Topological games and product spaces

S. GARCÍA-FERREIRA, R.A. GONZÁLEZ-SILVA, A.H. TOMITA

Abstract. In this paper, we deal with the product of spaces which are either \mathcal{G} -spaces or \mathcal{G}_p -spaces, for some $p \in \omega^*$. These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are \mathcal{G} -spaces, and every \mathcal{G}_p -space is a \mathcal{G} -space, for every $p \in \omega^*$. We prove that if $\{X_\mu : \mu < \omega_1\}$ is a set of spaces whose product $X = \prod_{\mu < \omega_1} X_{\mu}$ is a \mathcal{G} -space, then there is $A \in [\omega_1]^{\leq \omega}$ such that X_{μ} is countably compact for every $\mu \in \omega_1 \setminus A$. As a consequence, X^{ω_1} is a \mathcal{G} -space iff X^{ω_1} is countably compact, and if X^{2^c} is a \mathcal{G} -space, then all powers of X are countably compact. It is easy to prove that the product of a countable family of \mathcal{G}_p spaces is a \mathcal{G}_p -space, for every $p \in \omega^*$. For every $1 \leq n < \omega$, we construct a space X such that X^n is countably compact and X^{n+1} is not a \mathcal{G} -space. If $p, q \in \omega^*$ are RK-incomparable, then we construct a \mathcal{G}_p -space X and a \mathcal{G}_q -space Y such that $X \times Y$ is not a \mathcal{G} -space. We give an example of two free ultrafilters p and q on ω such that $p <_{RK} q$, p and q are RF-incomparable, $p \approx_C q$ (\leq_C is the Comfort order on ω^*) and there are a \mathcal{G}_p -space X and a \mathcal{G}_q -space.

Keywords: RF-order, RK-order, Comfort-order, p-limit, p-compact, \mathcal{G} -space, \mathcal{G}_p -space, countably compact

Classification: Primary 54A35, 03E35; Secondary 54A25

1. Introduction

All the spaces are assumed to be Tychonoff. The Stone-Čech compactification $\beta\omega$ of the countable discrete space ω is identified with the set of all ultrafilters on ω and its remainder $\omega^* = \beta\omega \setminus \omega$ is identified with the set of all free ultrafilters on ω .

Let us define the basic common rules of our games:

Let X be a space and $x \in X$. We have two players, I and II who are going to play around the point x. Player I makes the first move by choosing an open neighborhood $U_0 \in \mathcal{N}(x)$. Then, player II responds by choosing $x_0 \in U_0$. Player I then chooses another open neighborhood $U_1 \in \mathcal{N}(x)$, and then player II responds by choosing $x_1 \in U_1$ and so on. Both players repeat this procedure infinitely many times. At the end of the game we have a sequence $(x_n)_{n < \omega}$ of points in X, and a sequence $(U_n)_{n < \omega}$ of neighborhoods of x such that $x_n \in U_n$, for every $n < \omega$. The games differ from each other in the winning condition. Following

Research supported by CONACYT grant no. 32171-E and DGAPA grant no. IN103399.

A. Bouziad [Bo], we say that player I wins in the $\mathcal{G}(x, X)$ -game if $\{x_n : n < \omega\}$ has an adherent point in X. Otherwise, player II is declared to be the winner in the $\mathcal{G}(x, X)$ -game. To define the main infinite games of this paper, we shall recall the definition of the p-limit point of a sequence of points of a space, for an ultrafilter $p \in \omega^*$.

Definition 1.1 (R.A. Bernstein [Be]). Let $p \in \omega^*$. A point x of a space X is said to be the p-limit point of a sequence $(x_n)_{n < \omega}$ in X, in symbols $x = p - \lim_{n \to \omega} x_n$, if for every neighborhood U of x, $\{n < \omega : x_n \in V\} \in p$.

Bernstein's notion characterizes the points lying in the closure of countable subsets of a space: A point $x \in X$ is an adherent point of a countable subset A of X iff there are a sequence $(x_n)_{n < \omega}$ in A and $p \in \omega^*$ such that $x = p - \lim_{n \to \omega} x_n$.

We are ready to state the winning condition of our games. Fix $p \in \omega^*$. As in the paper [GG], we say that player *I* wins in the $\mathcal{G}_p(x, X)$ -game if the sequence $(x_n)_{n < \omega}$ has a *p*-limit point in the space *X*. Otherwise, the second player wins the $\mathcal{G}_p(x, X)$ -game. All these games are natural generalizations of the W(x, X)-game introduced by G. Gruenhage in [Gru].

Definition 1.2. Let X be a space and $p \in \omega^*$. A strategy for player I is a sequence $\sigma = \{\sigma_n : n < \omega\}$ of functions, where $\sigma_n : X^{n+1} \to \mathcal{N}(x)$ for every $n < \omega$. Given a strategy σ we say that a sequence $(x_n)_{n < \omega}$ in X is a σ -sequence if $x_{n+1} \in \sigma_n((x_0, x_1, \ldots, x_n))$, for each $n < \omega$. For $x \in X$, a strategy $\sigma = \{\sigma_n : n < \omega\}$ for player I in the $\mathcal{G}(x, X)$ -game (respectively, $\mathcal{G}_p(x, X)$ -game) is said to be a winning strategy, if each σ -sequence has an adherent point (respectively, a p-limit point) in X. A space X is called a \mathcal{G} -space (respectively, \mathcal{G}_p -space) if the first player I has a winning strategy in the $\mathcal{G}(x, X)$ -game (respectively, $\mathcal{G}_p(x, X)$ -game), for every $x \in X$.

Every countably compact space is a \mathcal{G} -space, every \mathcal{G}_p -space is a \mathcal{G} -space and every *p*-compact space is a \mathcal{G}_p -space, for $p \in \omega^*$ (a space X is called *p*-compact provided that every sequence in X has a *p*-limit point in X).

In this paper, we mainly study the product of \mathcal{G} -spaces. In the second section, it is shown that if $\{X_{\mu} : \mu < \omega_1\}$ is a set of spaces whose product $\prod_{\mu < \omega_1} X_{\mu}$ is a \mathcal{G} -space, then the X_{μ} 's are countably compact except for countably many. It follows that if X^{ω_1} is a \mathcal{G} -space, then X^{ω_1} is countably compact. At the end of the second section, we shall prove that the product of a countable family of \mathcal{G}_p -spaces is a \mathcal{G}_p -space, for every $p \in \omega^*$. In the last section, we study the finite products of some \mathcal{G} -spaces.

2. Infinite products

In the first theorem of this section, we will give a necessary condition for a product of ω_1 -many \mathcal{G} -spaces to be a \mathcal{G} -space.

A subbasic open set of the product space $X = \prod_{i \in I} X_i$ is denoted by $[i, V] = \{x \in X : x(i) \in V\}$, where $i \in I$ and V is a nonempty open subset of X_i .

Theorem 2.1. If $\{X_{\mu} : \mu < \omega_1\}$ is a set of spaces whose product $X = \prod_{\mu < \omega_1} X_{\mu}$ is a \mathcal{G} -space, then there is $A \in [\omega_1]^{\leq \omega}$ such that X_{μ} is countably compact, for every $\mu \in \omega_1 \setminus A$.

PROOF: Suppose that there is a set $A \in [\omega_1]^{\omega_1}$ such that X_{μ} is not countably compact for any $\mu \in A$. Then, for every $\mu \in A$, there is a closed discrete countable subset $\{y_n^{\mu} : n < \omega\}$ of X_{μ} . Fix $x \in X$ and let us play the $\mathcal{G}(x, X)$ -game. We are going to define a winning strategy for player *II*. Indeed, player *I* starts the game by picking $V_0 = \bigcap_{\mu \in F_0} [\mu, W_{\mu}^0]$, where $F_0 \in [\omega_1]^{<\omega}$ and $W_{\mu}^0 \in \mathcal{N}(x(\mu))$, for every $\mu \in F_0$. Then, player *II* chooses $x_0 \in X$ which is defined by

$$x_0(\mu) = \begin{cases} x(\mu) & \text{if } \mu \in (\omega_1 \setminus A) \cup F_0, \\ y_0^{\mu} & \text{if } \mu \in A \setminus F_0. \end{cases}$$

Now, player I choose $V_1 = \bigcap_{\mu \in F_1} [\mu, W^1_{\mu}]$, where $F_1 \in [\omega_1]^{<\omega}$ and $W^0_{\mu} \in \mathcal{N}(x(\mu))$ for every $\mu \in F_1$. Then, player II responds by picking the point $x_1 \in X$ defined by

$$x_1(\mu) = \begin{cases} x(\mu) & \text{if } \mu \in (\omega_1 \setminus A) \cup F_1, \\ y_1^{\mu} & \text{if } \mu \in A \setminus F_1, \end{cases}$$

and so on. Clearly, $x_n \in V_n = \bigcap_{\mu \in F_n} [\mu, W_{\mu}^n]$, for every $n < \omega$. Since the set $\bigcup_{n < \omega} F_n$ is countable there is $\nu \in A \setminus (\bigcup_{n < \omega} F_n)$. Then, the set $\{x_n(\nu) : n < \omega\} = \{y_n^{\nu} : n < \omega\}$ does not have an accumulation point in X_{ν} ; hence, the set $\{x_n : n < \omega\}$ cannot have an accumulation point in X, which contradicts the hypothesis. Therefore, A is countable.

Corollary 2.2. Let X be a space. Then, X^{ω_1} is a \mathcal{G} -space iff X^{ω_1} is countably compact.

A countably compact space X whose square is not countably compact (see for instance [Va, Example 4.8]) is an example of a \mathcal{G} -space such that X^{ω_1} cannot be a \mathcal{G} -space. The proof of the following theorem is analogous to the proof of Theorem 2.1.

Theorem 2.3. Let $p \in \omega^*$. If $\{X_\mu : \mu < \omega_1\}$ is a set of spaces whose product $X = \prod_{\mu < \omega_1} X_\mu$ is a \mathcal{G}_p -space, then there is $A \in [\omega_1]^{\leq \omega}$ such that X_μ is p-compact for every $\mu \in \omega_1 \setminus A$.

J. Ginsburg and V. Saks [GS] (see also [Va, Theorem 4.11]) proved that all powers of a space are countably compact the 2^c power of the space is countably compact iff it is *p*-compact, for some $p \in \omega^*$. This characterization and Theorem 2.3 imply the following two corollaries:

Corollary 2.4. For $p \in \omega^*$, the following are equivalent.

- (1) All powers of X are \mathcal{G}_p -spaces.
- (2) X^{ω_1} is a \mathcal{G}_p -space.
- (3) X is *p*-compact.

Corollary 2.5. For a space X, the following are equivalent.

- (1) All powers of X are \mathcal{G} -spaces.
- (2) $X^{2^{\mathfrak{c}}}$ is a \mathcal{G} -space.
- (3) All powers of X are countably compact.
- (4) X is p-compact for some $p \in \omega^*$.

PROOF: The equivalence $3 \Leftrightarrow 4$ is taken from [GS]. It suffices to show the implication $2 \Rightarrow 3$. Consider the space $Y = (X^{2^{\mathfrak{c}}})^{\omega_1}$ which is homeomorphic to $X^{2^{\mathfrak{c}}}$. By assumption, Y is a \mathcal{G} -space. So, by Corollary 2.2, $X^{2^{\mathfrak{c}}}$ is countably compact. By the characterization of J. Ginsburg and V. Saks [GS] quoted above, we conclude that all powers of X are countably compact.

Theorem 2.6. For $p \in \omega^*$, the product of countably many \mathcal{G}_p -spaces is a \mathcal{G}_p -space.

PROOF: Let $\{X_i : i < \omega\}$ be a family of \mathcal{G}_p -spaces. Put $X = \prod_{i < \omega} X_i$ and fix $x \in X$. For every $i < \omega$, let $\sigma^i = \{\sigma_n^i : X_i^{n+1} \to \mathcal{N}(x(i)) : n < \omega\}$ be a winning strategy for the $\mathcal{G}_p(x(i), X_i)$ -game. For every $n < \omega$, we define $\sigma_n : X^{n+1} \to \mathcal{N}(x)$ by $\sigma_n(y_0, \ldots, y_n) = \bigcap_{i \le n} [i, \sigma_n^i(y_0(i), \ldots, y_n(i))]$, for every $(y_0, \ldots, y_n) \in X^{n+1}$. We claim that $\sigma = \{\sigma_n : n < \omega\}$ is a winning strategy for the $\mathcal{G}_p(x, X)$ -game. In fact, let $(y_n)_{n < \omega}$ be a σ -sequence. By definition, we have that $y_{n+1} \in \sigma_n(y_0, \ldots, y_n)$, for every $n < \omega$. Hence, $y_{n+1}(i) \in \sigma_n^i(y_0(i), \ldots, y_n(i))$ for every $i, n < \omega$. That is, $(y_n(i))_{n < \omega}$ is a σ^i -sequence, for every $i < \omega$. By assumption, for every $i < \omega$, we have that $y(i) = p - \lim_{n \to \omega} y_n(i)$ exists. Thus, we obtain that $y = p - \lim_{n \to \omega} y_n$. This proves the claim and the theorem as well.

For $p \in \omega^*$, $X_p = \beta_p(\omega) \setminus \{p\}$ is a \mathcal{G}_p -space that is not *p*-compact, where $\beta_p(\omega)$ is the *p*-compactification of ω (see [G]). It follows from Corollary 2.6 that X_p^{ω} is a \mathcal{G}_p -space and $X_p^{\omega_1}$ is not a \mathcal{G}_p -space, for every $p \in \omega^*$.

3. Finite products

We have shown in Theorem 2.6 that the product of countably many \mathcal{G}_p -spaces is again a \mathcal{G}_p -space, for each $p \in \omega^*$. However, for \mathcal{G} -spaces this is not true as we will see in the first example of this section. For this task, we will slightly modify Frolik's Example given in [Fro]. We shall present most of the details of Frolik's construction since his notation, in the original paper [Fro], is not standard:

If $p, q \in \omega^*$, then $p \approx q$ means that there is a bijection $f : \omega \to \omega$ such that $\hat{f}(p) = q$, where $\hat{f} : \beta(\omega) \to \beta(\omega)$ denotes the Stone-Čech extension of f. It is

clear that \approx is an equivalence relation on ω^* and the equivalence class of a point $p \in \omega^*$ is called the *type* of p and it is denoted by $T(p) = \{q \in \omega^* : q \approx p\}$. We know that $p \approx q$ iff there is a function $f : \omega \to \omega$ and $A \in p$ such that $\hat{f}(p) = q$ and $f|_A$ is one-to-one (for a proof see [CN, Theorem 9.2(b)]). The *RK*-ordering and the *RF*-ordering on ω^* are defined as follows:

For $p, q \in \omega^*$, we say that $p \leq_{RK} q$ if there is a function $f : \omega \to \omega$ such that $\hat{f}(q) = p$, and we say that $p \leq_{RF} q$ if there is an embedding $f : \omega \to \beta(\omega)$ such that $\hat{f}(p) = q$.

It is known that $\leq_{RF} \subset \leq_{RK}$, and $p \approx q$ iff $p \leq_{RK} q$ and $q \leq_{RK} p$, for $p, q \in \omega^*$. For $p, q \in \omega^*$, $p <_{RK} q$ will mean that $p \leq_{RK} q$ and $p \not\approx q$. For $p \in \omega^*$, we let $P_{RK}(p) = \{q \in \omega^* : q \leq_{RK} p\}$ and $S_{RF}(p) = \{q \in \omega^* : p <_{RF} q\}$. Z. Frolik [Fro] proved that $|S_{RF}(p)| = 2^{\mathfrak{c}}$, for all $p \in \omega^*$.

Lemma 3.1. There is a family $\{X_{\mu} : \mu < \omega_1\}$ of subsets of ω^* and a set $\{p_{\mu} : \mu < \omega_1\}$ of points in ω^* such that:

- i. p_{μ} and p_{ν} are RK-incomparable ultrafilters for distinct $\mu, \nu < \omega_1$;
- *ii.* $X_{\mu} = \{\hat{f}(p_{\mu}) : f : \omega \to \bigcup_{\nu < \mu} X_{\nu} \text{ is an embedding } \} \subseteq S_{RF}(p_{\mu}), \text{ for every } 0 < \mu < \omega_1;$
- *iii*. $|X_{\mu}| \leq \mathfrak{c}$, for every $\mu < \omega_1$;
- iv. $X_{\mu} \cap X_{\nu} = \emptyset$, whenever $\mu < \nu < \omega_1$.

PROOF: We know that there is a set W of size $2^{\mathfrak{c}}$ consisting of pairwise RK-incomparable weak P-points in ω^* (see [Ku] and [Si]). In virtue of Theorem 16.16 of [CN], we have that $S_{RF}(s) \cap S_{RF}(t) = \emptyset$ for distinct $s, r \in W$. Take $p_0 \in W$ and let $X_0 = T(p_0)$. Now, assume that p_{μ} and X_{μ} have been defined satisfying conditions i-iv, for each $\mu < \theta < \omega_1$. Put $X = \bigcup_{\mu < \theta} X_{\mu}$. It follows from iii that $|X| \leq \mathfrak{c}$. Then, choose $p_{\theta} \in W \setminus \{p_{\mu} : \mu < \theta\}$. Then, we have that $S_{RF}(p_{\theta}) \cap X = \emptyset$. Thus, we define $X_{\theta} = \{\hat{f}(p_{\theta}) : f : \omega \to \bigcup_{\mu < \theta} X_{\mu}$ is an embedding $\} \subseteq S_{RF}(p_{\theta})$.

For $A \subseteq \omega$, let $A^{\nearrow \omega} = \{f \in A^{\omega} : f \text{ is strictly increasing}\}.$

Example 3.2. For every $1 \le n < \omega$, there exists a space X such that X^n is countably compact and X^{n+1} is not a \mathcal{G} -space.

PROOF: Let $\{X_{\mu} : \mu < \omega_1\}$ and $\{p_{\mu} : \mu < \omega_1\}$ be subsets of ω^* satisfying all the properties given in Lemma 3.1. We remark, by Theorem 16.16 of [CN], that $S_{RF}(p_{\mu}) \cap S_{RF}(p_{\nu}) = \emptyset$ whenever $\mu < \nu < \mathfrak{c}$. For $\emptyset \neq I \subseteq \omega_1$, we define $X_I = \omega \cup (\bigcup_{\mu \in I} X_{\mu})$. We need the following fact which is Theorem D of [Fro]:

(*) Let $\{I_n : n < \omega\} \subseteq \mathcal{P}(\omega_1)$ be nonempty sets. If $\bigcap_{n < \omega} I_n$ is unbounded in ω_1 , then $\prod_{n < \omega} X_{I_n}$ is countably compact. If $\bigcap_{n < \omega} I_n = \emptyset$, then $\prod_{n < \omega} X_{I_n}$ is not countably compact.

Fix $1 \le n < \omega$. For each $k \le n$, let $I_k = \{\mu < \omega_1 : \mu \not\equiv k \mod(n+1)\}$. Let us consider the topological sum $X = \bigoplus_{k \le n} X_{I_k}$. Since $\bigcap_{1 \le i \le n} I_{k_i}$ is unbounded in

 ω_1 , by (*), $X_{I_{k_1}} \times \cdots \times X_{I_{k_n}}$ is countably compact, for every $k_1, \ldots, k_n \in n+1$. It follows that $X^n = \bigcup_{k_1, \ldots, k_n \in n+1} X_{I_{k_1}} \times \cdots \times X_{I_{k_n}}$ is countably compact. To prove that X^{n+1} cannot be a \mathcal{G} -space it suffices to show that $X_{I_0} \times X_{I_1} \times \cdots \times X_{I_n}$ is not a \mathcal{G} -space. For every $k \leq n$, fix a non-isolated point $x_k \in X_{I_k}$. Now, we will prove that player II has a winning strategy in the $\mathcal{G}((x_0, \ldots, x_n), X_{I_0} \times \cdots \times X_{I_n})$ -game. Indeed, let $\sigma = \{\sigma_m : (X_{I_0} \times \cdots \times X_{I_n})^{m+1} \to \mathcal{N}((x_0, \ldots, x_n)) : m < \omega\}$ be a strategy for player I. It is not hard to prove that, for every $k \leq n$, player II may choose $f_k \in \omega^{\nearrow \omega}$ so that

$$(f_1(m+1),\ldots,f_n(m+1)) \in \sigma_m((f_1(0),\ldots,f_n(0)),\ldots,(f_1(m),\ldots,f_n(m))),$$

for every $m < \omega$ and for every $k \leq n$. Suppose that there is $r \in \omega^*$ such that $\hat{f}_k(r) \in X_{I_k}$, for all $k \leq n$. Then, for each $k \leq n$, we have that $\hat{f}_k(r) \in X_{\mu_k}$, for some $\mu_k \in I_k$. By definition, we know that $p_{\mu_k} \leq_{RF} \hat{f}_k(r) \approx r$, for every $k \leq n$. Theorem 16.16 of [CN] implies that $p_{\mu_0} = p_{\mu_1} = \cdots = p_{\mu_n}$ and so $\mu_0 = \mu_1 = \cdots = \mu_n \in \bigcap_{k \leq n} I_k = \emptyset$, which is a contradiction. Thus, the set $\{(f_1(m), \ldots, f_n(m)) : m < \omega\}$ does not have any accumulation point in $X_{I_0} \times \cdots \times X_{I_n}$. Therefore, $X_{I_0} \times \cdots \times X_{I_n}$ is not a \mathcal{G} -space.

Our next example shows that the product of a \mathcal{G}_p -space and a \mathcal{G} -space is not in general a \mathcal{G} -space. First, we prove some preliminary results.

Lemma 3.3. Let $p, q \in \omega^*$ and let $f, g : \omega \to \omega$ be two one-to-one functions. If $p \not\approx q$, then (p,q) is not an accumulation point of $\{(f(n), g(n)) : n < \omega\}$ in $\beta(\omega) \times \beta(\omega)$.

PROOF: Suppose the contrary. Then, there is $r \in \omega^*$ such that $p = \hat{f}(r)$ and $q = \hat{g}(r)$. By a fact quoted above [CN, Theorem 9.2(b)], we must have that $p \approx r$ and $q \approx r$. So $p \approx q$, but this is a contradiction.

Lemma 3.4. Let $\omega \subseteq X, Y \subseteq \beta(\omega)$ be two non-discrete spaces. If $X \cap (\bigcup \{T(p) : p \in Y \cap \omega^*\}) = \emptyset = Y \cap (\bigcup \{T(q) : q \in X \cap \omega^*\})$, then $X \times Y$ cannot be a \mathcal{G} -space.

PROOF: Let $x \in X$ and $y \in Y$ be accumulation points of X and Y, respectively. We will prove that player II has a winning strategy in the $\mathcal{G}((x, y), X \times Y)$ -game. Indeed, suppose that $(V_n \times W_n)_{n < \omega}$ is a sequence of basic neighborhoods of (x, y) in $X \times Y$. Then, we may find two strictly increasing functions $f, g : \omega \to \omega$ such that $f(n) \in V_n$ and $g(n) \in W_n$, for every $n < \omega$, and $f[\omega] \cap g[\omega] = \emptyset$. By Lemma 3.3, the countable set $\{(f(n), g(n)) : n < \omega\}$ does not have an accumulation point in $X \times Y$. This shows that player II has a winning strategy. Therefore, $X \times Y$ is not a \mathcal{G} -space.

Theorem 3.5. Let $M \in [\omega^*]^{\leq \mathfrak{c}}$. If $\omega \subseteq X \subseteq \beta(\omega)$ satisfies $|X| \leq \mathfrak{c}$, then there are $p \in \omega^*$ and a countably compact \mathcal{G}_p -space Y such that $X \times Y$ is not a \mathcal{G} -space and $r <_{RK} p$, for every $r \in M$.

PROOF: By Theorem 10.9 of [CN], we can find $q \in \omega^*$ so that $r <_{RK} q$, for every $r \in M \cup (X \cap \omega^*)$. Choose $p \in \omega^*$ so that $q <_{RK} p$ and let $\Gamma_q = \beta(\omega) \setminus P_{RK}(q)$. We know that Γ_q is countably compact. Theorem 2.1 from [GG] assures that Γ_q is a \mathcal{G}_p -space. Suppose that $X \times \Gamma_q$ is a \mathcal{G} -space. So, by Lemma 3.4, either $X \cap \{T(s) : s \in \Gamma_q \cap \omega^*\} \neq \emptyset$ or $\Gamma_q \cap \{T(t) : t \in X \cap \omega^*\} \neq \emptyset$, but this is impossible. Therefore, $X \times \Gamma_q$ cannot be a \mathcal{G} -space and $r <_{RK} p$, for all $r \in M$.

Corollary 3.6. For every $p \in \omega^*$, there are $q \in \omega^*$, a \mathcal{G}_p -space X and a countably compact \mathcal{G}_q -space Y such that $X \times Y$ is not a \mathcal{G} -space and $p <_{RK} q$.

PROOF: Let $p \in \omega^*$. We apply Theorem 3.5 to the *p*-compactification $\beta_p(\omega)$ of ω and $M = \{p\}$.

Theorem 3.7. Let $p, q \in \omega^*$. If $q \in R(p) = \{\hat{f}(p) : f \in \omega^\omega \text{ and } \exists A \in p(f|_A \text{ is strictly increasing})\}$, then the product of a \mathcal{G}_p -space and a \mathcal{G}_q -space is a \mathcal{G}_q -space.

PROOF: This theorem is a direct consequence of Theorem 2.6 and Theorem 2.4 of [GG]. $\hfill \Box$

Example 3.8. Let $p, q \in \omega^*$. If $q \in T(p) \setminus R(p)$, then there are a \mathcal{G}_p -space X and a \mathcal{G}_q -space Y such that $X \times Y$ is not a \mathcal{G}_q -space.

PROOF: Let $\Omega(p)$ the space defined in Theorem 2.3 from [GG]. We know that $\Omega(p)$ is a \mathcal{G}_p -space that is not a \mathcal{G}_q -space. Thus, $\Omega(p) \times \beta_q(\omega)$ is a \mathcal{G}_p -space that is not a \mathcal{G}_q -space and $\beta_q(\omega)$ is a \mathcal{G}_q -space.

It was proved in [HST] that $p \in \omega^*$ is a *Q*-point iff T(p) = R(p). Example 3.8 shows that the condition " $q \in R(p)$ " given in Theorem 3.7 is essential. Next, we will give some relationships between the game and some of the orderings on ω^* .

Theorem 3.9. Let $p, q \in \omega^*$ be RK-incomparable. Then there are a \mathcal{G}_p -space X and a \mathcal{G}_q -space Y such that $X \times Y$ is not a \mathcal{G} -space.

PROOF: Our spaces are $X = S_{RF}(p) \cup T(p) \cup \omega$ and $Y = S_{RF}(q) \cup T(q) \cup \omega$. It is not hard to see that X is a \mathcal{G}_p -space and Y is a \mathcal{G}_q -space. Fix $(x, y) \in X \times Y \setminus (\omega \times \omega)$. Let us see that player II has a winning strategy in the $\mathcal{G}((x, y), X \times Y)$ -game. Indeed, suppose that $\sigma = \{\sigma_n : (X \times Y)^{n+1} \to \mathcal{N}((x, y)) : n < \omega\}$ is a strategy for player I. Then, player II can always choose two functions $f, g \in \omega^{\nearrow} \omega$ so that $((f(n), g(n)))_{n < \omega}$ is a σ -sequence with $f[\omega] \cap g[\omega] = \emptyset$. Suppose that $(s, t) \in X \times Y$ is an accumulation point for $\{(f(n), g(n)) : n < \omega\}$. By Lemma 3.3, we must have that $s \approx t$. On the other hand, by definition, there are two embeddings $e : \omega \to X$ and $h : \omega \to Y$ for which $\hat{e}(p) = s$ and $\hat{h}(q) = t$. Since $p \leq_{RF} s$, $q \leq_{RF} t$ and $s \approx t$, by Theorem 16.16 of [CN], either $p \leq_{RK} q$ or $q \leq_{RK} p$, but this is a contradiction. Therefore, $X \times Y$ is not a \mathcal{G} -space.

W.W. Comfort introduced in [G] the following order on ω^* : We say that $p \leq_C q$ if every *q*-compact space is *p*-compact. 681

It is known that $\leq_{RK} \subset \leq_C$ and they are different from each other. For $p, q \in \omega^*$, $p \approx_C q$ will mean that $q \leq_C p$ and $p \leq_C q$. For $p \in \omega^*$, $T_C(p) = \{q \in \omega^* : p \approx_C q\}$ is the *Comfort type* of p. It is not hard to see that $\Delta_p = \omega \cup T_C(p)$ is a \mathcal{G}_p -space, for each $p \in \omega^*$. The next theorem follows directly from Theorem 2.6 and Lemma 3.4.

Theorem 3.10. Let $p, q \in \omega^*$. Then, $\Delta_p \times \Delta_q$ is a \mathcal{G} -space iff $p \approx_C q$.

The following is a direct consequence of Theorems 3.9 and 3.10.

Corollary 3.11. Let $p, q \in \omega^*$. If the product of a \mathcal{G}_p -space and a \mathcal{G}_q -space is a \mathcal{G} -space, then p and q are RK-comparable and $p \approx_C q$.

We know that $S_{RF}(p)$ is a \mathcal{G}_p -space, for every $p \in \omega^*$.

Theorem 3.12. Let $p, q \in \omega^*$. If $S_{RF}(p) \times S_{RF}(q)$ is a \mathcal{G} -space, then either *i*. *p* and *q* are *RF*-comparable; or

ii. there is $r \in \omega^*$ such that $r <_{RF} p$ and $r <_{RF} q$.

PROOF: Fix $(x, y) \in X = S_{RF}(p) \times S_{RF}(q)$. Let $\sigma = \{\sigma_n : n < \omega\}$ be a winning strategy for player I in the $\mathcal{G}((x, y), X)$ -game. Then, we may choose a σ -sequence $((f(n), g(n)))_{n < \omega}$ so that $f : \omega \to S_{RF}(p)$ and $g : \omega \to S_{RF}(q)$ are embeddings. By assumption, there is $r \in \omega^*$ such that $\hat{f}(r) \in S_{RF}(p)$ and $\hat{g}(r) \in S_{RF}(q)$. It then follows that $r <_{RF} \hat{f}(r), r <_{RF} \hat{g}(r), p <_{RF} \hat{f}(r)$ and $q <_{RF} \hat{g}(r)$. According to Theorem 16.16 from [CN], r and p are RF-comparable and also rand q are RF-comparable. The conclusion then follows from these relations. \Box

Next, we shall prove that the first clause i of the conclusion of Theorem 3.14 suffices to get the converse of the same theorem.

Theorem 3.13. Let $p, q \in \omega^*$. If $p \leq_{RF} q$, then $S_{RF}(p) \times S_{RF}(q)$ is a \mathcal{G}_q -space. PROOF: Let $f: \omega \to S_{RF}(q)$ and $g: \omega \to S_{RF}(p)$ be two embeddings. By the transitivity of the *RF*-order, we get that $\hat{f}(q) \in S_{RF}(p)$ and $\hat{g}(q) \in S_{RF}(q)$. So, $(\hat{f}(q), \hat{g}(q))$ is an accumulation point of $\{(f(n), g(n)): n < \omega\}$. This shows that $S_{RF}(p) \times S_{RF}(q)$ is a \mathcal{G}_q -space.

To give more examples we need the following notion: The *tensor product* of two ultrafilters $p, q \in \omega^*$ is the ultrafilter

$$p \otimes q = \{A \subseteq \omega \times \omega : \{n < \omega : \{m < \omega : (n, m) \in A\} \in q\} \in p\}$$

on $\omega \times \omega$. For $p, q \in \omega^*$, $p \otimes q$ can be viewed as an ultrafilter on ω via a fixed bijection between $\omega \times \omega$ and ω . It is know that $p <_{RF} p \otimes q$ and $q <_{RK} p \otimes q$, for every $p, q \in \omega^*$. We list some relevant properties of the tensor product:

1. It was proved in [G] that if r and s are RK-incomparable free ultrafilters on ω and $r <_{RK} p$ and $s <_{RK} p$, then $p \otimes r \approx_C p \approx_C p \otimes s$ and $p \otimes r$ and $p \otimes s$ are RK-incomparable too.

2. Let s and t be two RF-minimal and RK-incomparable free ultrafilters on ω (see [Ku]), and let $r \in \omega^*$ be such that $s <_{RK} r$ and $t <_{RK} r$. Put $p = s \otimes r$ and $q = t \otimes (s \otimes r)$. Then, we have that $p <_{RK} q$, $p \approx_C q$ (for this fact see [G]), p and q are RF-incomparable and do not have a common RF-predecessor. From Theorem 3.12 we get that $S_{RF}(p) \times S_{RF}(q)$ is not a \mathcal{G} -space. This shows that the converse of Corollary 3.11 fails.

We will see that the second condition ii of Theorem 3.14 implies its converse under some additional conditions.

Theorem 3.14. Let $p, q \in \omega^*$. Suppose that there are $r \in \omega^*$ and two embeddings $f, g: \omega \to \omega^*$ such that $\hat{f}(r) = p$, $\hat{g}(r) = q$ and $f(n) \leq_{RF} p$ and $g(n) \leq_{RF} q$, for every $n < \omega$. Then, $S_{RF}(p) \times S_{RF}(q)$ is a \mathcal{G}_r -space.

PROOF: Let $e: \omega \to S_{RF}(p)$ and $h: \omega \to S_{RF}(q)$ be two embeddings. Since $f(n) <_{RF} e(n)$ and $g(n) <_{RF} h(n)$, for every $n < \omega$, by Lemma 2.20 from [Boo], $p = \hat{f}(r) <_{RF} \hat{e}(r)$ and $q = \hat{g}(r) <_{RF} \hat{h}(r)$. Then, $(\hat{e}(r), \hat{h}(r)) \in S_{RF}(p) \times S_{RF}(q)$ is an accumulation point of the set $\{(e(n), h(n)) : n < \omega\}$. This shows that $S_{RF}(p) \times S_{RF}(q)$ is a \mathcal{G}_r -space.

As a consequence of Theorem 3.14, $S_{RF}(r \otimes p) \times S_{RF}(r \otimes q)$ is a \mathcal{G} -space, for every $p, q, r \in \omega^*$. But, the next example shows that the second clause *ii* of the conclusion of Theorem 3.14 does not imply its converse.

Example 3.15. Let $r \in \omega^*$ and let $f, g : \omega \to \omega^*$ be two embeddings such that r, f(n) and g(n), for every $n < \omega$, are all pairwise RK-incomparable and RF-minimal. If $\hat{f}(r) = p$ and $\hat{g}(r) = q$, then $S_{RF}(p) \times S_{RF}(q)$ is not a \mathcal{G} -space.

PROOF: It is not hard to see, by Lemma 2.20 of [Boo], that p and q are RFincomparable, and notice that $r <_{RF} p$ and $r <_{RF} q$. Let $e : \omega \to S_{RF}(p)$ and $h: \omega \to S_{RF}(q)$ be two embeddings. First, suppose that there is $s \in T(r)$ such that $\hat{e}(s) \in S_{RF}(p)$ and $\hat{h}(s) \in S_{RF}(q)$. Fix a bijection $\sigma : \omega \to \omega$ such that $\hat{\sigma}(r) = s$. Then, we have that $p = \hat{f}(r) <_{RF} \hat{e}(s) = \hat{e}(\hat{\sigma}(r))$ and q = $\hat{g}(r) <_{RF} \hat{h}(s) = \hat{h}(\hat{\sigma}(r))$. According to Lemma 2.20 from [Boo], $A = \{n < n < n \}$ ω : $f(n) <_{RF} \hat{e}(\sigma(n)) \cap \{n < \omega : g(n) <_{RF} \hat{h}(\sigma(n))\} \in r$. Take two distinct points $m, n \in A$. So, we have that $f(n) <_{RF} \hat{e}(\sigma(n)), f(m) <_{RF} \hat{e}(\sigma(m)),$ $p <_{RF} \hat{e}(\sigma(n))$ and $p <_{RF} \hat{e}(\sigma(m))$. Then, by Theorem 16.16 from [CN] and our hypothesis, $f(n) <_{RF} p$ and $f(m) <_{RF} p$. Hence, by Theorem 16.16 of [CN], we conclude that f(n) and f(m) are RF-comparable, but this is a contradiction. A similar contradiction is obtained if we replace f by g. This proves that for every $s \in T(r)$ we have that $\hat{e}(s) \notin S_{RF}(p)$ and $\hat{h}(s) \notin S_{RF}(q)$. Now, let us assume that there is $t \in \omega^*$ such that $r <_{RF} t <_{RF} p$ and $r <_{RF} t <_{RF} q$. Choose an embedding $j: \omega \to \omega^*$ such that $\hat{j}(r) = t$. By Lemma 2.20 of [Boo], we have that $B = \{n < \omega : j(n) <_{RF} f(n)\} \cap \{n < \omega : j(n) <_{RF} g(n)\} \in r$, which is impossible since f(n) and q(n) are RF-minimal, for every $n < \omega$. Therefore, there is no $t \in \omega^*$ with $r <_{RF} t <_{RF} p$ and $r <_{RF} t <_{RF} q$. By Theorem 3.14, we obtain that $S_{RF}(p) \times S_{RF}(q)$ is not a \mathcal{G} -space.

Now, we give a necessary condition for the product of two subspaces of ω^* to fail be a \mathcal{G} -space. For our purposes we need a lemma:

Lemma 3.16. Let $p, q \in \omega^*$ and let $f, g : \omega \to \omega^*$ be two embeddings. If p and q do not have a common RF-predecessor, then (p,q) is not an accumulation point of $\{(f(n), g(n)) : n < \omega\}$.

PROOF: Suppose the contrary. Then, there is $r \in \omega^*$ such that $(p,q) = r - \lim_{n \to \omega} (f(n), g(n))$. Hence, $p = r - \lim_{n \to \omega} f(n)$ and $q = r - \lim_{n \to \omega} g(n)$. Since f and g are embeddings, $r <_{RF} p$ and $r <_{RF} q$, which is a contradiction.

Theorem 3.17. If $X, Y \subseteq \omega^*$ satisfy that $P_{RK}(p) \cap P_{RK}(q) = \emptyset$ for every $p \in X$ and for every $q \in Y$, then $X \times Y$ is not a \mathcal{G} -space.

PROOF: We apply an argument similar to the one used in the proof of Lemma 3.4 by using Lemma 3.16. $\hfill \Box$

We end by listing some open questions that the authors were unable to respond.

Question 3.18. Are there spaces X and Y such that X is a \mathcal{G}_p -space, for all $p \in \omega^*$, and Y is a \mathcal{G} -space, but $X \times Y$ is not a \mathcal{G} -space?

Question 3.19. If $p,q \in \omega^*$ and $q \approx_C p <_{RF} q$, are there a \mathcal{G}_p -space and a \mathcal{G}_q -space whose product is not a \mathcal{G} -space?

We point out that Lemma 3.12.10 of [En] implies that if X is a \mathcal{G} -k-space and Y is a \mathcal{G} -space, then $X \times Y$ is a \mathcal{G} -space.

Question 3.20. For $n < \omega$, is there a topological group G such that G^n is a \mathcal{G} -space but G^{n+1} is not a \mathcal{G} -space?

Question 3.21. Is there a topological group G that is a \mathcal{G} -space and it is not a \mathcal{G}_p -space for any $p \in \omega^*$?

Question 3.22. Let $p, q \in \omega^*$ be RK-incomparable. Are there a \mathcal{G}_p -topological group G and a \mathcal{G}_q -topological group H such that $G \times H$ is not a \mathcal{G} -space?

References

- [Be] Bernstein A.R., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193.
- [Boo] Booth D., Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1–24.
- [Bo] Bouziad A., The Ellis theorem and continuity in groups, Topology Appl. 50 (1993), 73–80.
- [CN] Comfort W., Negrepontis S., The Theory of Ultrafilters, Springer-Verlag, Berlin, 1974.
- [En] Engelking R., General Topology, Sigma Series in Pure Mathematics Vol. 6, Heldermann Verlag Berlin, 1989.

- [Fro] Frolik Z., Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91.
- [G] García-Ferreira S., Three orderings on ω^* , Topology Appl. 50 (1993), 199–216.
- [GG] García-Ferreira S., González-Silva R.A., *Topological games defined by ultrafilters*, to appear in Topology Appl.
- [GS] Ginsburg J., Saks V., Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403–418.
- [Gru] Gruenhage G., Infinite games and generalizations of first countable spaces, Topology Appl. 6 (1976), 339–352.
- [HST] Hrušák M., Sanchis M., Tamariz-Mascarúa A., Ultrafilters, special functions and pseudocompactness, in process.
- [Ku] Kunen K., Weak P-points in N*, Colloq. Math. Soc. János Bolyai 23, Topology, Budapest (Hungary), pp. 741–749.
- [Si] Simon P., Applications of independent linked families, Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41 (1985), 561–580.
- [Va] Vaughan J.E., Countably compact sequentially compact spaces, in: Handbook of Set-Theoretic Topology, editors J. van Mill and J. Vaughan, North-Holland, pp. 571–600.

INSTITUTO DE MATEMÁTICAS (UNAM), APARTADO POSTAL 61-3, XANGARI, 58089, MORELIA, MICHOACÁN, MÉXICO

E-mail: sgarcia@matmor.unam.mx, rgon@matmor.unam.mx

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281, CEP 05315-970, SÃO PAULO, BRASIL *E-mail*: tomita@ime.usp.br

(Received January 22, 2002)