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Topological games and product spaces

S. GARCIA-FERREIRA, R.A. GONZALEZ-SILVA, A.H. TOMITA

Abstract. In this paper, we deal with the product of spaces which are either G-spaces or
Gp-spaces, for some p € w*. These spaces are defined in terms of a two-person infinite
game over a topological space. All countably compact spaces are G-spaces, and every
Gp-space is a G-space, for every p € w*. We prove that if {X, : p < w1} is a set of
p<wy X is a G-space, then there is A € [w1]=¢ such that
X, is countably compact for every u € wy \ A. As a consequence, X“1 is a G-space iff

spaces whose product X =[]

X“1 is countably compact, and if X2 isa G-space, then all powers of X are countably
compact. It is easy to prove that the product of a countable family of G, spaces is a
Gp-space, for every p € w*. For every 1 < n < w, we construct a space X such that X™
is countably compact and X"*1 is not a G-space. If p,q € w* are RK-incomparable,
then we construct a Gp-space X and a Gg-space Y such that X X Y is not a G-space.
We give an example of two free ultrafilters p and ¢ on w such that p <grg ¢, p and q are
RF-incomparable, p ~¢ ¢ (<¢ is the Comfort order on w*) and there are a Gp-space X
and a Gg-space Y whose product X x Y is not a G-space.

Keywords: RF-order, RK-order, Comfort-order, p-limit, p-compact, G-space, Gp-space,
countably compact
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1. Introduction

All the spaces are assumed to be Tychonoff. The Stone-Cech compactification
Bw of the countable discrete space w is identified with the set of all ultrafilters on
w and its remainder w* = fw \ w is identified with the set of all free ultrafilters
on w.

Let us define the basic common rules of our games:

Let X be a space and x € X. We have two players, I and II who are go-
ing to play around the point x. Player I makes the first move by choosing an
open neighborhood Uy € N (z). Then, player IT responds by choosing zg € Up.
Player I then chooses another open neighborhood Uy € N (z), and then player IT
responds by choosing x1 € U; and so on. Both players repeat this procedure in-
finitely many times. At the end of the game we have a sequence (z,)n<w of points
in X, and a sequence (Uy, )n<y of neighborhoods of « such that x;, € Uy, for every
n < w. The games differ from each other in the winning condition. Following
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A. Bouziad [Bo], we say that player I wins in the G(x, X)-game if {xn : n < w}
has an adherent point in X. Otherwise, player II is declared to be the winner
in the G(z, X)-game. To define the main infinite games of this paper, we shall
recall the definition of the p-limit point of a sequence of points of a space, for an
ultrafilter p € w*.

Definition 1.1 (R.A. Bernstein [Be]). Let p € w*. A point x of a space X is said
to be the p-limit point of a sequence (zp)n<w in X, in symbols x = p—limy,—,, n,
if for every neighborhood U of z, {n <w: x, € V} € p.

Bernstein’s notion characterizes the points lying in the closure of countable
subsets of a space: A point x € X is an adherent point of a countable subset A of
X iff there are a sequence (zy)n<w in A and p € w* such that z = p—limy,—, zp.

We are ready to state the winning condition of our games. Fix p € w*. As in
the paper [GG], we say that player I wins in the Gp(z, X)-game if the sequence
(Zn)n<w has a p-limit point in the space X. Otherwise, the second player wins the
Gp(x, X)-game. All these games are natural generalizations of the W (z, X)-game
introduced by G. Gruenhage in [Gru].

Definition 1.2. Let X be a space and p € w*. A strategy for player I is a
sequence o0 = {0y, : n < w} of functions, where oy, : X" — N(z) for every
n < w. Given a strategy o we say that a sequence (xn)n<w in X Is a o-sequence
if tpy1 € on((zo,21,...,2n)), for each n < w. For x € X, a strategy o = {op, :
n < w} for player I in the G(z, X)-game (respectively, G,(x, X)-game) is said
to be a winning strategy, if each o-sequence has an adherent point (respectively,
a p-limit point) in X. A space X is called a G-space (respectively, Gp-space)
if the first player I has a winning strategy in the G(z, X)-game (respectively,
Gp(x, X)-game), for every x € X.

Every countably compact space is a G-space, every G,-space is a G-space and
every p-compact space is a Gp-space, for p € w* (a space X is called p-compact
provided that every sequence in X has a p-limit point in X).

In this paper, we mainly study the product of G-spaces. In the second section,
it is shown that if {X, : p < w1} is a set of spaces whose product [, Xy
is a G-space, then the X,’s are countably compact except for countably many.
It follows that if X“! is a G-space, then X“! is countably compact. At the end
of the second section, we shall prove that the product of a countable family of
Gp-spaces is a Gp-space, for every p € w*. In the last section, we study the finite
products of some G-spaces.

2. Infinite products

In the first theorem of this section, we will give a necessary condition for a
product of wi-many G-spaces to be a G-space.
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A subbasic open set of the product space X = [[;c; X; is denoted by [i, V] =
{z € X : z(i) € V}, where i € I and V is a nonempty open subset of X;.

Theorem 2.1. If {X,, : u < w1} is a set of spaces whose product X = []
<w

n<wi XM
is a G-space, then there is A € [w1]=* such that X, is countably compact, for

every u € wi \ A.

PROOF: Suppose that there is a set A € [w1]“! such that X, is not countably
compact for any p € A. Then, for every p € A, there is a closed discrete countable
subset {y}, : n < w} of X,,. Fix z € X and let us play the G(z, X)-game. We are
going to define a winning strategy for player 1. Indeed, player I starts the game
by picking Vo = (e, (105 WB], where Fyy € [w1]<“ and WS € N(z(p)), for every
w € Fy. Then, player IT chooses xg € X which is defined by

x()_{ﬂf(#) if pe(w1\A)UF,
oW = b if pe A\ Fp.

Now, player I choose V1 = (e, [, W], where F1 € [w1]< and W) € N (x(u))
for every p € F1. Then, player I] responds by picking the point 1 € X defined
by
w(p) if p€ (w1 \A) U,
Il(,LL) = m .
Y1 if peA\F,

and so on. Clearly, zn € Vi = (,¢p, [, W}/], for every n < w. Since the set
Un<w I is countable there is v € A\ (U, <., Fn). Then, the set {z,(v) : n <
w} = {ys : n < w} does not have an accumulation point in X,; hence, the set
{zn : n < w} cannot have an accumulation point in X, which contradicts the
hypothesis. Therefore, A is countable. O

Corollary 2.2. Let X be a space. Then, X“! is a G-space iff X“! is countably
compact.

A countably compact space X whose square is not countably compact (see for
instance [Va, Example 4.8]) is an example of a G-space such that X“! cannot
be a G-space. The proof of the following theorem is analogous to the proof of
Theorem 2.1.

Theorem 2.3. Let p € w*. If {X, : p < w1} is a set of spaces whose product
X =[1,<w, Xu is a Gp-space, then thereis A € [w1]=¥ such that X, is p-compact
for every p € wy \ A.

J. Ginsburg and V. Saks [GS] (see also [Va, Theorem 4.11]) proved that all
powers of a space are countably compact the 2¢ power of the space is countably
compact iff it is p-compact, for some p € w*. This characterization and Theo-
rem 2.3 imply the following two corollaries:
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Corollary 2.4. For p € w*, the following are equivalent.
(1) All powers of X are Gp-spaces.
(2) X' is a Gp-space.
(3) X is p-compact.

Corollary 2.5. For a space X, the following are equivalent.

(1) All powers of X are G-spaces.

(2) X% is a G-space.

(3) All powers of X are countably compact.
(4) X is p-compact for some p € w*.

PROOF: The equivalence 3 < 4 is taken from [GS]. It suffices to show the implica-
tion 2 = 3. Consider the space Y = (X2°)*1 which is homeomorphic to X2°. By
assumption, Y is a G-space. So, by Corollary 2.2, X 2% s countably compact. By
the characterization of J. Ginsburg and V. Saks [GS] quoted above, we conclude
that all powers of X are countably compact. O

Theorem 2.6. For p € w*, the product of countably many Gp-spaces is a Gp-
space.

PROOF: Let {X; : 7 < w} be a family of Gj-spaces. Put X = [[; ., X; and fix
z € X. For every i < w, let o' = {0, : XZ-"'H — N(z(i)) : n < w} be a winning
strategy for the Gp(z(i), X;)-game. For every n < w, we define oy, : X"! —
N(z) by on(yo,---,yn) = Ni<nlion(yo(i), - - -, yn(i))], for every (yo,...,yn) €
X"+l We claim that ¢ = {0y, : n < w} is a winning strategy for the Gy(x, X)-
game. In fact, let (yn)n<w be a o-sequence. By definition, we have that y,41 €
on (Y0, - - Yn), for every n < w. Hence, yp11(i) € b (yo (), ..., yn(i)) for every
i,n < w. That is, (yn(i))n<w is a o'-sequence, for every i < w. By assumption,
for every i < w, we have that y(i) = p — limp—. yn(é) exists. Thus, we obtain
that y = p — limy,—,, yp. This proves the claim and the theorem as well. [l

For p € w*, X}, = Bp(w) \ {p} is a Gp-space that is not p-compact, where 3, (w)
is the p-compactification of w (see [G]). It follows from Corollary 2.6 that X is
a Gp-space and X' is not a Gp-space, for every p € w*.

3. Finite products

We have shown in Theorem 2.6 that the product of countably many Gp-spaces
is again a Gp-space, for each p € w*. However, for G-spaces this is not true as we
will see in the first example of this section. For this task, we will slightly modify
Frolik’s Example given in [Fro]. We shall present most of the details of Frolik’s
construction since his notation, in the original paper [Fro], is not standard:

If p,q € w*, then p ~ ¢ means that there is a bijection f : w — w such that
f(p) = q, where f : B(w) — B(w) denotes the Stone-Cech extension of f. It is
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clear that = is an equivalence relation on w* and the equivalence class of a point
p € w* is called the type of p and it is denoted by T'(p) = {q € w* : ¢ = p}. We
know that p ~ ¢ iff there is a function f : w — w and A € p such that f(p) =q
and f|4 is one-to-one (for a proof see [CN, Theorem 9.2(b)]). The RK-ordering
and the RF-ordering on w* are defined as follows:

For p,q € w*, we say that p <gg ¢ if there is a function f : w — w such that

f(q) = p, and we say that p <pp ¢ if there is an embedding f : w — B(w) such
that f(p) = q.
It is known that <pp C <pgg,and p =~ ¢ iff p <pg q and ¢ <gg p, for p,q € W*.
For p,q € w*, p <pk ¢ will mean that p <pg q and p % ¢q. For p € w*, we let
Pric(p) ={q € w* : ¢ <gk p} and Sgrp(p) = {g € w* : p <gr q}. Z. Frolik [Fro]
proved that |Spp(p)| = 2¢, for all p € w*.

Lemma 3.1. There is a family {X, : p < w1} of subsets of w* and a set
{pu : < w1} of points in w* such that:
i. py and py are RK-incomparable ultrafilters for distinct p, v < wy;
ii. Xy ={flpy): f:w— U<y Xv is an embedding } € Sgp(py), for every
0<p<uwy;
iti. | Xyl < ¢, for every p < wi;
iv. X, N Xy, =0, whenever p < v < wi.

PrROOF: We know that there is a set W of size 2¢ consisting of pairwise RK-
incomparable weak P-points in w* (see [Ku] and [Si]). In virtue of Theorem 16.16
of [CN], we have that Sppr(s) N Sgrp(t) = 0 for distinct s,7 € W. Take pg € W
and let Xo = T'(pg). Now, assume that p, and X, have been defined satisfying
conditions i—iv, for each p < 0 < wy. Put X = U“<9 Xy It follows from
iti that |X| < ¢. Then, choose pg € W\ {py : p < 0}. Then, we have that
Spr(pe) N X = 0. Thus, we define Xy = {f(pg) : f : w — Up<o Xy is an
embedding } C Sgrp(pg). O

For A Cw,let A”Y = {fe A¥: f is strictly increasing}.

Example 3.2. For every 1 < n < w, there exists a space X such that X" is
countably compact and X"t is not a G-space.

PRrROOF: Let {X, : u < w1} and {py : 4 < wi} be subsets of w* satisfying
all the properties given in Lemma 3.1. We remark, by Theorem 16.16 of [CN],
that Spr(pu) N Skrr(py) = 0 whenever p < v < ¢. For ) # I C wy, we define
X;=wU (Uuer Xu)- We need the following fact which is Theorem D of [Fro]:

() Let {Ip : n < w} C P(wy) be nonempty sets. If
w1, then ], . Xy, is countably compact. If [
not countably compact.

Fix 1 <n <w. For each k <n,let I, = {u < wy : p # kmod(n + 1)}. Let us
consider the topological sum X = @<, Xy, . Since ();<;<, I}, is unbounded in

n<w In is unbounded in
I, = 0, then ], ., X7, is

n<w n<w
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w1, by (%), kal X -+ x Xy, is countably compact, for every ki,...,kn € n+ 1.
It follows that X™ = Ukl,...,knEn—i-l kal X x Xy, s countably compact. To
prove that X"t cannot be a G-space it suffices to show that Xpg X X x---xXp,
is not a G-space. For every k < n, fix a non-isolated point z, € Xy, . Now, we will
prove that player /7 has a winning strategy in the G((zo,...,2n), X1y x---x X7, )-
game. Indeed, let o = {op, : (X7, X - x X7,)™ T — N((z0, ..., 7n)) : m < w}
be a strategy for player I. It is not hard to prove that, for every k < n, player I
may choose fj, € w” % so that

(fitm+ 1), fu(m + 1)) € om((f1(0), - -, fn(0)), -, (f1(m), ..., fu(m))),

for every m < w and for every kK < n. Suppose that there is r € w* such
that fi(r) € Xy, for all & < n. Then, for each k£ < n, we have that fi(r) €

Xy, for some py € I, By definition, we know that p,, <grp fk(r) ~ r, for

every k < n. Theorem 16.16 of [CN] implies that pu,, = pu; = -+ = Dy,
and so pig = p1 = -+ = pn € [\p<py Ik = 0, which is a contradiction. Thus,
the set {(f1(m),..., fn(m)) : m < w} does not have any accumulation point in
Xp, X - x Xy, . Therefore, X, x --- x Xy is not a G-space. (]

Our next example shows that the product of a Gy-space and a G-space is not
in general a G-space. First, we prove some preliminary results.

Lemma 3.3. Let p,q € w* and let f,g : w — w be two one-to-one functions.
If p % q, then (p,q) is not an accumulation point of {(f(n),g(n)) : n < w} in
Bw) x Bw).

PROOF: Suppose the contrary. Then, there is r € w* such that p = f(r) and
q = §(r). By a fact quoted above [CN, Theorem 9.2(b)], we must have that p = r
and g = 7. So p =~ ¢, but this is a contradiction. O

Lemma 3.4. Letw C X,Y C f(w) be two non-discrete spaces. If X N (J{T(p) :
peYnNw'H)=0=YN(U{T(q): ¢ € XNw*}), then X xY cannot be a G-space.

PRrROOF: Let x € X and y € Y be accumulation points of X and Y, respectively.
We will prove that player I1 has a winning strategy in the G((z,y), X x Y)-
game. Indeed, suppose that (Vj, x Wy )n<w is a sequence of basic neighbor-
hoods of (z,y) in X x Y. Then, we may find two strictly increasing functions
fig + w — w such that f(n) € V;, and g(n) € Wy, for every n < w, and
flw]Nglw] = 0. By Lemma 3.3, the countable set {(f(n),g(n)) : n < w} does not
have an accumulation point in X x Y. This shows that player /] has a winning
strategy. Therefore, X x Y is not a G-space. O

Theorem 3.5. Let M € [w*]=°. If w C X C B(w) satisfies | X| < ¢, then there
arep € w* and a countably compact G,-space Y such that X xY is not a G-space
and r <gg p, for every r € M.
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PrOOF: By Theorem 10.9 of [CN], we can find ¢ € w™* so that r <gg g, for every
r € MU (X Nw*). Choose p € w* so that ¢ <grg p and let I'y = B(w) \ Prr (q).
We know that I'y is countably compact. Theorem 2.1 from [GG]| assures that
I'y is a Gp-space. Suppose that X x I'y is a G-space. So, by Lemma 3.4, either
XN{T(s):s € TgNw*} #Por TgN{T(t) : t € XNw*} # 0, but this is impossible.
Therefore, X x I'y cannot be a G-space and © <r p, for all r € M. O

Corollary 3.6. For every p € w*, there are ¢ € w*, a G)-space X and a countably
compact Gg-space Y such that X x Y is not a G-space and p <py q.

PROOF: Let p € w*. We apply Theorem 3.5 to the p-compactification Gp(w) of w
and M = {p}. O

Theorem 3.7. Let p,q € w*. If ¢ € R(p) = {f(p) : f € w*” and JA € p(f4 is
strictly increasing)}, then the product of a G,-space and a Gg-space is a G4-space.

PRrROOF: This theorem is a direct consequence of Theorem 2.6 and Theorem 2.4
of [GG]. O

Example 3.8. Let p,q € w*. If ¢ € T(p) \ R(p), then there are a Gp-space X
and a Gg-space Y such that X x Y is not a G4-space.

PRrROOF: Let Q(p) the space defined in Theorem 2.3 from [GG]. We know that
Q(p) is a Gp-space that is not a Gg-space. Thus, Q(p) x B4(w) is a Gp-space that
is not a G4-space and Gy(w) is a Gg-space. O

It was proved in [HST] that p € w* is a Q-point iff T'(p) = R(p). Example 3.8
shows that the condition “q € R(p)” given in Theorem 3.7 is essential. Next, we
will give some relationships between the game and some of the orderings on w*.

Theorem 3.9. Let p,q € w* be RK-incomparable. Then there are a Gp-space
X and a Gy-space Y such that X x Y is not a G-space.

PROOF: Our spaces are X = Sgpp(p)UT (p)Uw and Y = Spp(q)UT (¢)Uw. Tt is not
hard to see that X is a Gp-space and Y is a Gg-space. Fix (z,y) € X xY \ (w x w).
Let us see that player IT has a winning strategy in the G((z,y), X x Y)-game.
Indeed, suppose that o = {0y, : (X x V)" — N((2,%)) : n < w} is a strategy
for player I. Then, player I can always choose two functions f, g € w”“ so that
((f(n),9(n)))n<w is a o-sequence with flw]Ng[w] = . Suppose that (s,t) € X XY
is an accumulation point for {(f(n),g(n)) : n < w}. By Lemma 3.3, we must have
that s =~ t. On the other hand, by definition, there are two embeddings e : w — X
and h : w — Y for which é(p) = s and fz(q) =t. Since p <gp 8, ¢ <pp t and
s = t, by Theorem 16.16 of [CN], either p <pg ¢ or ¢ <grx p, but this is
a contradiction. Therefore, X X Y is not a G-space. O

W.W. Comfort introduced in [G] the following order on w*:
We say that p <. q if every g-compact space is p-compact.
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It is known that <pr C<c and they are different from each other. For p, q € w*,
p ~¢c g will mean that ¢ <g pand p <¢ q. Forp € w*, To(p) = {¢ € w* : p =~¢ ¢}
is the Comfort type of p. It is not hard to see that A, = wUT(p) is a Gp-space, for
each p € w*. The next theorem follows directly from Theorem 2.6 and Lemma 3.4.

Theorem 3.10. Let p,q € w*. Then, Ay x Ay is a G-space iff p ~¢ q.
The following is a direct consequence of Theorems 3.9 and 3.10.

Corollary 3.11. Let p,q € w*. If the product of a G,-space and a Gg-space is a
G-space, then p and q are RK-comparable and p =~ q.

We know that Sgpr(p) is a Gp-space, for every p € w*.

Theorem 3.12. Let p,q € w*. If Sgrp(p) x Srr(q) is a G-space, then either
1. p and q are RF-comparable; or
ii. there is r € w* such that r <gp p and r <gp q.

PRrROOF: Fix (z,y) € X = Sgpr(p) x Sgr(q). Let 0 = {0y, : n < w} be a winning
strategy for player I in the G((z,y), X )-game. Then, we may choose a o-sequence
((f(n),g9(n)))n<w so that f:w — Sgrp(p) and g : w — Srp(q) are embeddings.
By assumption, there is 7 € w* such that f(r) € Spp(p) and §(r) € Srr(q).
It then follows that r <pp f(r), r <rr §(r), p <gr f(r) and q¢ <gp §(r).
According to Theorem 16.16 from [CN], r and p are RF-comparable and also
and ¢ are RF-comparable. The conclusion then follows from these relations. [

Next, we shall prove that the first clause ¢ of the conclusion of Theorem 3.14
suffices to get the converse of the same theorem.

Theorem 3.13. Let p,q € w*. If p <gp q, then Spr(p) X Srr(q) is a G4-space.

PRrROOF: Let f:w — Spp(q) and g : w — Sgrpr(p) be two embeddings. By the
transitivity of the RF-order, we get that f(q) € Spr(p) and §(q) € Srr(q). So,
(f(9),9(q)) is an accumulation point of {(f(n),g(n)) : n < w}. This shows that
Srr(p) X Srr(q) is a Gg4-space. O

To give more examples we need the following notion:
The tensor product of two ultrafilters p, ¢ € w* is the ultrafilter

pRq={ACwxw:{n<w:{m<w:(n,m)e A} €q}ep}

on w X w. For p,q € w*, p® q can be viewed as an ultrafilter on w via a fixed
bijection between w X w and w. It is know that p <pp p® ¢ and ¢ <gg P q,
for every p, q € w*. We list some relevant properties of the tensor product:

1. It was proved in [G] that if r and s are RK-incomparable free ultrafilters on
wandr <gpg pand s <pg p,then p@r~op~cp®sand p@r and p® s are
RK-incomparable too.
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2. Let s and t be two RF-minimal and RK-incomparable free ultrafilters on
w (see [Ku]), and let r € w* be such that s <pg r and t <pg r. Pt p=s®@r
and ¢ =t ® (s ® r). Then, we have that p <pg ¢, p =¢ ¢ (for this fact see [G]),
p and ¢q are RF-incomparable and do not have a common RF-predecessor. From
Theorem 3.12 we get that Sgr(p) X Srr(q) is not a G-space. This shows that
the converse of Corollary 3.11 fails.

We will see that the second condition ¢ of Theorem 3.14 implies its converse
under some additional conditions.

Theorem 3.14. Let p,q € w*. Suppose that there are r € w* and two embed-

dings f, g : w — w* such that f(r) = p, §(r) = q and f(n) <gp p and g(n) <gp g,
for every n < w. Then, Spp(p) X Sgrr(q) is a Gr-space.

PROOF: Let ¢ : w — Spp(p) and h : w — Spp(q) be two embeddings. Since
f(n) <gr e(n) and g(n) <gp h(n), for every n < w, by Lemma 2.20 from [Boo],
p=£(r) <pr é(r) and g = §(r) <pp h(r). Then, (é(r), h(r)) € Sgr(p) x Spr(a)
is an accumulation point of the set {(e(n),h(n)) : n < w}. This shows that

Srr(p) X Srr(q) is a Gp-space. O

As a consequence of Theorem 3.14, Sgr(r ® p) X Spr(r ® q) is a G-space, for
every p,q,r € w*. But, the next example shows that the second clause i of the
conclusion of Theorem 3.14 does not imply its converse.

Example 3.15. Let r € w* and let f,g : w — w* be two embeddings such
that r, f(n) and g(n), for every n < w, are all pairwise RK -incomparable and
RF-minimal. If f(r) = p and §(r) = ¢, then Sgrr(p) x Srr(q) is not a G-space.

PRrOOF: It is not hard to see, by Lemma 2.20 of [Boo|, that p and ¢ are RF-
incomparable, and notice that r <gp p and r <gp ¢. Let ¢ : w — Spp(p)
and h : w — Sgpp(q) be two embeddings. First, suppose that there is s € T'(r)
such that é(s) € Sgpp(p) and h(s) € Spp(q). Fix a bijection ¢ : w — w such
that 6(r) = s. Then, we have that p = f(r) <gp é(s) = é(6(r)) and ¢ =
9(r) <pp h(s) = h(6(r)). According to Lemma 2.20 from [Boo], A = {n <
w: f(n) <gpr élcm)}N{n < w: g(n) <gr h(oc(n))} € r. Take two distinct
points m,n € A. So, we have that f(n) <gp é(c(n)), f(m) <gp é(c(m)),
p <gr é(c(n)) and p <gp é(c(m)). Then, by Theorem 16.16 from [CN] and our
hypothesis, f(n) <gg p and f(m) <gp p. Hence, by Theorem 16.16 of [CN],
we conclude that f(n) and f(m) are RF-comparable, but this is a contradiction.
A similar contradiction is obtained if we replace f by g. This proves that for every
s € T(r) we have that é(s) ¢ Sgpp(p) and h(s) ¢ Spr(q). Now, let us assume
that there is t € w* such that r <pp t <gp p and r <gp t <gp g. Choose an
embedding j : w — w* such that j(r) = t. By Lemma 2.20 of [Boo], we have
that B ={n < w: jn) <gr f(n)} N{n < w: jn) <gr g(n)} € r, which
is impossible since f(n) and g(n) are RF-minimal, for every n < w. Therefore,
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there is no t € w* with r <gpp t <gp p and r <gp t <gr q. By Theorem 3.14,
we obtain that Sgp(p) X Sgpr(q) is not a G-space. O

Now, we give a necessary condition for the product of two subspaces of w* to
fail be a G-space. For our purposes we need a lemma:

Lemma 3.16. Let p,q € w* and let f, g : w — w* be two embeddings. If p and q
do not have a common RF-predecessor, then (p,q) is not an accumulation point

of {(f(n),g(n)) :n <w}.

PROOF: Suppose the contrary. Then, there is r € w* such that (p,q) = r —
limy,—o(f(n),g(n)). Hence, p = r —limp—, f(n) and ¢ = r — limy, ., g(n). Since
f and g are embeddings, r <gp p and r <gp ¢, which is a contradiction. ([

Theorem 3.17. If X|Y C w* satisfy that Pri (p) N Pri (q) =0 for everyp € X
and for every q € Y, then X X Y is not a G-space.

PROOF: We apply an argument similar to the one used in the proof of Lemma 3.4
by using Lemma 3.16. O

We end by listing some open questions that the authors were unable to respond.

Question 3.18. Are there spaces X and Y such that X is a Gp-space, for all
p €w*, and Y is a G-space, but X x Y is not a G-space ?

Question 3.19. If p,q € w* and ¢ =¢ p <Rr ¢, are there a G,-space and a
Gq-space whose product is not a G-space ?

We point out that Lemma 3.12.10 of [En] implies that if X is a G-k-space and
Y is a G-space, then X x Y is a G-space.

Question 3.20. For n < w, is there a topological group G such that G" is a
G-space but G™t! is not a G-space ?

Question 3.21. Is there a topological group G that is a G-space and it is not a
Gp-space for any p € w* ?

Question 3.22. Let p,q € w* be RK-incomparable. Are there a Gp-topological
group G and a Gg-topological group H such that G x H is not a G-space?
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