) represents the history of the state from time t − r, up to the present
time t.
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In Section 4 we consider a nonresonance problem for the second order impulsive
functional differential inclusions with more general boundary conditions in the
Banach space E,

y′′(t)− λy(t) ∈ F (t, yt), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m,(1.4)

∆y|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m,(1.5)

∆y′|t=tk = Īk(y(t
−
k )), k = 1, . . . ,m,(1.6)

y(t) = φ(t), t ∈ [−r, 0], y(0)− y(T ) = µ0, y′(0)− y′(T ) = µ1,(1.7)

where λ, F , φ, Ik, k = 1, . . . ,m are as in the problem (1.1)–(1.3), µ0, µ1 ∈ E,
and Īk : E → E, (k = 1, 2, . . . ,m).
Impulsive differential equations have become more important in recent years in

some mathematical models of real world phenomena, especially in the biological
or medical domain; see the monographs of Bainov and Simeonov [1], Lakshmikan-
tham, Bainov and Simeonov [11], and Samoilenko and Perestyuk [13]. In [12] the
Banach classical principle was used to obtain an existence and uniqueness result
for a nonresonance first order scalar impulsive differential equation with periodic
boundary conditions. Very recently by means of the known Schaefer’s theorem,
a class of nonresonance problems for first order impulsive functional differential
equations with periodic boundary conditions was considered by Benchohra and
Eloe in [2]. A variety of nonresonance problems for first and second order dif-
ferential inclusions with convex valued right hand sides were considered with the
aid of a fixed point theorem for condensing multivalued maps due to Martelli by
Benchohra, et al. in [3] and [4].
We consider the case when λ 6= 0. Note that when the impulses are absent

(i.e. for Ik, Īk ≡ 0, k = 1, . . . ,m), then the problems (1.1)–(1.3) and (1.4)–(1.7)
are nonresonance problems since the linear part in the equations (1.1) and (1.4) is
invertible. Our method involves reducing the existence of solutions for problems
(1.1)–(1.3) and (1.4)–(1.7) to a search for fixed points of suitable multivalued
maps on the Banach space C([−r, T ], E). In order to prove the existence of fixed
points, we shall rely on a fixed point theorem for contraction multivalued maps
due to Covitz and Nadler [6] (see also Deimling [7]). The results of the present
paper generalize to the nonconvex valued right hand side those of [3] and [4].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

C([−r, 0], E) is the Banach space of all continuous functions from [−r, 0] into
E with the norm

‖φ‖ = sup{‖φ(θ)‖ : −r ≤ θ ≤ 0}.
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ACi(J,E) is the space of i-times differentiable functions y : J → E, whose ith

derivative, y(i), is absolutely continuous.
Let (X, d) be a metric space. We use the notations:
P (X) = {Y ⊂ X : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed}, Pb(X) =

{Y ∈ P (X) : Y bounded}.
Consider Hd : P (X)× P (X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}

,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).
Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized metric

space.

Definition 2.1. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

N has a fixed point if there is x ∈ X such that x ∈ N(x). The fixed point set
of the multivalued operator N will be denoted by FixN .
For more details on multivalued maps we refer to the books of Deimling [7],

Gorniewicz [9] and Hu and Papageorgiou [10].

Our considerations are based on the following fixed point theorem for con-
traction multivalued operators given by Covitz and Nadler in 1970 [6] (see also
Deimling [7, Theorem 11.1]).

Lemma 2.2. Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

3. Nonresonance first order impulsive FDIs

The main result of this section is devoted to the problem (1.1)–(1.3). Before
stating and proving this result, we give the definition of a solution of the problem
(1.1)–(1.3). In order to define its solution we shall consider the space,

Ω : = Ω([−r, T ]) = {y : [−r, T ] −→ E : yk ∈ C(Jk , E), k = 0, . . . ,m and there

exist y(t−
k
) and y(t+

k
), k = 1, . . . ,m with y(t−

k
) = y(tk)}

which is a Banach space with the norm

‖y‖Ω = max{‖yk‖, k = 0, . . . ,m}.
Here yk denotes the restriction of y to Jk = [tk, tk+1], k = 0, . . . ,m. For each
y ∈ Ω we define the set

SF,y =
{

v ∈ L1(J,E) : v(t) ∈ F (t, yt) for a.e. t ∈ J
}

.
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Definition 3.1. A function y ∈ Ω ∩ ⋃m
k=0AC(tk , tk+1) is said to be a solution

of (1.1)–(1.3), if y satisfies the differential inclusion y′(t)−λy(t) ∈ F (t, yt) a.e. on

J \ {t1, . . . , tm}, the conditions ∆y|t=tk = Ik(y(t
−
k
)), k = 1, . . . ,m, y(t) = φ(t),

t ∈ [−r, 0] and y(0) = y(T ).
We have the following auxiliary result.

Lemma 3.2 ([4]). y ∈ Ω∩⋃m
k=0AC(tk, tk+1) is a solution to the problem (1.1)–

(1.3) if and only if y ∈ Ω and there exists v ∈ SF,y such that y satisfies the

following impulsive integral equation

y(t) =











φ(t), t ∈ [−r, 0]
∫ T

0
G(t, s)v(s) ds +

m
∑

k=1

G(t, tk)Ik(y(t
−
k
)), t ∈ J,

where

G(t, s) = (e−λT − 1)−1
{

e−λ(T+s−t), 0 ≤ s ≤ t ≤ T,

e−λ(s−t), 0 ≤ t < s ≤ T.

Theorem 3.3. Assume that:

(H1) F : [0, T ]×C([−r, 0], E) −→ Pcl(E) has the property that F (·, u) : [0, T ]→
Pcl(E) is measurable for each u ∈ C([−r, 0], E);

(H2) Hd(F (t, u), F (t, u)) ≤ l(t)‖u− u‖, for each t ∈ [0, T ] and u, u ∈ C([−r, 0],
E), where l ∈ L1([0, T ],R);

(H3) ‖Ik(y) − Ik(y)‖ ≤ ck‖y − y‖, for each y, y ∈ E, k = 1, . . . ,m, where ck
are nonnegative constants.

Let h0 = sup(t,s)∈J×J |G(t, s)| and l∗ =
∫ T
0 l(t) dt. If

[

h0l
∗ + h0

m
∑

k=1

ck

]

< 1,

then the problem (1.1)–(1.3) has at least one solution on [−r, T ].
Proof: Transform the problem (1.1)–(1.3) into a fixed point problem. It is clear
from Lemma 3.2 that the solutions of the problem (1.1)–(1.3) are fixed points of
the multivalued operator, N : Ω→ P(Ω) defined by:

N(y) :=































h ∈ Ω : h(t) =































φ(t), t ∈ [−r, 0]
∫ T

0
G(t, s)v(s) ds

+

m
∑

k=1

G(t, tk)Ik(y(t
−
k )), t ∈ J































,
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where v ∈ SF,y.

Remark 3.4. For each y ∈ Ω the set SF,y is nonempty since, by (H1), F has a
measurable selection (see [5, Theorem III.6]).

We shall show that N satisfies the assumptions of Lemma 2.2. The proof will
be given in two steps.

Step 1: N(y) ∈ Pcl(Ω) for each y ∈ Ω.

Indeed, let (yn)n≥0 ∈ N(y) be such that yn −→ ỹ in Ω. Then ỹ ∈ Ω and for
each t ∈ J

yn(t) ∈
∫ T

0
G(t, s)F (s, ys) ds+

m
∑

k=1

G(t, tk)Ik(y(t
−
k
)).

Because
∫ T
0 G(t, s)F (s, ys) ds+

∑m
k=1G(t, tk)Ik(y(t

−
k
)) is closed for each t ∈ J ,

then

yn(t) −→ ỹ(t) ∈
∫ T

0
G(t, s)F (s, ys) ds+

m
∑

k=1

G(t, tk)Ik(y(t
−
k
)).

So ỹ ∈ N(y).

Step 2: Hd(N(y), N(y)) ≤ γ‖y − y‖ for each y, y ∈ Ω (where γ < 1).

Let y, y ∈ Ω and h1 ∈ N(y). Then there exists v1(t) ∈ F (t, yt) such that for
each t ∈ J

h1(t) =

∫ T

0
G(t, s)v1(s) ds+

m
∑

k=1

G(t, tk)Ik(y(t
−
k
)).

From (H2) it follows that

Hd(F (t, yt), F (t, yt)) ≤ l(t)‖yt − yt‖ t ∈ J.

Hence there is w ∈ F (t, yt) such that

‖v1(t)− w‖ ≤ l(t)‖yt − yt‖, t ∈ J.

Consider U : J → P(E), given by

U(t) = {w ∈ E : ‖v1(t)− w‖ ≤ l(t)‖yt − yt‖} .

Since the multivalued operator V (t) = U(t) ∩ F (t, yt) is measurable (see Propo-
sition III.4 in [5]) there exists v2(t), which is a measurable selection for V . So,
v2(t) ∈ F (t, yt) and

‖v1(t)− v2(t)‖ ≤ l(t)‖y − y‖, for each t ∈ J.
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Let us define for each t ∈ J

h2(t) =

∫ T

0
G(t, s)v2(s) ds+

m
∑

k=1

G(t, tk)Ik(y(t
−
k
)).

Then we have

‖h1(t)− h2(t)‖ ≤
∫ T

0
|G(t, s)|‖v1(s)− v2(s)‖ ds

+

m
∑

k=1

|G(t, tk)|‖Ik(y(t−k ))− Ik(y(t
−
k ))‖

≤ h0

∫ T

0
l(s)‖ys − ys‖ ds+ h0

m
∑

k=1

ck‖y(t−k )− y(t−
k
)‖

≤ h0l
∗‖y − y‖Ω + h0

m
∑

k=1

ck‖y − y‖Ω.

Then

‖h1 − h2‖Ω ≤
[

h0l
∗ + h0

m
∑

k=1

ck

]

‖y − y‖Ω.

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd(N(y), N(y)) ≤
[

h0l
∗ + h0

m
∑

k=1

ck

]

‖y − y‖Ω.

So, N is a contraction and thus, by Lemma 2.2, N has a fixed point y, which is
a solution to (1.1)–(1.3). �

4. Nonresonance second order impulsive FDIs

In this section we shall give an existence result for the problem (1.4)–(1.7).
Before stating and proving this result, we give the definition of a solution of the
problem (1.4)–(1.7).

Definition 4.1. A function y ∈ Ω ∩ ⋃m
k=0AC

1(tk, tk+1) is said to be a solution
of (1.4)–(1.7), if y satisfies the differential inclusion y′′(t)−λy(t) ∈ F (t, yt) a.e. on

J \ {t1, . . . , tm}, the conditions ∆y|t=tk = Ik(y(t
−
k
)), ∆y′|t=tk = Īk(y(t

−
k
)), k =

1, . . . ,m, y(t) = φ(t), t ∈ [−r, 0], y(0)− y(T ) = µ0 and y
′(0)− y′(T ) = µ1.

We need the following auxiliary result.
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Lemma 4.2. y ∈ Ω∩⋃m
k=0AC

1(tk, tk+1) is a solution to the problem (1.4)–(1.7)
if and only if y ∈ Ω and there exists v ∈ SF,y such that y satisfies the impulsive

integral equation

y(t) =































φ(t), t ∈ [−r, 0],
∫ T

0
M(t, s)v(s) ds+M(t, 0)µ1 + L(t, 0)µ0

+
m

∑

k=1

[M(t, tk)Ik(y(tk)) + L(t, tk)Īk(y(tk))], t ∈ J,

where

M(t, s) =
−1

2
√
λ(e

√
λT − 1)

{

e
√

λ(T+s−t) + e
√

λ(t−s), 0 ≤ s ≤ t ≤ T,

e
√

λ(T+t−s) + e
√

λ(s−t), 0 ≤ t < s ≤ T,

and

L(t, s) =
∂

∂t
M(t, s) =

1

2(e
√

λT − 1)

{

e
√

λ(T+s−t) − e
√

λ(t−s), 0 ≤ s ≤ t ≤ T,

e
√

λ(s−t) − e
√

λ(T+t−s), 0 ≤ t < s ≤ T.

Proof: We omit the proof since it is similar to the results in [8]. �

Theorem 4.3. Assume in addition to (H1)–(H3), the condition

(H4) ‖Īk(y) − Īk(y)‖ ≤ dk‖y − y‖, for each y, y ∈ E, k = 1, . . . ,m, where dk

are nonnegative constants.

Let m0 = sup(t,s)∈J×J |M(t, s)|, l0 = sup(t,s)∈J×J |L(t, s)|. If
[

m0l
∗ +m0

m
∑

k=1

ck + l0

m
∑

k=1

dk

]

< 1,

then the problem (1.4)–(1.7) has at least one solution on [−r, T ].
Proof: Transform the problem (1.4)–(1.7) into a fixed point problem. It is clear
from Lemma 4.2 that the solutions of the problem (1.4)–(1.7) are fixed points of
the multivalued operator, N̄ : Ω→ P(Ω) defined by:

N̄(y) :=







































h ∈ Ω : h(t) =







































φ(t), t ∈ [−r, 0]
∫ T

0
M(t, s)v(s) ds+M(t, 0)µ1

+L(t, 0)µ0 +
m

∑

k=1

[M(t, tk)Ik(y(tk))

+L(t, tk)Īk(y(tk))], t ∈ J







































,
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where v ∈ SF,y.

Remark 4.4. For each y ∈ Ω the set SF,y is nonempty since, by (H1), F has a
measurable selection (see [5, Theorem III.6]).

We shall show that N̄ satisfies the assumptions of Lemma 2.2. The proof will
be given in two steps.

Step 1: N̄(y) ∈ Pcl(Ω) for each y ∈ Ω.
The proof is similar to that of Step 1 of Section 3.

Step 2: H(N̄(y), N̄(y)) ≤ γ‖y − y‖ for each y, y ∈ Ω (where γ < 1).

Let y, y ∈ Ω and h1 ∈ N̄(y). Then there exists v1(t) ∈ F (t, yt) such that for
each t ∈ J

h1(t) =

∫ T

0
M(t, s)v1(s) ds+M(t, 0)µ1 + L(t, 0)µ0

+

m
∑

k=1

[M(t, tk)Ik(y(tk))

+ L(t, tk)Īk(y(tk))].

From (H2) it follows that

Hd(F (t, yt), F (t, yt)) ≤ l(t)‖yt − yt‖ t ∈ J.

Hence there is w ∈ F (t, yt) such that

‖v1(t)− w‖ ≤ l(t)‖yt − yt‖, t ∈ J.

Consider U : J → P(E), given by
U(t) = {w ∈ E : ‖v1(t)− w‖ ≤ l(t)‖yt − yt‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, yt) is measurable (see Propo-
sition III.4 in [5]) there exists v2(t), which is a measurable selection for V . So,
v2(t) ∈ F (t, yt) and

‖v1(t)− v2(t)‖ ≤ l(t)‖y − y‖, for each t ∈ J.

Let us define for each t ∈ J

h2(t) =

∫ T

0
M(t, s)v2(s) ds+M(t, 0)µ1 + L(t, 0)µ0

+

m
∑

k=1

[M(t, tk)Ik(y(tk))

+ L(t, tk)Īk(y(tk))].
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Then we have

‖h1(t)− h2(t)‖ ≤
∫ T

0
|M(t, s)|‖v1(s)− v2(s)‖ ds

+

m
∑

k=1

|M(t, tk)|‖Ik(y(t−k ))− Ik(y(t
−
k
))‖

+

m
∑

k=1

|L(t, tk)|‖Īk(y(t−k ))− Īk(y(t
−
k
))‖

≤ m0

∫ T

0
l(s)‖ys − ys‖ ds+m0

m
∑

k=1

ck‖y(t−k )− y(t−k )‖

+ l0

m
∑

k=1

dk‖y(t−k )− y(t−
k
)‖

≤ m0l
∗‖y − y‖Ω +m0

m
∑

k=1

ck‖y − y‖Ω + l0
m

∑

k=1

dk‖y − y‖Ω.

Then

‖h1 − h2‖Ω ≤
[

m0l
∗ +m0

m
∑

k=1

ck + l0

m
∑

k=1

dk

]

‖y − y‖Ω.

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd(N̄(y), N̄(y)) ≤
[

m0l
∗ +m0

m
∑

k=1

ck + l0

m
∑

k=1

dk

]

‖y − y‖Ω.

So, N̄ is a contraction and thus, by Lemma 2.2, N̄ has a fixed point y, which is
a solution to (1.4)–(1.7). �
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