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Integral and derivative operators of functional

order on generalized Besov and Triebel-Lizorkin

spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein, Beatriz E. Viviani

Abstract. In the setting of spaces of homogeneous-type, we define the Integral, Iφ, and
Derivative, Dφ, operators of order φ, where φ is a function of positive lower type and

upper type less than 1, and show that Iφ and Dφ are bounded from Lipschitz spaces Λ
ξ

to Λξφ and Λξ/φ respectively, with suitable restrictions on the quasi-increasing function
ξ in each case. We also prove that Iφ and Dφ are bounded from the generalized Besov

Ḃψ,qp , with 1 ≤ p, q < ∞, and Triebel-Lizorkin spaces Ḟψ,qp , with 1 < p, q < ∞, of
order ψ to those of order φψ and ψ/φ respectively, where ψ is the quotient of two
quasi-increasing functions of adequate upper types.
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ator, fractional derivative operator, spaces of homogeneous type, Besov spaces, Triebel-
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1. Introduction

In the context of normal spaces of homogeneous-type (X, δ, µ) of order θ ≤ 1
(see the definitions below), the fractional integral and derivative operators of
order α, with 0 < α < θ, were defined by Gatto, Segovia and Vági [GSV] by
linking them to quasi-distances constructed through the kernels {st(x, y)}t>0 of
a symmetric approximation to the identity. Namely, if δα : X × X → [0,∞) is
defined by

(1.1) δα(x, y) =

(
∫ ∞

0
tα−1st(x, y) dt

)1/(α−1)

for x 6= y and δα(x, y) = 0 for x = y; and δ−α : X ×X → [0,∞) by

(1.2) δ−α(x, y) =

(∫ ∞

0
t−α−1st(x, y) dt

)1/(−α−1)
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for x 6= y and δ−α(x, y) = 0 for x = y, then the authors proved that δα and δ−α
are quasi-metrics equivalent to δ. The fractional integral Iα was thus defined by

Iαf(x) =

∫

X

f(y)

δ1−αα (x, y)
dµ(y),

for f ∈ Λβ ∩ L1, and the fractional derivative Dα by

Dαf(x) =

∫

X

f(y)− f(x)

δ1+α−α (x, y)
dµ(y)

for f ∈ Λβ ∩ L∞ and α < β ≤ θ. The definition of the quasi-metrics and the
resulting operators allowed the authors to prove that the composition Tα = DαIα
is a Calderón-Zygmund operator and that it is invertible in L2 for small positive
values of α.
The purpose of this work is to show that these technics can also be used to

define the integral, Iφ, and derivative, Dφ, operators whose kernels are equivalent
to φ(δ(x, y))/δ(x, y) and 1/φ(δ(x, y))δ(x, y) respectively and φ belongs to a class
of quasi-increasing functions. This class includes the potentials tα, 0 < α < 1,
but also functions as, for example, max(tα, tβ), min(tα, tβ), with 0 < α < β < 1,

and tβ(1 + log+ t), 0 ≤ β < 1.

We then prove that those operators are bounded on Lipschitz spaces Λξ defined
by functions whose moduli of continuity are dominated by a function ξ(t) in a
class of growth functions.
We finally study boundedness of the integral and derivative operators on the

Besov Ḃ
ψ,q
p , 1 ≤ p, q < ∞, and Triebel-Lizorkin spaces Ḟ

ψ,q
p , 1 < p, q < ∞, of

distributions of order ψ, where ψ is the quotient of two quasi-increasing functions
of adequate upper types. These spaces were defined in [HV] and they are a

generalization of the spaces Ḃα,qp and Ḟα,qp , −θ < α < θ, given by Han and
Sawyer [HS], in the setting of spaces of homogeneous type.
The authors proved Calderón-type reproduction formulas which are essential

for the definition of those spaces and to prove T1-theorems on them. In this
work those formulas are used to prove the boundedness of the operators on the
generalized Besov and Triebel-Lizorkin spaces.
This work is organized in the following way:
In Section 2 the class of functions involved in the ‘order’ of the integral and

derivative operators and in local regularity of our function and distribution spaces
is defined. Also the structure of normal spaces of homogeneous type, the test
function spaces, the notions of discrete and continuous (in the time variable)
approximations to the identity and the definitions of the generalized Besov and
Triebel-Lizorkin spaces are set there. The integral and derivative operators are
defined in Section 3 and the main theorems are stated in Section 4. Known results



Integral and derivative operators of functional order . . . 725

on the class of quasi-increasing functions and some consequences of them, the
Calderón-type reproduction formula and properties of the generalized Besov and
Triebel-Lizorkin spaces are given in Section 5. In Section 6 new representations
of the kernels of the integral and derivative operators are obtained and size and
smoothness properties are proved on them. Theorems of boundedness of the
operators on Lipschitz spaces are proved in Section 7. Lemmas needed to prove
boundedness theorems on Besov and Triebel-Lizorkin spaces are given in Section 8.
Finally, the proofs of those theorems are in Section 9.
Along this paper the constant C may change from one occurrence to another.

2. Preliminaries

In this paragraph we define the class of functions, moduli of continuity, control-
ling local regularity of the distribution spaces concerned and that are also related
to the operators defined in this work. Let us consider nonnegative functions φ
defined on the positive real numbers. The function φ(t) is quasi-increasing if there
is a positive constant C such that φ(t1) ≤ Cφ(t2) whenever t1 < t2.
Analogously, φ(t) is quasi-decreasing if there is a positive constant C such that if
φ(t2) ≤ Cφ(t1) for all t1 < t2.
Two functions ψ(t) and φ(t) are equivalent , ψ ≃ φ, if there are positive constants
C1 and C2 such that C1 ≤ φ/ψ ≤ C2.
The function φ(t), is of, or has, lower type α, 0 ≤ α <∞, if there is a constant

C1 > 0 such that

(2.3) φ(uv) ≤ C1u
αφ(v) for u < 1 and all v > 0.

Similarly, φ(t) is of upper type α, 0 ≤ α < ∞ if there is a constant C2 > 0 such
that

(2.4) φ(uv) ≤ C2u
αφ(v) for u ≥ 1 and all v > 0.

Nonnegative quasi-increasing functions φ such that limt→0+ φ(t) = 0 and having
finite upper type will be called growth functions .
Let notice that if φ(t) is of both lower type α and upper type β then α ≤ β. Also,
if φ(t) is of lower type α and 0 ≤ β < α then φ is of lower type β. Moreover, since
the condition φ(t) quasi-increasing implies, at least, lower-type 0 for φ, a function
φ(t) is quasi-increasing if, and only if, it is of lower type α for some α ≥ 0.
On the other hand, if φ(t) is of upper type α and β > α then φ is of upper type β,
and thus, if φ is of finite upper type there is a right half line of upper types for φ.
Let us notice that the condition of having finite upper type is equivalent to the
Orlicz condition ∆2, φ(2t) ≤ Aφ(t) for some positive constant A.
For example, the potential tα, with α ≥ 0, is of lower and upper type α. The
functions max(tα, tβ) and min(tα, tβ), with α < β, are both of lower type α and
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upper type β. Also, tβ(1 + log+ t), with β ≥ 0, is of lower type β and of upper
type β+ ǫ, for every ǫ > 0. More specific properties of this class that will be used
later in the main lemmas and theorems stated in Section 5.

Let us now define the structure of spaces of homogeneous type which is the
underlying geometry for the test functions spaces defined in this work.
Given a set X , a real valued function δ(x, y) defined on X×X is a quasi-distance
on X if there exists a constant A > 1 such that for all x, y, z ∈ X it verifies:

δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y

δ(x, y) = δ(y, x)

δ(x, y) ≤ A[δ(x, z) + δ(z, y)].

In a set X endowed with a quasi-distance δ(x, y), the balls Bδ(x, r) = {y :
δ(x, y) < r} form a basis of neighborhoods of x for the topology induced by the
uniform structure on X . Let µ be a positive measure on a σ- algebra of subsets of
X which contains the open set and the balls Bδ(x, r). The triple X := (X, δ, µ)
is a space of homogeneous type if there exists a finite constant A′ > 0 such that
µ(Bδ(x, 2r)) ≤ A′µ(Bδ(x, r)) for all x ∈ X and r > 0. Maćıas and Segovia, [MS],
showed that it is always possible to find a quasi-distance d(x, y) equivalent to
δ(x, y) and 0 < θ ≤ 1, such that

(2.5) |d(x, y)− d(x′, y)| ≤ Cr1−θd(x, x′)θ

holds whenever d(x, y) < r and d(x′, y) < r. If δ satisfies (2.5) then X is said to
be of order θ. Furthermore, X is a normal space if A1r ≤ µ(Bδ(x, r)) ≤ A2r for
every x ∈ X and r > 0 and some positive constants A1 and A2.

In this workX := (X, δ, µ)means a normal space of homogeneous type of order
θ and A denotes the constant of the triangular inequality associated to δ.

Let us now introduce the test function spaces which concern us in this work.
Given a quasi-increasing function ξ : R+ → R+ such that limt→0 ξ(t) = 0 and

limt→∞ ξ(t) = ∞, the Lipschitz space Λξ is the class of all functions f : X → C

such that
|f(x)− f(y)| ≤ Cξ(δ(x, y)) for every x, y ∈ X,

and the number |f |ξ denoting the infimum of the constants C appearing above,

defines a semi-norm on Λξ, since |f |ξ = 0 for all constant functions f .

Furthermore, given a ball B in X , Λξ(B) denotes the set of functions f ∈ Λξ with
support in B. Since, a function belonging to this space is bounded, the number
‖f‖ξ = ‖f‖∞ + |f |ξ defines a norm that gives a Banach structure to Λ

ξ(B).

We say that a function f belongs to Λ
ξ
0 if f ∈ Λξ(B) for some ball B. The space

Λ
ξ
0 is the inductive limit of the Banach spaces Λ

ξ(B).
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Finally, (Λ
ξ
0)

′ will mean the space of all continuous linear functionals on Λ
ξ
0.

When ξ(t) = tβ , with 0 < β ≤ θ, we have the classical Lipschitz spaces Λβ

and Λβ0 .

Another suitable class of test functions, the set M (β,γ), was defined in [HS].
Indeed, given 0 < β ≤ 1, γ > 0 and x0 ∈ X fixed, a function f is called a smooth
molecule of type (β, γ) of width d centered in x0, if there exists a constant C > 0
such that

(2.6) |f(x)| ≤ C
dγ

(d+ δ(x, x0))1+γ
,

(2.7) |f(x)−f(x′)| ≤ C

(

δ(x, x′)

d

)β ( dγ

(d+ δ(x, x0))1+γ
+

dγ

(d+ δ(x′, x0))1+γ

)

,

(2.8)

∫

f(x) dµ(x) = 0,

hold for every x ∈ X .
If the norm ‖f‖(β,γ) is defined by the infimum of the constants appearing in (2.6)

and (2.7), the set M (β,γ)(x0, d) of all smooth molecules of type (β, γ) of width
d centered in x0 is a Banach space. Fixing x0 ∈ X and d = 1, that space will

be named M (β,γ), and the set of all linear continuous functionals on M (β,γ) will

be called (M (β,γ))′. Along this work 〈h, f〉 denotes the natural application of

h ∈ (M (β,γ))′ to f ∈M (β,γ).

In order to define the generalized Besov and Triebel-Lizorkin spaces of dis-
tributions the definition of an approximation to the identity as given in [HS] is
needed.
A sequence (Sk)k∈Z of integral operators is called an approximation to the iden-
tity, if the kernels Sk(x, y) associated to Sk are functions from X × X to C

and there exist 0 < ǫ ≤ θ and a finite constant C such that for all k ∈ Z and
x, x′, y, y′ ∈ X they satisfy

Sk(x, y) = 0 if δ(x, y) ≥ (2A)
−k and ‖Sk‖∞ ≤ C(2A)k,(2.9)

|Sk(x, y)− Sk(x
′, y)| ≤ C(2A)k(1+ǫ)δ(x, x′)ǫ,(2.10)

|Sk(x, y)− Sk(x, y
′)| ≤ C(2A)k(1+ǫ)δ(y, y′)ǫ,(2.11)

|[Sk(x, y)− Sk(x, y
′)]− [Sk(x

′, y)− Sk(x
′, y′)]|

≤ C(2A)k(1+2ǫ)δ(x, x′)ǫδ(y, y′)ǫ,
∫

X
Sk(x, y) dµ(y) =

∫

X
Sk(x, y) dµ(x) = 1.(2.12)
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Throughout this paper, ǫ (0 < ǫ ≤ θ) will denote the constant associated to an
approximation to the identity satisfying (2.10), (2.11) and (2.12).
If (Sk)k∈Z is an approximation to the identity then the family of operators
Dk = Sk − Sk−1 satisfy

∑

k∈Z
Dk = I in L2, since limk→∞ Skf = f and

limk→−∞ Skf = 0 in L
2. Moreover, their associated kernels Dk(x, y) satisfy

properties (2.9) to (2.12) and

(2.13)

∫

X
Dk(x, y) dµ(y) =

∫

X
Dk(x, y) dµ(x) = 0.

Let us now define the spaces of distributions.
In the sequel we denote by ψ the function ψ = φ1/φ2, where φ1(t) and φ2(t) are
quasi-increasing functions of upper types s1 < ǫ and s2 < ǫ, respectively .

For f ∈ (M (β,γ))′, with 0 < β, γ < ǫ, a norm is defined by

(2.14) ‖f‖
Ḃψ,qp

=





∑

k∈Z

(
1

ψ((2A)−k)
‖Dkf‖p)

q





1
q

if 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,

with the obvious change for the case q = ∞. By interchanging the order of the
norms in Lp and lq, we also define

(2.15) ‖f‖
Ḟψ,qp

=

∥

∥

∥

∥

∥

∥

∥





∑

k∈Z

(
1

ψ((2A)−k)
|Dkf |)

q





1
q

∥

∥

∥

∥

∥

∥

∥

Lp

, if 1 < p, q <∞.

The Besov space Ḃ
ψ,q
p , 1 ≤ p, q ≤ ∞, is the set of all f ∈

(

M (β,γ)
)′
with β > s1

and γ > s2, such that

‖f‖
Ḃψ,qp

<∞ and |〈f, h〉| ≤ C‖f‖
Ḃψ,qp

‖h‖(β,γ),

for all h ∈M (β,γ).
Analogously, The Triebel-Lizorkin space Ḟψ,qp , with 1 < p, q <∞, is the set of all

f ∈ (M (β,γ))′, with β > s1 and γ > s2, such that

‖f‖
Ḟψ,qp

<∞, and |〈f, h〉| ≤ ‖f‖
Ḟψ,qp

‖h‖(β,γ),

for all h ∈M (β,γ).
When ψ(t) = tα and −ǫ < α < ǫ, the definitions of the Besov spaces Ḃ

α,q
p and

the Triebel-Lizorkin spaces Ḟα,qp given in [HS] are recovered.

Finally, to build our operators we consider a symmetric approximation to the
identity, {St}t>0, as defined in [GSV]. This collection can be built in a similar
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fashion to that of the family {Sk}k∈Z and the kernel st(x, y) associated to St
satisfies the following properties:
There are positive constants, b1, b2, c1, c2 and c3, such that for all x, y ∈ X and
t > 0, st(x, y) satisfies

st(x, y) = st(y, x),(2.16)

0 ≤ st(x, y) ≤ c1/t,(2.17)

st(x, y) = 0 if δ(x, y) > b1t and c2/t < st(x, y) if δ(x, y) < b2t,(2.18)

|st(x, y)− st(x
′, y)| < c3δ

θ(x, x′)/t1+θ for all x, x′, y ∈ X,(2.19)
∫

st(x, y) dµ(y) = 1, for all x ∈ X,(2.20)

st(x, y) is continuously differentiable in t.(2.21)

3. Integral and derivative operators of order φ

Consider a symmetric approximation to the identity, {St}t>0, whose kernels
satisfy properties (2.16) to (2.21), and a quasi-increasing function φ : R+ → R+

such that limt→0+ φ(t) = 0.
We now define

Kφ(x, y) =

∫ ∞

0

φ(t)

t
st(x, y) dt for x 6= y.

Clearly, Kφ(x, y) > 0 and Kφ(x, y) = Kφ(y, x) for every (x, y).
If φ is of positive lower type and upper type sφ < 1 the integral operator of order

φ, Iφ, and its extension Ĩφ are defined in the following way:
Let ξ be a quasi-increasing function of upper type β.
If β > 0 and f ∈ Λξ ∩ L1 then

(3.22) Iφf(x) :=

∫

X
Kφ(x, y)f(y) dµ(y),

If β + sφ < θ and f ∈ Λξ then

(3.23) Ĩφf(x) :=

∫

X
(Kφ(x, y)−Kφ(x0, y))f(y) dµ(y),

for every x ∈ X and an arbitrary fixed x0 ∈ X .
On the other hand, for φ of finite upper-type we define

K1/φ(x, y) =

∫ ∞

0

1

φ(t)t
st(x, y) dt, for x 6= y.
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Clearly K1/φ is positive and symmetric.

If φ is a function of lower type iφ > 0 and upper type sφ the derivative operator

of order φ, Dφ, and its extension, D̃φ are defined as follows:
For any function ξ of lower type α and of upper type β, such that sφ < α,

if f ∈ Λξ ∩ L∞, then

(3.24) Dφf(x) =

∫

X
K1/φ(x, y)(f(y)− f(x)) dµ(y)

and if f ∈ Λξ, then

(3.25) D̃φf(x) =

∫

X
(K1/φ(x, y)(f(y)−f(x))−K1/φ(x0, y)(f(y)−f(x0))) dµ(y)

for each x ∈ X and an arbitrary, but fixed, x0 ∈ X .

4. Main theorems

Theorem 4.1. Let φ be of lower type iφ > 0 and upper type sφ < 1 and ξ a
quasi-increasing function of upper type β.
If f ∈ Λξ ∩ L1 and β > 0 then Iφf(x) converges absolutely for all x and if,

moreover, β+ sφ < θ then there is a constant C > 0, independent of f , such that

|Iφf |Λξφ ≤ C|f |Λξ .

If f ∈ Λξ and β + sφ < θ then Ĩφf(x) converges absolutely for all x and there is
a constant C > 0, independent of f , such that

|Ĩφf |Λξφ ≤ C|f |Λξ .

Moreover, if f ∈ Λξ∩L1, then Ĩφf coincides with Iφf as an element of Λ
ξφ (since

Ĩφf(x) = Iφf(x)− Iφf(x0)).

Theorem 4.2. Let φ be a function of lower type iφ > 0 and upper type sφ.
Let also ξ be a quasi-increasing function of lower type α and upper type β. If
f ∈ Λξ ∩ L∞ and sφ < α then Dφf(x) is absolutely convergent for every x ∈ X
and if, also, β < θ + iφ then

‖Dφf‖ξ/φ ≤ C‖f‖ξ.

If f ∈ Λξ, sφ < α and β < θ+ iφ then D̃φf(x) is absolutely convergent for every
x ∈ X and

|D̃φf |ξ/φ ≤ C|f |ξ .

Moreover, if f ∈ Λξ ∩ L∞, then D̃φf coincides with Dφf as an element of Λ
ξ,

(since D̃φf(x) = Dφf(x)−Dφf(x0)).

In the following theorems we use the notation ψ = ψ1/ψ2, where ψ1 and ψ2
are quasi-increasing functions of upper types s1 and s2 respectively.
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Theorem 4.3. Let φ be a function of lower type iφ > 0 and upper type sφ < ǫ.
If s1 + sφ < ǫ and s2 + sφ − iφ < ǫ, then Iφ is a linear continuous operator from

Ḟ
ψ,q
p to Ḟ

φψ,q
p , for 1 < p, q <∞.

Theorem 4.4. Let φ be a function of lower type iφ > 0 and upper type sφ < ǫ.
If s1 + sφ < ǫ and s2 + sφ − iφ < ǫ then Iφ is a linear continuous operator from

Ḃ
ψ,q
p to Ḃ

φψ,q
p , for 1 ≤ p, q <∞.

Theorem 4.5. Let φ be a function of positive lower type and of upper type
sφ < ǫ. If s1 < ǫ and sφ + s2 < ǫ then, Dφ is a linear continuous operator from

Ḟψ,qp to Ḟ
ψ/φ,q
p , for 1 < p, q <∞.

Theorem 4.6. Let φ be of positive lower type and of upper type sφ < ǫ. If

s1 < ǫ and sφ + s2 < ǫ then Dφ is a linear continuous operator from Ḃ
ψ,q
p to

Ḃ
ψ/φ,q
p , for 1 ≤ p, q <∞.

5. Previous results

We begin this section giving some special properties of the class of functions
acting as moduli of continuity but also as order of integration and derivation.
These properties will be used later in the proof of the main lemmas and theorems.
Unless special difficulty or interest of their proof, these are omitted for the sake
of briefness.
The following two statements are alternative definitions of lower and upper type.
If φ(t) is of upper type sφ then there is a constant C > 0 such that

(5.26) φ(uv) ≥
1

C
usφφ(v), for u < 1 and all v > 0.

Similarly, if φ(t) is of lower type iφ then there is a constant C > 0 such that

(5.27) φ(uv) ≥
1

C
uiφφ(v), for u ≥ 1, and all v > 0.

Proposition 5.1. Given two functions φ(t) of lower type α and ξ(t) of upper
type β ≤ α, the function φ(t)/ξ(t) is quasi-increasing.

The following proposition shows how to obtain regularizations of a quasi-
increasing function of positive lower type.

Proposition 5.2. If φ(t) is of positive lower type α and finite upper type β then,
for any 0 < γ < α, the function

ψ(t) = tγ
∫ t

0

φ(u)

uγ+1
du

is a strictly increasing and differentiable function equivalent to φ. Moreover, its
inverse ψ−1 is of lower type β−1 and of upper type α−1.

Two applications of the previous statement that will be frequently used later
are stated and proved next.
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Corollary 5.1. If φ is a quasi-increasing function of upper type sφ < 1 then

there is an equivalent function φ̃ such that φ̃(t)/t is a strictly decreasing and
differentiable function on the positive real numbers.

Proof: Indeed, since t/φ(t) is of lower type 1− sφ > 0 and of upper type 1, we
consider a strictly increasing differentiable function, ψ(t), equivalent to t/φ(t), as

given in Proposition 5.2. The function φ̃ = t/ψ(t) satisfies our statement. �

Corollary 5.2. If φ(t) is function so that tφ(t) is of positive lower type and finite

upper type then there exists a function φ̂(t) equivalent to φ(t), such that tφ̂(t) is
a strictly increasing, differentiable function defined in R+.

Proof: The statement follows by defining φ̂(t) = ψ̂(t)/t, where ψ̂(t) is a strictly
increasing and differentiable function equivalent to tφ(t). �

The proof of the next proposition follows by dyadic partition of the domain of
integration.

Proposition 5.3. Let φi(t) be a function of lower type αi and of upper type βi,
i = 1, 2. The following inequalities hold for x ∈ X and r > 0:

(5.28) If α1 > β2 then

∫

δ(x,y)≤r

φ1(δ(x, y))

φ2(δ(x, y))δ(x, y)
dµ(y) ≤ C

φ1(r)

φ2(r)
.

(5.29) If β1 < α2 then

∫

δ(x,y)≥r

φ1(δ(x, y))

φ2(δ(x, y))δ(x, y)
dµ(y) ≤ C

φ1(r)

φ2(r)
.

In the following paragraph we recall the Calderón-type reproduction formulas,
stated by Han and Sawyer in the context of spaces of homogeneous type, which
are the essential tool used to develop Littlewood-Paley characterizations of the
Besov and Triebel-Lizorkin spaces and the theorems of continuity of our operators
on those spaces. The proof of these formulas is given in [HS].

Theorem 5.1. Let (Sk)k∈Z be an approximation to the identity and set Dk =

Sk − Sk−1. Then, there exist families of operators (D̃k)k∈Z
and (D̂k)k∈Z

such

that for all f ∈M (β,γ)

f =

∞
∑

k=−∞

D̃kDkf =

∞
∑

k=−∞

DkD̂kf,

where the series converges in M (β
′,γ′), for β′ < β and γ′ < γ.

Let us notice that if (D̃k)k∈Z
and (D̂k)k∈Z

are as in Theorem 5.1 then their associ-

ated kernels D̃k(x, y) and D̂k(x, y) are (ǫ
′, ǫ′)-smooth molecules of width (2A)−k,
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as functions of the first and second variable respectively, for each 0 < ǫ′ < ǫ.

Then D̃∗
kf and D̂

∗
kf ∈M (β,γ), whenever f ∈M (β,γ), 0 < β, γ < ǫ.

Thus, for h ∈ (M (β,γ))′ D̃kh and D̂kh are defined as elements of (M
(β,γ))′ by

〈D̃kh, f〉 = 〈h, D̃∗
kf〉 and 〈D̂kh, f〉 = 〈h, D̂∗

kf〉. Therefore, the formulas in Theo-
rem 5.1 will also hold true in the sense of distributions. More precisely,

Theorem 5.2. Let (Dk)k∈Z, (D̃k)k∈Z and (D̂k)k∈Z be as in Theorem 5.1. Then

for all f ∈ (M (β,γ))′,

f =

∞
∑

k=−∞

D̃kDkf =

∞
∑

k=−∞

DkD̂kf,

in the sense of

〈f, g〉 = lim
M→∞

〈
∑

|k|≤M

D̃kDkf, g〉 = lim
M→∞

〈
∑

|k|≤M

DkD̂kf, g〉

for all g ∈M (β
′,γ′), with β′ > β and γ′ > γ.

The Calderón-type reproduction formulas allow us to prove that if the operators
Dk in the definitions of the norms of the spaces are replaced by Ek = Pk −
Pk−1, where (Pk)k∈Z is another approximation to the identity of order ǫ ≤ θ, the
resulting norms are equivalent to those defined in (2.14) and (2.15) (for the proof
of this fact see [HS] for the classical spaces or [H] for the generalized ones). The

same result is true if the operators Dk are replaced by D̃k or D̂k.

In the following two lemmas the main properties of the generalized Besov and
Triebel-Lizorkin spaces are stated without proof, for the sake of briefness.

Lemma 5.3. The classes Ḃ
ψ,q
p , 1 ≤ p, q < ∞ and Ḟ

ψ,q
p , 1 < p, q < ∞ are

Banach spaces and their dual spaces are Ḃ
1/ψ,q′

p′ and Ḟ
1/ψ,q′

p′ respectively, with

1/p+ 1/p′ = 1 and 1/q + 1/q′ = 1.

Lemma 5.4. The molecular spaceM (β,γ) is embedded in Ḃ
ψ,q
p , 1 ≤ p, q <∞ and

Ḟ
ψ,q
p , 1 < p, q <∞, when s1 < β and s2 < γ. Moreover,M (ǫ

′,ǫ′) is dense in Ḃ
ψ,q
p ,

1 ≤ p, q <∞ and Ḟψ,qp , 1 < p, q <∞, for all ǫ′, such that max(s1, s2) < ǫ′ < ǫ.

In the setting of Rn and for q =∞, unified approaches between Besov spaces of
order ξ related to a Banach space E of functions (in our definitions E = Lp) and
Lipschitz classes of distributions whose moduli of continuity in E are dominated
by ξ are treated in [J] and [B]. See also [I] for the inhomogeneous case. The

identification between the Sobolev space of fractional order L̇p,α and Ḟ
α,q
p in the

setting of spaces of homogeneous type is treated in [GV].
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6. Main lemmas

Let now define two quasi-metrics associated to φ and equivalent to δ and obtain
new representations of the kernels of Iφ and Dφ in terms of each quasi-metric.
Consider a quasi-increasing function φ of upper-type sφ < 1 and a fix function

φ̃, as given in Corollary 5.1. We define δφ : X ×X → R in the following way: for
every pair (x, y) ∈ X , δφ(x, y) is the unique solution of

(6.30)

φ̃(δφ(x, y))

δφ(x, y)
=

∫ ∞

0

φ(t)

t
st(x, y) dt if x 6= y,

δφ(x, y) = 0 if x = y.

We then have that

Kφ(x, y) =
φ̃(δφ(x, y))

δφ(x, y)
for x 6= y.

When φ(t) = tα, 0 < α < 1, we can choose φ̃ = φ and then δα := δφ is the
quasi-metric associated to Iα defined in (1.1).
The next lemma proves that Kφ(x, y) is equivalent to φ(δ(x, y))/δ(x, y).

Lemma 6.1. If φ is of upper type sφ < 1 then there are positive constants C1
and C2 such that for δ(x, y) > 0,

(6.31) C2
φ(δ(x, y))

δ(x, y)
≤
φ̃(δφ(x, y))

δφ(x, y)
≤ C1

φ(δ(x, y))

δ(x, y)
.

Proof: By (2.17) and (2.18), it holds that
∫ ∞

0

φ(t)

t
st(x, y) dt ≤ c1

∫ ∞

δ(x,y)/b1

φ(t)

t2
dt.

The substitution t = uδ(x, y)/b1 and inequality (2.4) yield to

(6.32)

∫ ∞

0

φ(t)

t
st(x, y) dt ≤

c1b1
δ(x, y)

φ(
δ(x, y)

b1
)

∫ ∞

1

1

u2−sφ
du ≤ C1

φ(δ(x, y))

δ(x, y)

since sφ < 1 and φ(s/b1) ≤ Cmax(1, 1/b
sφ
1 )φ(s) for all s > 0.

On the other hand, by (2.18) and the fact that φ is quasi-increasing, it follows
that

(6.33)

∫ ∞

0

φ(t)

t
st(x, y) dt ≥ c2

∫ ∞

δ(x,y)/b2

φ(t)

t2
dt

≥ Cc2
φ(δ(x, y)/b2)

δ(x, y)/b2

∫ ∞

1

1

u2
du = C2

φ(δ(x, y))

δ(x, y)
,
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since φ(s/b2) ≥ Cmin(1, 1/b
sφ
2 )φ(s) for all s > 0. From definition (6.30) and the

above inequalities then (6.31) follows. �

As an immediate consequence of the previous lemma we have

(6.34) 0 < Kφ(x, y) ≤ C
φ(δ(x, y))

δ(x, y)
.

Lemma 6.2. If φ(t) is of upper type sφ < 1 then δφ is a quasi-metric equivalent
to δ.

Proof: Since sφ < 1, from (6.31) and φ ≃ φ̃ it follows that

(6.35) C′
2
φ̃(δ(x, y))

δ(x, y)
≤
φ̃(δφ(x, y))

δφ(x, y)
≤ C′

1
φ̃(δ(x, y))

δ(x, y)
.

Nevertheless, since ψ(t) = t/φ̃(t) is increasing and invertible and its inverse func-
tion is of finite upper type, it follows that

C′′
1 δ(x, y) ≤ δφ(x, y) ≤ C′′

2 δ(x, y).

Clearly, from the above equivalence turns out that δφ is a quasi-metric. �

The next two lemmas state smoothness and cancellation properties of Kφ.

Lemma 6.3. Let φ be of upper type sφ < 1. Then

(6.36) |Kφ(x, y)−Kφ(x
′, y)| ≤ C

(

δ(x, x′)

δ(x, y)

)θ φ(δ(x, y))

δ(x, y)

whenever δ(x, y) ≥ 2Aδ(x, x′).

Proof: Let a = b−11 min{δ(x, y), δ(x
′, y)} where b1 is that defined in (2.18). From

(6.30), it follows that

|Kφ(x, y)−Kφ(x
′, y)| ≤

∫ ∞

a

φ(t)

t
|st(x, y)− st(x

′, y)| dt.

From the smoothness property (2.19) of st it follows that

(6.37) |Kφ(x, y)−Kφ(x
′, y)| ≤

∫ ∞

a

φ(t)

t

δ(x, x′)θ

t1+θ
dt.

Since sφ < 1, Proposition 5.1 says that φ(t)/t is quasi-decreasing and then,

(6.38) |Kφ(x, y) −Kφ(x
′, y)| ≤ Cδ(x, x′)θ

φ(a)

a1+θ
.

Since δ(x, y) ≥ 2Aδ(x, x′) then δ(x, y) ≤ 2Aδ(x′, y) and thus, δ(x, y) ≤ 2Ab1a.

But, since φ(t)/tl is quasi-decreasing whenever l > sφ, it follows that

|Kφ(x, y)−Kφ(x
′, y)| ≤ Cδ(x, x′)θ

φ(δ(x, y))

δ(x, y)1+θ

which is our statement. �
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Lemma 6.4. Let φ be of upper type sφ < θ. Then

(6.39)

∫

X
[Kφ(x, y)−Kφ(x

′, y)] dµ(y) = 0,

for every x and x′ ∈ X .

Proof: First notice that the integral in (6.39) is absolutely convergent. Indeed,
(6.30), (2.17) and (2.18) yield to

(6.40)

∫

X

∫ 1

0

φ(t)

t
|st(x, y)− st(x

′, y)| dt dµ(y)

≤ C

∫ 1

0

φ(t)

t

∫

X
(|st(x, y)|+ |st(x

′, y)|) dµ(y) dt ≤ C

∫ 1

0

φ(t)

t
dt <∞.

Moreover, from (2.19) it follows that

(6.41)

∫

X

∫ ∞

1

φ(t)

t
|st(x, y)− st(x

′, y)| dt dµ(y)

≤ C(δ(x, x′))θ
∫ ∞

1

φ(t)

t2+θ

∫

δ(x,y)<b1t∨δ(x′,y)<b1t
dµ(y) dt

≤ C(δ(x, x′))θ
∫ ∞

1

φ(t)

t1+θ
dt

≤ C(δ(x, x′))θ
∫ ∞

1

1

t1+θ−sφ
dt <∞.

Therefore, (6.39) is obtained by Fubini’s theorem and (2.20). �

Consider now a quasi-increasing function φ of finite upper type and the function

φ̂, as given by Corollary 5.2. We then define δ1/φ : X×X → R such that δ1/φ(x, y)
is the unique solution of the equation

(6.42)

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
=

∫ ∞

0

1

φ(t)t
st(x, y) dt if x 6= y, and

δ1/φ(x, y) = 0 if x = y.

Hence we have that

K1/φ(x, y) =
1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
for x 6= y.

When φ(t) = tα, 0 < α < 1, choosing φ̂ = φ it turns out that δ−α := δt−α is the
quasi-metric associated to Dα defined in (1.2).
The following results are obtained in an analogous way to the case of Iφ and

their proof is omitted for the sake of briefness. The first one states that K1/φ(x, y)

is equivalent to 1/(φ(δ(x, y))δ(x, y)).
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Lemma 6.5. If φ is quasi-increasing then there are positive constants C1 and
C2 such that

(6.43) C1
1

φ(δ(x, y))δ(x, y)
≤

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
≤ C2

1

φ(δ(x, y))δ(x, y)
.

Moreover, δ1/φ is a quasi-metric equivalent to δ.

From the above lemma, the size estimate immediately follows

(6.44) 0 < K1/φ(x, y) < C
1

φ(δ(x, y))δ(x, y)
.

Lemma 6.6. If φ is a quasi-increasing function of finite upper type then

(6.45)

|K1/φ(x, y)−K1/φ(x
′, y)|+ |K1/φ(y, x)−K1/φ(y, x

′)|

≤ C

(

δ(x, x′)

δ(x, y)

)θ 1

φ(δ(x, y))δ(x, y)

for δ(x, y) ≥ 2Aδ(x, x′).

7. Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1: Let us first see that Iφf(x) is absolutely convergent
for every x ∈ X . From (6.30), it follows that

(7.46)

∫

X
|Kφ(x, y)||f(y)| dµ(y) ≤ C

∫

X

φ(δ(x, y))

δ(x, y)
|f(y)| dµ(y),

= C

(

∫

δ(x,y)≤1
+

∫

δ(x,y)>1

)

φ(δ(x, y))

δ(x, y)
|f(y)| dµ(y) = I1 + I2.

Applying (5.28) since iφ > 0, and the fact that ξ is quasi-increasing it follows that

(7.47)

I1 ≤ C

∫

δ(x,y)≤1

φ(δ(x, y))

δ(x, y)
(|f(y)− f(x)|+ |f(x)|) dµ(y)

≤ C|f |ξ

∫

δ(x,y)≤1

(φξ)(δ(x, y))

δ(x, y)
dµ(y)

+ C|f(x)|

∫

δ(x,y)≤1

φ(δ(x, y))

δ(x, y)
dµ(y)

≤ C(ξ(1)|f |ξ + |f(x)|)

≤ C(|f |ξ + |f(x)|).
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Furthermore, since sφ < 1, φ(t)/t is quasi-decreasing and

(7.48) I2 ≤ C

∫

δ(x,y)>1

φ(δ(x, y))

δ(x, y)
|f(y)| dµ(y) ≤ C‖f‖1.

Inequalities (7.47) and (7.48) lead to the bound

(7.49) |Iφf(x)| ≤

∫

X
|Kφ(x, y)||f(y)| dµ(y) < C(|f |ξ + |f(x)|+ ‖f‖1),

for every x ∈ X .
In order to prove that Ĩφ is well defined we follow the idea of the above proof.

In fact, using (5.28) for δ(x, y) ≤ 2Aδ(x, x0) and, on the other hand, (6.36), the
fact that sφ + β < θ, and (5.29) for δ(x, y) ≥ 2Aδ(x, x0), it is not hard to prove
that
∫

X
|Kφ(x, y)−Kφ(x0, y)||f(y)| dµ(y) < Cφ(δ(x, x0))(ξ(δ(x, x0))|f |ξ + |f(x)|),

for every x, x0 ∈ X .
To prove that |Iφf |φξ ≤ C|f |ξ and |Ĩφf |φξ ≤ C|f |ξ it is enough to consider

x1, x2 ∈ X , x1 6= x2, set r = δ(x1, x2) and to show that there is a constant C > 0
such that

(7.50) |Ĩφf(x2)− Ĩφf(x1)| = |Iφf(x2)− Iφf(x1)| ≤ C|f |ξξ(r)φ(r),

where it must be understood that f ∈ Λξ for Ĩφ and f ∈ Λξ ∩ L1 for Iφ. By
Lemma 6.4 we can write

Ĩφf(x2)− Ĩφf(x1) = Iφf(x2)− Iφf(x1)

=

∫

X
(f(y)− f(x2))(Kφ(x2, y)−Kφ(x1, y)) dµ(y)

and the right hand side in the above equalities is bounded by

(7.51)

∫

δ(y,x2)≤2Ar

φ(δ(y, x2))

δ(y, x2)
|f(y)− f(x2)| dµ(y)

+

∫

δ(y,x2)≤2Ar

φ(δ(y, x1))

δ(y, x1)
|f(y)− f(x2)| dµ(y)

+

∫

δ(y,x2)>2Ar
|Kφ(x2, y)−Kφ(x1, y)||f(y)− f(x2)| dµ(y)

= J1 + J2 + J3.
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Denote B = B(x2, 2Ar) and B
c its complement. From the smoothness condition

of f and since ξφ is of positive lower type it holds that

(7.52) J1 ≤ C|f |ξ

∫

B

φ(δ(y, x2))

δ(y, x2)
ξ(δ(y, x2)) dµ(y) ≤ C|f |ξ,ξ(r)φ(r).

On the other, since B ⊂ B(x1, A(2A + 1)r), ξ is quasi-increasing and φ is of
positive lower type, it holds that

(7.53) J2 ≤ C|f |ξ

∫

B

φ(δ(y, x1))

δ(y, x1)
ξ(δ(y, x2)) dµ(y) ≤ C|f |ξξ(r)φ(r).

Finally, the smoothness conditions on the kernel and on f , the condition β+sφ < θ
and Proposition 5.3 are used to get

(7.54) J3 ≤ C|f |ξr
θ
∫

Bc

φ(δ(y, x2))ξ(δ(y, x2))

δ(y, x2)1+θ
dµ(y) ≤ C|f |ξξ(r)φ(r).

�

Remarks 7.1. From inequality (7.49) it also follows that Iφ is a linear continuous

operator from M (β1,γ1) to (M (β2,γ2))′, for every β1, γ1, β2 and γ2 > 0. More pre-
cisely, there is a finite constant C such that |〈Iφf, g〉| ≤ C‖f‖M (β1,γ1)‖g‖M (β2,γ2) ,

for every pair f ∈M (β1,γ1) and g ∈M (β2,γ2) and, moreover, it holds that

(7.55) 〈Iφf, g〉 = 〈f, Iφg〉 =

∫∫

Kφ(x, y)f(y)g(x) dµ(y) dµ(x).

Proof of Theorem 4.2: By (6.43) we have

(7.56)

∫

X
|K1/φ(x, y)||f(y)− f(x)| dµ(y) ≤ C

∫

δ(x,y)≤1

|f(y)− f(x)|

φ(δ(x, y))δ(x, y)
dµ(y)

+ C

∫

δ(x,y)>1

|f(y)− f(x)|

φ(δ(x, y))δ(x, y)
dµ(y) = I1 + I2.

Since sφ < α, from (5.28) it follows that

(7.57) I1 ≤ C|f |ξ

∫

δ(x,y)≤1

ξ(δ(x, y))

φ(δ(x, y))δ(x, y)
dµ(y) ≤ C|f |ξ .

Furthermore, since iφ > 0 and f ∈ L∞, (5.29) leads to

(7.58) I2 ≤ 2C‖f‖∞

∫

δ(x,y)>1

1

φ(δ(x, y))δ(x, y)
dµ(y) ≤ C‖f‖∞,
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and thus, from (7.57) and (7.58),

(7.59)

∫

X
|K1/φ(x, y)||f(y)− f(x)| dµ(y) ≤ C‖f‖ξ for every x ∈ X,

which implies that

(7.60) ‖Dφf‖∞ ≤ C‖f‖ξ for sφ < α.

To show that D̃φf(x) is absolutely convergent for f ∈ Λξ and |D̃φf |ξ/φ =

|Dφf |ξ/φ ≤ C|f |ξ , it is enough to prove that

(7.61)

∫

X
|K1/φ(x, y)(f(y) − f(x))−K1/φ(x0, y)(f(y)− f(x0))| dµ(y)

≤ C|f |ξ
ξ(δ(x, x0))

φ(δ(x, x0))
, for every x, x0 ∈ X.

Firstly, if y ∈ B = B(x, 2Aδ(x, x0)) then δ(y, x0) ≤ A(2A + 1)δ(x, x0), and
proceeding as in (7.57), since sφ < α, we have

(7.62)

∫

B
|K1/φ(x, y)(f(y)− f(x)) −K1/φ(x0, y)(f(y)− f(x0))| dµ(y)

≤ C|f |ξ
ξ(δ(x, x0))

φ(δ(x, x0))
.

Moreover, by reordering the integrand, it follows that

(7.63)

∫

Bc
K1/φ(x, y)(f(y)− f(x))−K1/φ(x0, y)(f(y)− f(x0))| dµ(y)

≤

∫

Bc
K1/φ(x, y)|f(x0)− f(x)| dµ(y)

+

∫

Bc
|f(y)− f(x0)||K1/φ(x, y)−K1/φ(x0, y)| dµ(y) = J1 + J2.

From (5.29) and iφ > 0 it follows that

J1 ≤ C|f |ξ
ξ(δ(x, x0))

φ(δ(x, x0))
.

On the other hand, Proposition 6.45, the facts that if y ∈ Bc then δ(y, x0) ≤
Cδ(x, y), ξ is quasi-increasing and finally, inequality (5.29), since β < θ+ iφ, lead
to the bound

J2 ≤ C|f |ξδ(x, x0)
θ
∫

Bc

ξ(δ(x, y))

δ(x, y)1+θφ(δ(x, y))
dµ(y) ≤ C|f |ξ

ξ(δ(x, x0))

φ(δ(x, x0))
.

We then arrived to inequality (7.61). �
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Remarks 7.2. Let ξi be a function of lower type αi and upper type βi for i = 1, 2
and let sφ < α1. Then

(7.64) 〈Dφf, g〉 =

∫∫

K1/φ(x, y)(f(y)− f(x))g(x) dµ(x) dµ(y),

for any f ∈ Λξ1 ∩ L∞ and g ∈ L1.
Furthermore, if f ∈ Λξ1 ∩ L∞ ∩ L1, g ∈ Λξ2 ∩ L∞ ∩ L1, and sφ < α2 then

(7.65) 〈Dφf, g〉 = 〈Dφg, f〉.

Indeed, by (7.60), if f ∈ Λξ1∩L∞, with sφ < α1, then Dφf ∈ L∞ and 〈Dφf, g〉

is well defined for g ∈ L1 and the left side of (7.64) is absolutely convergent. The
identity then follows from Fubini’s theorem.
Moreover, we have that |〈Dφf, g〉| ≤ C‖f‖ξ‖g‖L1.

Furthermore, if f ∈ Λξ1 ∩L∞∩L1, g ∈ Λξ2 ∩L∞∩L1, and sφ < α2, the previous
argument also leads to the identity

(7.66) 〈Dφg, f〉 =

∫∫

K1/φ(x, y)(g(y) − g(x))f(x) dµ(x) dµ(y).

Therefore,

(7.67)

〈Dφf, g〉 − 〈Dφg, f〉

=

∫∫

K1/φ(x, y)(f(y)g(x)− f(x)g(y)) dµ(x) dµ(y) = 0

since the integrand h(x, y) satisfies the condition h(x, y) = −h(y, x) and
∫∫

h(x, y) dµ(x) dµ(y) is absolutely convergent.

Remarks 7.3. Since M (β,γ) ⊂ Λβ ∩ L∞ ∩ L1, for any β and γ > 0, from

Remark 7.2 follows that Dφ is a linear continuous operator from M (β1,γ1) in

(M (β2,γ2))′, for sφ < β1, γ1, γ2 > 0 and β2 > 0. Moreover, if also sφ < β2 then
〈Dφf, g〉 = 〈Dφg, f〉.

8. Lemmas needed to prove Theorems 4.3, 4.4, 4.5 and 4.6

Seeking for the continuity of the operator Iφ on the generalized Besov and
Triebel-Lizorkin spaces, a representation of the operator Iφ in terms of the Cal-
derón-type reproduction formulas is needed.
Let consider an approximation to the identity {Sk}k∈Z of order ǫ ≤ θ and the

family {Dk = Sk − Sk−1}k∈Z. Given f ∈ M (β1,γ1), with 0 < β1 ≤ 1 and γ1 > 0,
by Theorem 5.1 it follows that

(8.68) f = lim
M→∞

∑

|j|≤M

DjD̂jf,
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where the series converges in M (β
′,γ′) for every β′ < β1 and γ

′ < γ1. Moreover,

by Remark 7.1 Iφ is a linear continuous operator from M (β
′,γ′) into (M (β

′′,γ′′))′,

for every β′′ > 0 and γ′′ > 0. Then, for g ∈ M (β2,γ2), 0 < β2 ≤ 1 and γ2 > 0, it
holds that

(8.69) 〈Iφf, g〉 = lim
M→∞

∑

|j|≤M

〈IφDjD̂jf, g〉.

Choosing β′′ < β2 and γ
′′ < γ2 and now applying Theorem 5.2 it follows that

〈Iφf, g〉 = lim
M→∞

lim
N→∞

∑

|k|≤N

∑

|j|≤M

〈D̃kDkIφDjD̂jf, g〉

= lim
M→∞

lim
N→∞

∑

|k|≤N

∑

|j|≤M

〈DkIφDj(D̂jf), D̃
∗
kg〉.

It is easy to check that the kernel associated to the operator Iφ,kj = DkIφDj is
defined by

(8.70)

Kφ,kj(x, y) = 〈Dk(x, .), IφDj(., y)〉

=

∫∫

Dk(x, z)Kφ(z, u)Dj(u, y) dµ(u) dµ(z),

and it satisfies

(8.71) Kφ,kj(x, y) = Kφ,jk(y, x), for every x, y ∈ X and k, j ∈ Z.

In an analogous way, Remark 7.3 yields a representation of Dφ in terms of the
Calderón-type reproduction formulas. Indeed, we get that

〈Dφf, g〉 = lim
M→∞

lim
N→∞

∑

|k|≤N

∑

|j|≤M

〈D̃kDkDφDjD̂jf, g〉

= lim
M→∞

lim
N→∞

∑

|k|≤N

∑

|j|≤M

〈DkDφDj(D̂jf), D̃
∗
kg〉,

for every pair of functions f ∈ M (β1,γ1) and g ∈ M (β2,γ2), with sφ < β1 and
β2, γ1, γ2 > 0. The kernel associated to the operator Dφ,kj = DkDφDj is given
by

(8.72)

K1/φ,kj(x, y) = 〈DφDj(., y), Dk(x, .)〉

=

∫∫

Dk(x, z)K1/φ(z, u)(Dj(u, y)−Dj(z, y)) dµ(u) dµ(z),

which is well defined by Remark 7.2. Moreover, since the kernels Dk(x, z) and
Dj(u, y) are symmetric, from (7.65) it follows that

(8.73) K1/φ,kj(x, y) = K1/φ,jk(y, x).

A sharp bound for Kφ,kj(x, y) will be obtained in the following lemma.
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Lemma 8.1. If φ is of positive lower type and of upper type sφ < ǫ ≤ θ then
the kernel Kφ,kj satisfies the inequality

(8.74) |Kφ,kj(x, y)| ≤ Cφ((2A)−(k∨j))
(2A)−(k∨j)(ǫ−sφ)

((2A)−(k∧j) + δ(x, y))1+(ǫ−sφ)

where a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proof: It is enough to consider the case k ≥ j since the other immediately follows
from this by (8.71). From (8.70) and as Dk has null mean in each variable, the
kernel can be rewritten in the form

(8.75) Kφ,kj(x, y) =

∫∫

Dk(x, z)[Kφ(z, u)−Kφ(x, u)]Dj(u, y) dµ(u) dµ(z) .

Let first consider the case δ(x, y) ≤ 4A2C(2A)−j . Defining η(t) ∈ Λǫ, with
η(t) = 1 if |t| ≤ A and η(t) = 0 if |t| > 4A2, by Lemma 6.4 it holds that

Kφ,kj(x, y) =

∫∫

Dk(x, z)
(

Kφ(z, u)−Kφ(x, u)
)

×
(

Dj(u, y)−Dj(x, y)
)

η(
δ(x, u)

(2A)−k
) dµ(u) dµ(z)

+

∫∫

Dk(x, z)
(

Kφ(z, u)−Kφ(x, u)
) (

Dj(u, y)−Dj(x, y)
)

×

(

1− η(
δ(x, u)

(2A)−k
)

)

dµ(u) dµ(z) = D +B.

The first term D satisfies

|D| ≤ C

∫

|Dk(x, z)|

∫

δ(x,u)≤(2A)−k+2
|Kφ(z, u)−Kφ(x, u)|

× |Dj(u, y)−Dj(x, y)| dµ(u) dµ(z)

≤ C(2A)j(1+ǫ)
∫

|Dk(x, z)|

∫

δ(x,u)≤C(2A)−k
(Kφ(z, u)

+Kφ(x, u))δ(x, u)
ǫ dµ(u) dµ(z),

but if δ(x, z) ≤ C(2A)−k and δ(x, u) ≤ C(2A)−k, then δ(z, u) ≤ C(2A)−k+1.
Moreover, since φ is of positive lower type, inequality (5.28) and the size condition
(6.34) can be used to get

(8.76)

|D| ≤ C(2A)j(2A)−(k−j)ǫ

×

(

∫

δ(x,u)≤C(2A)−k
Kφ(x, u) dµ(u)+

∫

δ(z,u)≤C(2A)−k
Kφ(z, u) dµ(u)

)

≤ C(2A)j(2A)−(k−j)ǫφ((2A)−k).
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On the other hand,

|B| ≤
∫∫

δ(x,u)≥A(2A)−k
|Dk(x, z)||Kφ(z, u)−Kφ(x, u)||Dj(u, y)−Dj(x, y)| dµ(u) dµ(z)

=

(

∫∫

C(2A)−k+1≤δ(x,u)≤C(2A)−j+1
+

∫∫

δ(x,u)≥C(2A)−j+1

)

|Dk(x, z)||Kφ(z, u)−Kφ(x, u)||Dj(u, y)−Dj(x, y)| dµ(u) dµ(z)

= B1 +B2.

As δ(x, u) ≥ 2Aδ(x, z) for u in the domain of B1 and B2, Lemma 6.3 can be

applied. Moreover, denoting Ci = {C(2A)−k+i ≤ δ(x, u) ≤ C(2A)−k+i+1},
i = 1, 2, . . . , since sφ > 0 and φ(t)/t is quasi-decreasing and ǫ ≤ θ then

B1 ≤ C(2A)j(1+ǫ)
∫

|Dk(x, z)|

k−j
∑

i=1

∫

Ci

|Kφ(z, u)−Kφ(x, u)|δ(x, u)
ǫ dµ(u) dµ(z)

≤ C(2A)j(1+ǫ)
∫

|Dk(x, z)|

k−j
∑

i=1

∫

Ci

δ(x, z)ǫ
φ(δ(x, u))

δ(x, u)
dµ(u) dµ(z)

≤ C(2A)j(1+ǫ)(2A)−kǫ
k−j
∑

i=1

φ((2A)−k+i)

≤ C(2A)jφ((2A)−k)(2A)−(k−j)ǫ
k−j
∑

i=1

(2A)isφ

≤ C(2A)jφ((2A)−k)(2A)−(k−j)(ǫ−sφ).

On the other side, since sφ < ǫ ≤ θ, from (5.29) and (6.36) it follows that

(8.77)

B2 ≤ C(2A)j
∫

|Dk(x, z)|

×

∫

δ(x,u)≥C(2A)−j+1
|Kφ(z, u)−Kφ(x, u)| dµ(u) dµ(z)

≤ C(2A)j
∫

|Dk(x, z)|

×

∫

δ(x,u)≥C(2A)−j+1

δ(x, z)ǫ

δ(x, u)ǫ
φ(δ(x, u))

δ(x, u)
dµ(u) dµ(z)

≤ C(2A)j(2A)−(k−j)ǫφ((2A)−j)

≤ C(2A)jφ((2A)−k)(2A)−(k−j)(ǫ−sφ).



Integral and derivative operators of functional order . . . 745

Nevertheless, since tǫ < tǫ−sφ for t < 1 and (2A)j(1+ǫ−sφ) ≤ C/((2A)−j +
δ(x, y))1+ǫ−sφ for δ(x, y) ≤ 4A2(2A)−j , inequality (8.74) follows from (8.76),
(8.77) and an estimate for B1.
Let now consider the case δ(x, y) ≥ 4A2C(2A)−j . IfDj(u, y) 6= 0 then δ(u, y) <

C(2A)−j and thus, δ(x, u) ≥ 2AC(2A)−j > 2Aδ(x, z), moreover, the equivalence
δ(x, u) ≃ (2A)−j + δ(x, y) holds. Therefore, using Lemma 6.3 and (5.26), from
(8.75) it follows that

|Kφ,kj(x, y)|

≤ C

∫

|Dk(x, z)|

∫

δ(u,y)<C(2A)−j

δ(x, z)ǫ

δ(x, u)1+ǫ
φ(δ(x, u))|Dj(u, y)| dµ(u) dµ(z)

≤ C

∫

|Dk(x, z)|

∫

δ(u,y)<C(2A)−j

δ(x, z)ǫ−sφ

δ(x, u)1+ǫ−sφ
φ(δ(x, z))|Dj(u, y)| dµ(u) dµ(z)

≤ Cφ
(

(2A)−k
) (2A)−k(ǫ−sφ)

((2A)−j + δ(x, y))1+ǫ−sφ
.

�

The next lemma follows easily from Lemma 8.1.

Lemma 8.2. If φ is of positive lower type and of upper type sφ < ǫ then

∫

|Kφ,kj(x, y)| dµ(x)+

∫

|Kφ,kj(x, y)| dµ(y) ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ).

An estimate of Iφ,kj in terms of the Hardy-Littlewood maximal operator follows
from Lemma 8.1.

Lemma 8.3. If φ is of positive lower type and of upper type sφ < ǫ then

(8.78) |Iφ,kjh(x)| ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ)M |h|(x),

where M denotes the Hardy-Littlewood maximal operator.

Proof: As in the proof of Lemma 8.1, it is enough to consider the case k ≥ j.
From that lemma it follows that
∫

|Kφ,kj(x, y)||h(y)| dµ(y)

≤ Cφ((2A)−k)

(

((2A)−k(ǫ−sφ))(2A)j(ǫ−sφ+1)
∫

δ(x,y)≤4A2C(2A)−j
|h(y)| dµ(y)

+

∫

δ(x,y)>4A2C(2A)−j

(2A)−k(ǫ−sφ)

δ(x, y)(ǫ−sφ)+1
|h(y)| dµ(y)

)

= I1 + I2.
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Clearly,

I1 ≤ Cφ((2A)−k)((2A)−(k−j)(ǫ−sφ))M(|h|)(x).

Finally, defining the sets Qi = {y : C(2A)i−j ≤ δ(x, y) ≤ C(2A)i+1−j}, i =
2, 3, . . . , since sφ < ǫ we have

I2 ≤ Cφ((2A)−k)

∞
∑

i=2

∫

Qi

(2A)−k(ǫ−sφ)

δ(x, y)1+(ǫ−sφ)
|h(y)| dµ(y)

≤ Cφ((2A)−k)(2A)−(k−j)(ǫ−sφ)
∞
∑

i=2

(2A)−i(ǫ−sφ)(2A)j−i

×

∫

δ(x,y)≤C(2A)i+1−j
|h(y)| dµ(y)

≤ Cφ((2A)−k)(2A)−(k−j)(ǫ−sφ)M |h|(x).
�

Corresponding results are obtained for the kernel K1/φ,kj and the operator

Dφ,kj in the following lemmas.

Lemma 8.4. Let φ be of lower type iφ > 0 and upper type sφ < ǫ. Then, there
is a constant C > 0 such that

|K1/φ,kj(x, y)| ≤ C
1

φ((2A)−(k∨j))

(2A)−(k∨j)ǫ

((2A)−(k∧j) + δ(x, y))1+ǫ
,

where a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proof: It is enough to consider the case k ≥ j since the other one immediately
follows from this by (8.73). Let first consider the case δ(x, y) ≤ 4A2(2A)−j . Since
Dk has null mean in the z variable, the kernel defined in (8.72) can be rewritten
as

K1/φ,kj(x, y) =

∫∫

Dk(x, z)[K1/φ(z, u)(Dj(u, y)−Dj(z, y))

−K1/φ(x, u)(Dj(u, y)−Dj(x, y))] dµ(u) dµ(z).

Fix η(t) ∈ Λǫ0(R), such that η(t) = 1 for |t| ≤ A and η = 0, for |t| ≥ 2A. Then,

K1/φ,kj(x, y)

=

∫∫

Dk(x, z)

×
(

K1/φ(z, u)(Dj(u, y)−Dj(z, y))−K1/φ(x, u)(Dj(u, y)−Dj(x, y))
)
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× η(
δ(x, u)

(2A)−k
) dµ(u) dµ(z)

+

∫∫

Dk(x, z)

×
(

K1/φ(z, u)(Dj(u, y)−Dj(z, y))−K1/φ(x, u)(Dj(u, y)−Dj(x, y))
)

× (1 − η(
δ(x, u)

(2A)−k
)) dµ(u) dµ(z) = D +B.

First notice that if δ(x, z) ≤ C(2A)−k and δ(x, u) ≤ C(2A)−k , then δ(z, u) ≤

CA(2A)−k . Therefore, from (2.10), applied to Dj , and (5.28) it follows that
(8.79)

|D| ≤

∫

|Dk(x, z)|

∫

δ(z,u)≤CA(2A)−k
|K1/φ(z, u)|(2A)

j(1+ǫ)δ(z, u)ǫ dµ(u) dµ(z)

+

∫

|Dk(x, z)|

∫

δ(x,u)≤C(2A)−k
|K1/φ(x, u)|(2A)

j(1+ǫ)δ(x, u)ǫ dµ(u) dµ(z)

≤ C(2A)j(1+ǫ)
(2A)−kǫ

φ((2A)−k)
.

On the other hand, it holds that

|B| ≤

∫∫

δ(x,u)≥(2A)−k+1
|Dk(x, z)|

×
(

|K1/φ(z, u)−K1/φ(x, u)||Dj(u, y)−Dj(x, y)|

+K1/φ(z, u)|Dj(x, y)−Dj(z, y)|
)

dµ(u) dµ(z) = B1 +B2.

But, if Dk(x, z) 6= 0 and δ(x, u) ≥ (2A)
−k+1 then δ(z, u) ≥ C(2A)−k. Moreover,

since iφ > 0, from (6.44), (2.10) and (5.29), we deduce that

(8.80)

B2 ≤ C(2A)j(1+ǫ)
∫

|Dk(x, z)|

×

∫

δ(z,u)≥C(2A)−k

δ(z, x)ǫ

φ(δ(z, u))δ(z, u)
dµ(u) dµ(z)

≤ C(2A)j(2A)−(k−j)ǫ
∫

|Dk(x, z)|

×

∫

δ(z,u)≥C(2A)−k

1

φ(δ(z, u))δ(z, u)
dµ(u) dµ(z)

≤ C
(2A)j(1+ǫ)(2A)−kǫ

φ((2A)−k)
.
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We now split B1 in the form

B1 ≤

(

∫∫

(2A)−k+1≤δ(x,u)≤(2A)−j+1
+

∫∫

δ(x,u)≥(2A)−j+1

)

× |Dk(x, z)||K1/φ(z, u)−K1/φ(x, u)||Dj(u, y)−Dj(x, y)| dµ(u) dµ(z)

= B1,1 +B1,2.

Since δ(x, z) ≤ C(2A)−k and δ(x, u) ≥ 2Aδ(x, z), smoothness conditions (6.45)
and (2.10), (5.29) and, also, (2.3) lead to the bound
(8.81)

B1,1 ≤ C(2A)j(1+ǫ)
∫

|Dk(x, z)|

×

∫

(2A)−k+1≤δ(x,u)≤(2A)−j+1
δ(x, u)ǫ

δ(x, z)ǫ

δ(x, u)1+ǫ
1

φ(δ(x, u))
dµ(u) dµ(z)

≤ C(2A)j(2A)−(k−j)ǫ
∫

(2A)−k+1≤δ(x,u)

1

φ(δ(x, u))δ(x, u)
dµ(u)

≤ C
(2A)j(2A)−(k−j)ǫ

φ((2A)−k)
.

On the other hand, using (6.45), (2.9), (5.29) and the fact that φ is quasi-
increasing, we obtain

B1,2 ≤ C(2A)j
∫

|Dk(x, z)|

∫

δ(x,u)≥(2A)−j+1

δ(x, z)ǫ

δ(x, u)1+ǫ
1

φ(δ(x, u))
dµ(u) dµ(z)

(8.82)

≤ C(2A)j(2A)−kǫ
1

(2A)−jǫφ((2A)−j)
≤ C(2A)j(2A)−(k−j)ǫ

1

φ((2A)−k)
.

From inequalities (8.79), (8.80), (8.81) and (8.82), we conclude that
if δ(x, y) ≤ 4A2(2A)−j then

|K1/φ,kj(x, y)| ≤ C(2A)j(1+ǫ)(2A)−kǫ
1

φ((2A)−k)

≤ C
(2A)−kǫ

((2A)−j + δ(x, y))1+ǫ
1

φ((2A)−k)
.

To finish the proof, we consider the case δ(x, y) ≥ C4A2(2A)−j .

Notice that if δ(x, z) ≤ C(2A)−k then δ(z, y) ≥ CA(2A)−j and therefore
Dj(z, y) = 0. Moreover, the condition

∫

Dk(x, z) dµ(z) = 0 enables us to rewrite
the kernel in (8.72) in the form

K1/φ,kj(x, y) =

∫

Dk(x, z)

∫

(K1/φ(z, u)−K1/φ(x, u))Dj(u, y) dµ(u) dµ(z).
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But, also, since δ(u, y) ≤ C(2A)−j then δ(x, u) ≥ C(2A)−j ≥ C(2A)−k ≥
2Aδ(x, z) and δ(x, u) ≥ C(δ(x, y) + (2A)−j). Therefore, from (6.45) and the
fact that φ(t) is quasi-increasing, we deduce that

|K1/φ,kj(x, y)|

≤

∫

|Dk(x, z)|

∫

δ(u,y)<(2A)−j

δ(x, z)ǫ|Dj(u, y)|

δ(x, u)1+ǫφ(δ(x, u))
dµ(u) dµ(z)

≤ C
(2A)−kǫ

((2A)−j + δ(x, y))1+ǫ
1

φ((2A)−k)

∫

|Dk(x, z)|

∫

|Dj(u, y)| dµ(u) dµ(z)

≤ C
(2A)−kǫ

((2A)−j + δ(x, y))1+ǫ
1

φ((2A)−k)
.

�

The proofs of the following two lemmas are similar to those given for the
integral of order φ and so they will be omitted.

Lemma 8.5. If φ is of lower type iφ > 0 and upper type sφ < ǫ, then there is a
constant C > 0 such that

(8.83)

∫

|K1/φ,kj(x, y)| dµ(x) +

∫

|K1/φ,kj(x, y)| dµ(y) ≤ C
(2A)−|k−j|ǫ

φ((2A)−(k∨j))
.

Lemma 8.6. If φ is of lower type iφ > 0 and upper type sφ < ǫ, then there is a
constant C > 0 such that

(8.84) |Dφ,kjh(x)| ≤ C
(2A)−|k−j|ǫ

φ((2A)−(k∨j))
M |h|(x),

where M denotes the Hardy-Littlewood maximal operator.

9. Proof of Theorems 4.3, 4.4, 4.5, and 4.6

If max(s1, s2) < ǫ then the space M (ǫ,ǫ) is dense in Ḟψ,qp and Ḃψ,qp and hence,
in all the theorems, it is enough to prove the boundedness of the operators on
such molecules.

Proof of Theorem 4.3: For f ∈M (ǫ,ǫ), by using (8.69) we obtain

‖Iφf‖Ḟφψ,qp
=

∥

∥

∥

∥

∥





∑

k∈Z

(

1

φ((2A)−k)ψ((2A)−k)
|DkIφf |

)q




1/q ∥
∥

∥

∥

∥

p
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≤

∥

∥

∥

∥

∥





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j∈Z

|DkIφDj(D̂jf)|





q



1/q ∥
∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j≤k

|Iφ,kj(D̂jf)|





q



1/q

+





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j>k

|Iφ,k,j(D̂jf)|





q



1/q ∥
∥

∥

∥

∥

p

= ‖S1 + S2‖p.

First notice that as ψ2 is quasi-increasing and ψ1 is of upper-type s1, for k ≥ j it
holds that
(9.85)

1

ψ((2A)−k)
=
ψ2((2A)

−k)

ψ1((2A)−k)
≤ C(2A)(k−j)s1

ψ2((2A)
−j)

ψ1((2A)−j)
= C
(2A)(k−j)s1

ψ((2A)−j)
.

Also, since ψ1 is quasi-increasing and ψ2 is of upper-type s2 then, for k < j,
(9.86)

1

ψ((2A)−k)
=
ψ2((2A)

−k)

ψ1((2A)−k)
≤ C(2A)(j−k)s2

ψ2((2A)
−j)

ψ1((2A)−j)
= C
(2A)(j−k)s2

ψ((2A)−j)
.

Therefore, applying (8.78) and then (9.85) it follows that

(9.87)

S1(x) ≤





∑

k∈Z





∑

j≤k

(2A)−(k−j)(ǫ−sφ−s1)

ψ((2A)−j)
M |D̂jf |(x)





q



1/q

=





∑

k∈Z





∑

j≥0

(2A)−j(ǫ−sφ−s1)

ψ((2A)−(k−j))
M |D̂k−jf |(x)





q



1/q

.

On the other hand, using (8.78), (9.86) and inequality

(9.88) φ((2A)−j) ≤ C(2A)−(j−k)iφφ((2A)−k), for j > k,

it follows that

(9.89) S2(x) ≤





∑

k∈Z





∑

j>k

(2A)−(j−k)(ǫ−sφ+iφ−s2)

ψ((2A)−j)
M |D̂jf |(x)





q



1/q

.
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From Minkowski’s inequality and the hypothesis sφ + s1 < ǫ for (9.87), and
sφ − iφ + s2 < ǫ for (9.89), it follows that

(9.90) S1(x) + S2(x) ≤ C





∑

k∈Z

(

M |D̂kf |(x)

ψ((2A)−k)

)q




1/q

for every x ∈ X . Since 1 < p, q < ∞, we are able to apply the Fefferman-Stein
vector valued maximal inequality to get that

‖S1 + S2‖p ≤ C‖





∑

k∈Z

(

|D̂kf |

ψ((2A)−k)

)q




1/q

‖p ≤ C‖f‖
Ḟψ,qp

.

�

Proof of Theorem 4.4: For f ∈M (ǫ,ǫ), by (8.69), it holds that

‖Iφf‖Ḃφψ,qp
≤





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j∈Z

‖DkIφDj(D̂jf)‖p





q



1/q

≤





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j≤k

‖Iφ,k,j‖p,p‖(D̂jf)‖p





q



1/q

+





∑

k∈Z





1

φ((2A)−k)ψ((2A)−k)

∑

j>k

‖Iφ,k,j‖p,p‖(D̂jf)‖p





q



1/q

= S1 + S2,

where ‖T ‖p,p denotes ‖T ‖Lp→Lp .
Nevertheless, from Lemma 8.2, it follows that

(9.91) ‖Iφ,k,j‖p,p ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ).

In fact, for 1 < p <∞, it holds that

(9.92)

‖Iφ,kjh‖p ≤

(∫ (∫

|Kφ,kj(x, y)||h(y)| dµ(y)

)p

dµ(x)

)1/p

≤

(

∫ (∫

|Kφ,kj(x, y)| dµ(y)

)p/p′

×

(∫

|Kφ,kj(x, y)||h(y)|
p dµ(y)

)

dµ(x)

)1/p

;
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and, for p = 1,

(9.93) ‖Iφ,kjh‖1 ≤

∫ ∫

|Kφ,kj(x, y)||h(y)| dµ(y) dµ(x).

Then applying Lemma 8.2 in (9.92) and (9.93), it follows that

‖Iφ,kjh‖p ≤ C
(

φ((2A)−(k∨j)(2A)−|k−j|(ǫ−sφ))
)1/p′

×

(∫∫

|Kφ,kj(x, y)||h(y)|
p dµ(y) dµ(x)

)1/p

≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ)‖h‖p,

for 1 < p <∞, and

‖Iφ,kjh‖1 ≤ Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ)
∫

|h(y)| dµ(y)

= Cφ((2A)−(k∨j))(2A)−|k−j|(ǫ−sφ)‖h‖1.

for p = 1. Thus inequality (9.91) follows. Substituting it in S1 and using (9.85),
it follows that

(9.94) S1 ≤ C





∑

k∈Z





∑

j≤k

(2A)−(k−j)(ǫ−sφ−s1)
‖(D̂jf)‖p

ψ((2A)−j)





q



1/q

.

On the other hand, using (9.91), (9.85) and (9.88) it follows that

(9.95) S2 ≤ C





∑

k∈Z





∑

j>k

(2A)−(j−k)(ǫ−sφ+iφ−s2)
‖(D̂jf)‖p

ψ((2A)−j)





q



1/q

.

For 1 ≤ q <∞, Minkowski’s inequality and conditions sφ + s1 < ǫ for (9.94) and
sφ − iφ + s2 < ǫ for (9.95) lead to the bound

S1 + S2 ≤ C‖f‖
Ḃψ,qp

.
�

Proof of Theorem 4.5: For f ∈M (ǫ,ǫ), proceeding as in the above proofs and
applying (8.72) it follows that

‖Dφf‖Ḟψ/φ,qp
≤

∥

∥

∥

∥

∥





∑

k∈Z





φ((2A)−k)

ψ((2A)−k)

∑

j≤k

|Dφ,kj(D̂jf)|





q



1/q

+





∑

k∈Z





φ((2A)−k)

ψ((2A)−k)

∑

j>k

|Dφ,kj(D̂jf)|





q



1/q ∥
∥

∥

∥

∥

p

= ‖S1(x) + S2(x)‖p.
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Using (8.84) and (9.85) it follows that

(9.96) S1(x) ≤ C





∑

k∈Z





∑

j≤k

(2A)−(k−j)(ǫ−s1)
M |D̂jf |(x)

ψ((2A)−j)





q



1/q

.

On the other side, again using (8.84) and inequalities (9.86) and

φ((2A)−k) ≤ C(2A)(j−k)sφφ((2A)−j), for k < j,

we conclude

(9.97) S2(x) ≤ C





∑

k∈Z





∑

j>k

(2A)−(j−k)(ǫ−sφ−s2)
M |D̂jf |(x)

ψ((2A)−j)





q



1/q

.

From Minkowski’s inequality and the hypothesis s1 < ǫ for (9.96) and sφ+ s2 < ǫ
for (9.97) it follows that

S1(x) + S2(x) ≤ C





∑

k∈Z

(

M |D̂kf |(x)

ψ((2A)−k)

)q




1/q

.

From the Fefferman-Stein vector valued maximal inequality, for 1 < p, q < ∞, it
follows that

‖S1 + S2‖p ≤ C‖





∑

k∈Z

(

|D̂kf |(x)

ψ((2A)−k)

)q




1/q

‖p ≤ C‖f‖
Ḟψ,qp

.

�

Since the proof of Theorem 4.6 is similar to the previous ones, it is omitted.
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