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On the composition of the integral

and derivative operators of functional order

Silvia I. Hartzstein, Beatriz E. Viviani

Abstract. The Integral, Iφ, and Derivative, Dφ, operators of order φ, with φ a function
of positive lower type and upper type less than 1, were defined in [HV2] in the setting of
spaces of homogeneous-type. These definitions generalize those of the fractional integral
and derivative operators of order α, where φ(t) = tα, given in [GSV].
In this work we show that the composition Tφ = Dφ◦Iφ is a singular integral operator.

This result in addition with the results obtained in [HV2] of boundedness of Iφ and Dφ or
the T1-theorems proved in [HV1] yield the fact that Tφ is a Calderón-Zygmund operator

bounded on the generalized Besov, Ḃψ,qp , 1 ≤ p, q < ∞, and Triebel-Lizorkin spaces,

Ḟψ,qp , 1 < p, q < ∞, of order ψ = ψ1/ψ2, where ψ1 and ψ2 are two quasi-increasing
functions of adequate upper types s1 and s2, respectively.

Keywords: fractional integral operators, fractional derivative operators, spaces of homo-
geneous type, Besov spaces, Triebel-Lizorkin spaces

Classification: 26A33

1. Introduction

In the context of normal spaces of homogeneous-type (X, δ, µ) of order θ ≤ 1,
the integral operator, Iφ, and the derivative operator, Dφ, of order φ, where φ
is a function of positive lower type and upper type less than θ, were defined in
[HV2] in such way that their kernels become equivalent to φ(δ(x, y))/δ(x, y) and
1/(φ(δ(x, y))δ(x, y)), respectively.
It was proved in that work, by means of the Calderón-type reproduction formu-

las given in [HS], that Iφ is continuous from the Besov spaces Ḃ
ψ,q
p , 1 ≤ p, q <∞,

and Triebel-Lizorkin spaces, Ḟ
ψ,q
p , 1 < p, q < ∞, into Ḃφψ,qp , 1 ≤ p, q < ∞ and

Ḟφψ,qp , 1 ≤ p, q < ∞, respectively. Similarly, it was seen that Dφ is continuous

from Ḃ
ψ,q
p and Ḟ

ψ,q
p into Ḃ

ψ/φ,q
p and Ḟ

ψ/φ,q
p , respectively, for the expected range

of types of the two functions in each case.
This results generalize the classical ones referred to the fractional integral and

derivative operators, Iα and Dα, and their action on the Besov Ḃ
β,q
p and Ḟβ,qp

spaces.
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In this work we prove that the composition Tφ = Dφ ◦ Iφ is a singular integral
operator in the classical sense and, hence, we complete the proof of that it is
a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-
Lizorkin spaces.
It is worth saying that, once the standard conditions on the kernel of Tφ are

proved, the same result is obtained by the T 1-theorems for those spaces proved
in [HV1].
This work is organized in the following way:

In Section 2 we define the class of functions involved in the ‘order’ of the integral
and derivative operators. The structure of normal spaces of homogeneous type,
the test function space and the notion of continuous approximation to the identity
is also set in that section. The definitions of the integral and derivative operators
and the main theorem are stated in Section 3. In Section 4 known results on the
class of quasi-increasing functions are given and, afterwards, size and smoothness
conditions of the kernels of Iφ and Dφ and the theorems of boundedness on
Lipschitz spaces proved in [HV2] are stated. Finally, the proof of the fact that Tφ
is a Calderón-Zygmund operator is in Section 5.

2. Preliminaries

Let us now consider nonnegative functions φ defined on the positive real num-
bers.
A function φ(t) is said to be quasi-increasing if there is a positive constant C

such that if t1 < t2 then φ(t1) ≤ Cφ(t2).
Analogously, φ(t) is quasi-decreasing if there is a positive constant C such that

if t1 < t2 then φ(t2) ≤ Cφ(t1).
The functions ψ(t) and φ(t) are equivalent , ψ ≃ φ, if there are positive con-

stants C1 and C2 such that C1 ≤ φ/ψ ≤ C2.
The function φ(t) is said to be of lower type α, 0 ≤ α < ∞, if there is a

constant C1 > 0 such that

(2.1) φ(uv) ≤ C1u
αφ(v) for u < 1 and v > 0.

Similarly, φ(t) is of upper type α, 0 ≤ α < ∞ if there is a constant C2 > 0 such
that

(2.2) φ(uv) ≤ C2u
αφ(v) for u ≥ 1 and v > 0.

Clearly, the potential tα, with α ≥ 0, is of lower and upper type α. The functions
max(tα, tβ) and min(tα, tβ), with α < β, are both of lower type α and upper

type β. Also, tβ(1 + log+ t), with β ≥ 0, is of lower type β and of upper type
β + ǫ, for every ǫ > 0.
Let us notice that if φ(t) is of both lower type α and upper type β then α ≤ β.

Also, if φ(t) is of lower type α and 0 ≤ β < α then φ is of lower type β. Moreover,
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since the condition φ(t) quasi-increasing implies, at least, lower-type 0 for φ, a
function φ(t) is quasi-increasing if, and only if, it is of lower type α for some
α ≥ 0.
On the other hand, if φ(t) is of upper type α and β > α then φ is of upper

type β, and thus, if φ is of finite upper type there is a right half line of upper types
for φ. Let us notice that the condition of having finite upper type is equivalent
to the Orlicz condition ∆2, φ(2t) ≤ Aφ(t) for some positive constant A.

Let us now define the structure of spaces of homogeneous type which is the
underlying geometry for the test function spaces defined in this work.
Given a set X , a real valued function δ(x, y) defined on X × X is a quasi-

distance on X if there exists a constant A > 1 such that for all x, y, z ∈ X it
verifies:

δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y

δ(x, y) = δ(y, x)

δ(x, y) ≤ A[δ(x, z) + δ(z, y)].

In a set X endowed with a quasi-distance δ(x, y), the balls Bδ(x, r) = {y :
δ(x, y) < r} form a basis of neighborhoods of x for the topology induced by
the uniform structure on X .
Let µ be a positive measure on a σ-algebra of subsets of X which contains

the open set and the balls Bδ(x, r). The triple X := (X, δ, µ) is a space of
homogeneous type if there exists a finite constant A′ > 0 such that µ(Bδ(x, 2r)) ≤
A′µ(Bδ(x, r)) for all x ∈ X and r > 0. Maćıas and Segovia [MS] showed how to
find a quasi-distance d(x, y) equivalent to δ(x, y) and 0 < θ ≤ 1, such that

(2.3) |d(x, y)− d(x′, y)| ≤ Cr1−θd(x, x′)θ

holds whenever d(x, y) < r and d(x′, y) < r.
If δ satisfies (2.3) then X is said to be of order θ.
X is a normal space if A1r ≤ µ(Bδ(x, r)) ≤ A2r for every x ∈ X and r > 0

and some positive constants A1 and A2.

In this work X := (X, δ, µ) means a normal space of homogeneous type of order
θ and A denotes the constant of the triangular inequality associated with δ.

Given a quasi-increasing function ξ : R+ → R+ such that limt→0 ξ(t) = 0 and

limt→∞ ξ(t) = ∞, the Lipschitz space Λξ is the class of all functions f : X → C

such that
|f(x)− f(y)| ≤ Cξ(δ(x, y)) for every x, y ∈ X,

and the number |f |ξ denoting the infimum of the constants C appearing above,

defines a semi-norm on Λξ, since |f |ξ = 0 for all constants functions f .
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Furthermore, given a ball B in X , Λξ(B) denotes the set of functions f ∈ Λξ

with support in B. Since, a function belonging to this space is bounded, the
number ‖f‖ξ = ‖f‖∞ + |f |ξ , defines a norm that induces a Banach structure to

Λξ(B).

We say that a function f belongs to Λ
ξ
0 if f ∈ Λξ(B) for some ball B. The

space Λξ0 is the inductive limit of the Banach spaces Λ
ξ(B).

Finally, (Λ
ξ
0)

′ will mean the space of all continuous linear functionals on Λ
ξ
0.

When ξ(t) = tβ , with 0 < β ≤ θ, we have the classical Lipschitz spaces Λβ

and Λ
β
0 .

Finally, we shall consider a symmetric approximation to the identity, that is a
family of integral operators {St}t>0, as defined in [GSV], whose kernels st(x, y)
satisfy the following properties:
There are positive constants, b1, b2, c1, c2 and c3, such that for all x, y ∈ X and
t > 0, st(x, y) satisfies

st(x, y) = st(y, x),

0 ≤ st(x, y) ≤ c1/t,

st(x, y) = 0 if δ(x, y) > b1t and, c2/t < st(x, y) if δ(x, y) < b2t,

|st(x, y)− st(x
′, y)| < c3δ

θ(x, x′)/t1+θ, for all x, x′, y ∈ X,
∫

st(x, y) dµ(y) = 1, for all x ∈ X,

st(x, y) is continuously differentiable in t.

3. Integral and derivative operators of order φ and main theorem

The general setting for the definition of both operators is that φ : R+ → R+

is a quasi-increasing function such that limt→0+ φ(t) = 0.
We define

Kφ(x, y) =

∫ ∞

0

φ(t)

t
st(x, y) dt for x 6= y.

Clearly, Kφ(x, y) > 0 and Kφ(x, y) = Kφ(y, x) for every (x, y).
For φ of positive lower type and upper type sφ < 1 the integral operator of

order φ, Iφ, and its extension Ĩφ are defined in the following way:
Given any quasi-increasing function ξ of upper type β > 0,
if f ∈ Λξ ∩ L1 then

Iφf(x) :=

∫

X
Kφ(x, y)f(y) dµ(y);

if β + sφ < θ and f ∈ Λξ then

Ĩφf(x) :=

∫

X
(Kφ(x, y)−Kφ(x0, y))f(y) dµ(y),
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for every x ∈ X and an arbitrary fixed x0 ∈ X .

On the other hand, if φ is of finite upper-type we define

K1/φ(x, y) =

∫ ∞

0

1

φ(t)t
st(x, y) dt, for x 6= y.

Clearly K1/φ is also positive and symmetric.

For a function φ of lower type iφ > 0 and upper type sφ, the derivative operator

of order φ, Dφ, and its extension, D̃φ are defined as follows:
Given any function ξ of lower type α and of upper type β, such that sφ < α,

if f ∈ Λξ ∩ L∞, then

Dφf(x) =

∫

X
K1/φ(x, y)(f(y)− f(x)) dµ(y) and,

if f ∈ Λξ, then

D̃φf(x) =

∫

X
(K1/φ(x, y)(f(y)− f(x)) −K1/φ(x0, y)(f(y)− f(x0))) dµ(y)

for each x ∈ X and an arbitrary, but fixed, x0 ∈ X .
The theorem whose proof is the purpose of this work is stated as follows:

Theorem 3.1. Let φ be of lower type iφ > 0 and of upper type sφ such that
sφ < ǫ ≤ θ. Then Tφ = Dφ ◦ Iφ is a singular integral operator whose associated
kernel is

K(x, y) =

∫

K1/φ(x, z)(Kφ(z, y)−Kφ(x, y)) dµ(z).

4. Previous results

A straightforward consequence of the definitions is that if φ(t) is of upper type
sφ then there is a constant C > 0 such that

(4.4) φ(uv) ≥
1

C
usφφ(v), for u < 1, v > 0.

Similarly, if φ(t) is of lower type iφ then there is a constant C > 0 such that

(4.5) φ(uv) ≥
1

C
uiφφ(v), for u ≥ 1, v > 0.

Also, it is easy to check that
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Proposition 4.1. If φ(t) is of lower type iφ and ξ(t) is of upper type λ ≤ iφ
then φ(t)/ξ(t) is quasi-increasing.

Proposition 4.2. If φ(t) is of lower type α > 0 and upper type β ∈ R and

0 < γ < α then the function

ψ(t) = tγ
∫ t

0

φ(u)

uγ+1
du

is equivalent to φ, continuous, increasing and invertible. Moreover, its inverse
ψ−1 is of lower type β−1 and of upper type α−1.

The next corollaries of the above Proposition will be needed to define the
quasi-metrics associated to the kernels of our operators.

Corollary 4.1. If φ is a quasi-increasing function of upper type sφ < 1 then

there is an equivalent function φ̃ such that φ̃(t)/t is decreasing, continuous and
invertible on t > 0.

Corollary 4.2. If φ(t) is a quasi-increasing function of finite upper type then

there exists a function φ̂(t) equivalent to φ(t), such that tφ̂(t) is increasing, con-
tinuous and invertible in R+.

The following properties will be useful throughout the proof of the theorem:
Let φi(t) be a function of lower type αi and of upper type βi, i = 1, 2. For every
x ∈ X and r > 0 it holds that

If α1 > β2 then

∫

δ(x,y)≤r

φ1(δ(x, y))

φ2(δ(x, y))δ(x, y)
dµ(y) ≤ C

φ1(r)

φ2(r)
.(4.6)

If β1 < α2 then

∫

δ(x,y)≥r

φ1(δ(x, y))

φ2(δ(x, y))δ(x, y)
dµ(y) ≤ C

φ1(r)

φ2(r)
.(4.7)

Let us now give a representation of the kernel of Iφ in terms of a quasi-metric
equivalent to δ.
If φ is a quasi-increasing function of upper-type sφ < 1 consider a fixed func-

tion φ̃, as given in Corollary 4.1. Then

Kφ(x, y) =
φ̃(δφ(x, y))

δφ(x, y)
for x 6= y,

where δφ(x, y) is defined as the unique solution of

φ̃(δφ(x, y))

δφ(x, y)
=

∫ ∞

0

φ(t)

t
st(x, y) dt if x 6= y, and

δφ(x, y) = 0 if x = y.
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If φ(t) = tα, 0 < α < 1, we can choose φ̃ = φ and then δα := δφ is the quasi-metric
associated to Iα defined in [GSV].
The following lemmas and theorems are proved in [HV2]. The first one shows

that Kφ(x, y) is equivalent to φ(δ(x, y))/δ(x, y).

Lemma 4.1 ([HV2]). If φ is of upper type sφ < 1 then there are positive con-
stants C1 and C2 such that for δ(x, y) > 0,

C2
φ(δ(x, y))

δ(x, y)
≤
φ̃(δφ(x, y))

δφ(x, y)
≤ C1

φ(δ(x, y))

δ(x, y)
.

In particular,

(4.8) 0 < Kφ(x, y) ≤ C
φ(δ(x, y))

δ(x, y)
.

Moreover, δφ is a quasi-metric equivalent to δ.

Lemma 4.2 ([HV2]). Let φ be of upper type sφ < 1. Then

(4.9) |Kφ(x, y)−Kφ(x
′, y)|+ |Kφ(y, x)−Kφ(y, x

′)| ≤ C

(

δ(x, x′)

δ(x, y)

)θ φ(δ(x, y))

δ(x, y)

whenever δ(x, y) ≥ 2Aδ(x, x′).

Lemma 4.3 ([HV2]). Let φ be of upper type sφ < θ. Then

(4.10)

∫

X
[Kφ(x, y)−Kφ(x

′, y)] dµ(y) = 0,

for every x and x′ ∈ X .

Theorem 4.4 ([HV2]). Let φ be of lower type iφ > 0 and upper type sφ < 1
and ξ a quasi-increasing function of upper type β.
If f ∈ Λξ ∩ L1 and β > 0 then Iφf(x) converges absolutely for all x and if,

also, β + sφ < θ then there is a constant C > 0, independent of f , such that

|Iφf |Λξφ ≤ C|f |Λξ .

Also, if f ∈ Λξ and β + sφ < θ then Ĩφf(x) converges absolutely for all x and
there is a constant C > 0, independent of f , such that

|Ĩφf |Λξφ ≤ C|f |Λξ .

Moreover, if f ∈ Λξ∩L1, then Ĩφf coincides with Iφf as an element of Λ
ξφ (since

Ĩφf(x) = Iφf(x)− Iφf(x0)).

From the proof of the above theorems the following results are obtained:
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Remark 4.5. If φ is of upper type sφ, ξ is of upper type β and β + sφ < θ then

Iφ maps Λ
ξ ∩ L1 ∩ L∞ in Λξφ ∩ L∞ and ‖Iφf‖Λξφ ≤ C(‖f‖ξ + ‖f‖1).

Remark 4.6. If f ∈ Λβ0 and β+iφ < θ then Iφf ∈ Λβ+iφ∩L∞ and ‖Iφf‖β+iφ ≤

Cµ(supp f)‖f‖β. It then follows that Iφ is a linear continuous operator from Λ
β
0

onto (Λ
β
0 )

′.

In an analogous way to the integral operator, a representation of the kernel of
Dφ in terms of an adequate quasi-metric, size and smoothness properties on the
kernel and boundedness of the derivative operator on Lipschitz spaces, proved in
[HV2], are given below.
Let φ be a quasi-increasing function of finite upper type and consider a fixed

function φ̂, as given in Corollary 4.2. Hence we have

K1/φ(x, y) =
1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
for x 6= y,

where δ1/φ(x, y) is defined as the unique solution of the equation

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
=

∫ ∞

0

1

φ(t)t
st(x, y) dt if x 6= y, and

δ1/φ(x, y) = 0 if x = y.

If φ(t) = tα, 0 < α < 1, choosing φ̂ = φ it turns out that δ−α := δt−α is the
quasi-metric associated to Dα defined in [GSV].
The next lemma shows the equivalence between K1/φ(x, y) and

1/(φ(δ(x, y))δ(x, y)).

Lemma 4.7 ([HV2]). If φ is a quasi-increasing function of finite upper type then
there are positive constants C1 and C2 such that

C1
1

φ(δ(x, y))δ(x, y)
≤

1

φ̂(δ1/φ(x, y))δ1/φ(x, y)
≤ C2

1

φ(δ(x, y))δ(x, y)
.

In particular,

(4.11) 0 < K1/φ(x, y) ≤ C
1

φ(δ(x, y))δ(x, y)
.

Moreover, δ1/φ is a quasi-metric equivalent to δ.
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Lemma 4.8. If φ is a quasi-increasing function of finite upper type then

(4.12)

|K1/φ(x, y)−K1/φ(x
′, y)|+ |K1/φ(y, x)−K1/φ(y, x

′)|

≤ C

(

δ(x, x′)

δ(x, y)

)θ 1

φ(δ(x, y))δ(x, y)

for δ(x, y) ≥ 2Aδ(x, x′).

Theorem 4.9 ([HV2]). Let φ be a function of lower type iφ > 0 and upper
type sφ. Let also ξ be a quasi-increasing function of lower type α and upper

type β. If f ∈ Λξ ∩ L∞ and sφ < α then Dφf(x) is absolutely convergent for
every x ∈ X and if, also, β < θ + iφ then

‖Dφf‖ξ/φ ≤ C‖f‖ξ.

If f ∈ Λξ, sφ < α and β < θ+ iφ then D̃φf(x) is absolutely convergent for every
x ∈ X and

|D̃φf |ξ/φ ≤ C|f |ξ .

Moreover, if f ∈ Λξ ∩ L∞, then D̃φf coincides with Dφf as an element of Λ
ξ

(since D̃φf(x) = Dφf(x)−Dφf(x0)).

Remark 4.10. Let ξi be a function of lower type αi and upper type βi for i = 1, 2
and let sφ < α1. Then

〈Dφf, g〉 =

∫∫

K1/φ(x, y)(f(y)− f(x))g(x) dµ(x) dµ(y),

for any f ∈ Λξ1 ∩ L∞ and g ∈ L1.
Furthermore, if f ∈ Λξ1 ∩ L∞ ∩ L1, g ∈ Λξ2 ∩ L∞ ∩ L1, and sφ < α2 then

〈Dφf, g〉 = 〈Dφg, f〉.

5. Proof of Theorem 3.1

Let us first see that Tφ is a linear continuous operator, Tφ : Λ
β
0 → (Λβ0 )

′, for
every β such that sφ − iφ < β < θ − iφ. In fact, by Remark 4.6, Iφ is continuous

from Λ
β
0 to Λ

β+iφ ∩ L∞ for β < θ − iφ and, by Remark 4.10, Dφ is continuous

from Λβ+iφ ∩ L∞ to (Λβ0 )
′, if sφ − iφ < β.

Let us remark that whenever the size of either Kφ or K1/φ are involved in the

following proofs, inequalities (4.8) and (4.11) will be used without being explicitly
mentioned.
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To prove that

(5.13) |K(x, y)| ≤
C

δ(x, y)
for x 6= y,

we consider the following partition of X

D1 = {z : δ(x, z) ≥ 2Aδ(x, y)},

D2 = {z :
1

2A
δ(x, y) < δ(x, z) < 2Aδ(x, y)},

D3 = {δ(x, z) ≤
1

2A
δ(x, y)}.

First notice that if z ∈ D1 then δ(z, y) > δ(x, y). Therefore, from φ(t)/t quasi-
decreasing and (4.7), since iφ > 0, it follows that

∫

D1

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)| dµ(z)

≤ C

∫

D1

1

φ(δ(x, z))δ(x, z)

(

φ(δ(z, y))

δ(z, y)
+
φ(δ(x, y))

δ(x, y)

)

dµ(z)

≤ C
φ(δ(x, y))

δ(x, y)

∫

δ(x,z)≥2Aδ(x,y)

1

φ(δ(x, z))δ(x, z)
dµ(z)

≤ C
1

δ(x, y)
.

Secondly, if z ∈ D2 then δ(z, y) ≤ A(δ(z, x) + δ(x, y)) < 4A2δ(x, y), and, from
(4.6) it follows that

∫

D2

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)| dµ(z)

≤ 2C
1

φ(δ(x, y))δ(x, y)

∫

δ(z,y)<4A2δ(x,y)

φ(δ(z, y))

δ(z, y)
dµ(z)

≤ C
1

δ(x, y)
.

Finally, if z ∈ D3, use Lemma 4.2 and (4.6), since sφ < θ, to get

∫

D3

K1/φ(x, z)|Kφ(z, y)−Kφ(x, y)| dµ(z)

≤ C
φ(δ(x, y))

δ(x, y)1+θ

∫

δ(x,z)≤ 1

2A
δ(x,y)

δ(z, x)θ

φ(δ(x, z))δ(x, z)
dµ(z)

≤ C
1

δ(x, y)
.
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The proof of (5.13) is thus finished.
It will now be shown that Tφ = Dφ ◦ Iφ has K as associated kernel.

Let f and g ∈ Λβ0 have disjoint supports. Then

Dφ ◦ Iφf(x) =

∫

K1/φ(x, z)(Iφf(z)− Iφf(x)) dµ(z)

=

∫

K1/φ(x, z)

∫

(Kφ(z, y)−Kφ(x, y))f(y) dµ(y) dµ(z).

If x /∈ supp f then using (5.13), this last integral is absolutely convergent. Apply-
ing Fubini’s theorem it follows that

Dφ ◦ Iφf(x) =

∫
(

∫

K1/φ(x, z)(Kφ(z, y)−Kφ(x, y)) dµ(z)

)

f(y) dµ(y)

=

∫

K(x, y)f(y) dµ(y).

Moreover, if supp f ∩ supp g = ∅ then
∫

|K(x, y)||f(y)| dµ(y) is bounded for x ∈
supp g, and therefore

〈Tφf, g〉 =

∫

X
Tφf(x)g(x) dµ(x)

=

∫∫

K(x, y)f(y)g(x) dµ(y) dµ(x).

We will now prove that there are constants C > 0, ν > 1 and 0 < γ < 1, such
that

(5.14) |K(x, y)−K(x′, y)| ≤ C
δ(x, x′)γ

δ(x, y)1+γ
, if δ(x, y) > νδ(x, x′).

Notice that

(5.15) |K(x, y)−K(x′, y)|

≤

∫

∣

∣

∣
K1/φ(x, z)(Kφ(z, y)−Kφ(x, y))−K1/φ(x

′, z)(Kφ(z, y)−Kφ(x
′, y))

∣

∣

∣
dµ(z).

Denoting by h(z) the function inside the above integral, choosing k and ν such
that 2 ≤ 3A2 < k < ν

2A , and setting

(5.16) δ(x, y) > νδ(x, x′),
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we consider the partition of X defined by A = {z : δ(x, z) > 1
k δ(x, y)}, and its

complement Ac. To obtain a bound for the integral on the set A we display h(z)
in the form

h(z) = (K1/φ(x, z)−K1/φ(x
′, z))Kφ(z, y)

+K1/φ(x, z)(Kφ(x
′, y)−Kφ(x, y))

+Kφ(x
′, y)(K1/φ(x

′, z)−K1/φ(x, z))

= I1 + I2 + I3.

Notice that if z ∈ A then, by (5.16), it holds that δ(x, z) > 1
k δ(x, y) >

ν
k δ(x, x

′).
Now, from (4.7) — since φ is quasi-increasing — it turns out that

∫

A
|I3| dµ(z) ≤ C

φ(δ(x′, y))

δ(x′, y)
δ(x, x′)θ

∫

δ(x,z)> 1
k
δ(x,y)

1

φ(δ(x, z))δ(x, z)1+θ
dµ(z)

≤ C
φ(δ(x′, y))

δ(x′, y)

δ(x, x′)θ

φ(δ(x, y))δ(x, y)θ
.

Nevertheless, from (5.16) it holds that δ(x, y) ≤ A(δ(x, x′)+δ(x′, y)) ≤ A
ν δ(x, y)+

Aδ(x′, y) and, as ν > A, δ(x′, y) > ( 1A − 1
ν )δ(x, y) > Cδ(x, y), with C > 0.

Moreover, since φ(t)/t is quasi-decreasing then by (4.7)

(5.17)

∫

A
|I3| dµ(z) ≤ C

δ(x, x′)θ

δ(x, y)1+θ
.

On the other hand, using (5.16) and (4.7) — since φ is of positive lower type —
it follows that

(5.18)

∫

A
|I2| dµ(z) ≤ C

δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫

δ(x,z)> 1
k
δ(x,y)

dµ(z)

φ(δ(x, z))δ(x, z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
.

Finally to obtain a bound for
∫

A |I1|, the following partition of A is considered

D1 = {z : δ(x, z) > kδ(x, y)},

D2 =
{

z :
1

k
δ(x, y) < δ(x, z) ≤ kδ(x, y)

}

.

First notice that if z ∈ D1 and (5.16) holds then δ(x, z) > kδ(x, y) > νkδ(x, x′)
and νk > 2A.
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Therefore, use (4.12) to get

∫

D1

|I1| dµ(z) ≤ Cδ(x, x′)θ
∫

D1

1

φ(δ(x, z))δ(x, z)1+θ
φ(δ(z, y))

δ(z, y)
dµ(z),

but for z ∈ D1 it also holds that δ(x, z) ≤ A(δ(x, y) + δ(y, z)) ≤ A( 1k δ(x, z) +

δ(y, z)), and then δ(y, z) > ( 1A − 1
k )δ(x, z), with 1/A − 1/k > 0. Since φ(t)/t is

quasi-decreasing, we have

(5.19)

∫

D1

|I1| dµ(z) ≤ Cδ(x, x′)θ
∫

δ(x,z)>kδ(x,y)

1

δ(x, z)2+θ
dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
.

On the other hand, if z ∈ D2 and (5.16) holds then νδ(x, x
′) < δ(x, y) < kδ(x, z).

Therefore,

∫

D2

|I1| dµ(z) ≤ δ(x, x′)θ
∫

D2

1

δ(x, z)1+θφ(δ(x, z))

φ(δ(z, y))

δ(z, y)
dµ(z).

Nevertheless, for z ∈ D2 it also holds that δ(z, y) ≤ A(δ(x, z) + δ(x, y)) ≤
A(k + 1)δ(x, y), and δ(x, z) > 1

k δ(x, y). Therefore,

(5.20)

∫

D2

|I1| dµ(z) ≤ C
δ(x, x′)θ

φ(δ(x, y))δ(x, y)1+θ

∫

δ(z,y)≤Cδ(x,y)

φ(δ(z, y))

δ(z, y)
dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
.

We conclude from (5.19) and (5.20) that

(5.21)

∫

A
|I1| dµ(z) ≤ C

δ(x, x′)θ

δ(x, y)1+θ
,

and, (5.17), (5.18) and (5.21) imply

(5.22)

∫

A
|h(z)| dµ(z) ≤ C

δ(x, x′)θ

δ(x, y)1+θ
.

To bound
∫

Ac , we consider the following partition of A
c = {z : 1k δ(x, y) ≥ δ(x, z)},

B1 = {z : δ(x, z) ≤ ν/kδ(x, x′)},

B2 =
{

z : ν/kδ(x, x′) ≤ δ(x, z) ≤
1

k
δ(x, y)

}

.
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Firstly notice that

∫

B1

|h(z)| dµ(z)

≤

∫

B1

1

φ(δ(x, z))δ(x, z)
|Kφ(z, y)−Kφ(x, y)| dµ(z)

+

∫

B1

1

φ(δ(x′, z))δ(x′, z)
|Kφ(z, y)−Kφ(x

′, y)| dµ(z)

= F1 + F2.

Nevertheless, if z ∈ Ac and δ(x, y) > νδ(x, x′) then δ(x, y) ≥ kδ(x, z) and it also
holds that

(5.23) δ(x′, y) ≥ Cδ(x′, z),

with C > 1. Indeed, by (5.16), it holds that

δ(x, y) ≤ A(δ(x, x′) + δ(x′, y)) ≤ A(ν−1δ(x, y) + δ(x′, y)),

and, since A < ν, then

(5.24) δ(x, y) ≤
νA

ν −A
δ(x′, y).

Therefore, for z ∈ Ac and δ(x, y) > νδ(x, x′) it holds that

(5.25)

δ(x′, z) ≤ A(δ(x, x′) + δ(x, z))

≤ A(ν−1 + k−1)δ(x, y) ≤
A(1/ν + 1/k)

1/A− 1/ν
δ(x′, y);

and since A(1/ν+1/k)/(1/A−1/ν) < 1, (5.23) is now clear. On Ac, the smooth-
ness condition on Kφ can be used to get

F1 ≤ C
φ(δ(x, y))

δ(x, y)1+θ

∫

δ(x,z)< ν
k
δ(x,x′)

1

φ(δ(x, z))δ(x, z)
δ(x, z)θ dµ(z)

≤ C
φ(δ(x, y))

δ(x, y)1+θ
δ(x, x′)θ

φ(δ(x, x′))
.

Moreover, by (5.16) and (4.4), it holds that

(5.26) F1 ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.
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On the other hand, from (5.25) it follows that

F2 ≤ C
φ(δ(x′, y))

δ(x′, y)1+θ

∫

δ(x,z)<ν/kδ(x,x′)

1

φ(δ(x′, z))δ(x′, z)1+θ
dµ(z);

but, for z ∈ B1, δ(x
′, z) ≤ A(δ(x′, x) + δ(x, z)) < A(1 + ν/k)δ(x, x′) holds and

then,

F2 ≤ C
φ(δ(x′, y))

δ(x′, y)1+θ
δ(x, x′)θ

φ(δ(x, x′))
.

Nevertheless, from (5.24) and (5.16), we get that δ(x′, y) > ν−A
A δ(x, x′), and from

(4.4) and, again (5.24), it follows that

(5.27) F2 ≤ C
δ(x, x′)θ−sφ

δ(x′, y)1+θ−sφ
≤ C

δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

We then conclude from (5.26) and (5.27) that

(5.28)

∫

B1

|h(z)| dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

On the other hand reordering h(z) in (5.15), we get

∫

B2

|h(z)| dµ(z)

≤

∫

B2

|K1/φ(x, z)−K1/φ(x
′, z)||Kφ(z, y)−Kφ(x, y)| dµ(z)

+

∫

B2

1

φ(δ(x′, z))δ(x′, z)
|Kφ(x

′, y)−Kφ(x, y)| dµ(z)

= J1 + J2.

Using the smoothness conditions on both kernels, Kφ and K1/φ, and (5.16) we

obtain that

(5.29)

J1 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫

ν
k
δ1/φ(x,x′)≤δ1/φ(x,z)

1

φ(δ(x, z))δ(x, z)
dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.
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On the other hand, since δ(x, x′) ≤ 1
ν δ(x, y), we have

J2 ≤
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫

B2

1

φ(δ(x′, z))δ(x′, z)
dµ(z),

but νk δ(x, x
′) ≤ δ(x, z) ≤ A(δ(x′, z) + δ(x, x′)) and, therefore,

δ(x′, z) ≥ 1
A( ν

k
−A)

δ(x, x′). We then conclude that

(5.30)

J2 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫

δ(x′,z)≥Cδ(x,x′)

1

φ(δ(x′, z))δ(x′, z)
dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

By (5.29) and (5.30), we have proved that

(5.31)

∫

B2

|h(z)| dµ(z) ≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
;

and, by (5.28) and (5.31), we have got that

(5.32)

∫

Ac
|h(z)| dµ(z) ≤ C

δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

From (5.22) and (5.32), choosing γ = θ − sφ, inequality (5.14) is obtained.

It remains to prove that there are constants C′ > 0, ν′ > 1 and 0 < γ′ < 1,
such that

(5.33) |K(y, x)−K(y, x′)| ≤ C
δ(x, x′)γ

′

δ(x, y)1+γ
′
if δ(x, y) > ν′δ(x, x′).

Notice that if

(5.34) δ(x, y) > 2Aδ(x, x′)

holds then δ(x′, y) ≤ (A + 1/2)δ(x, y). We may thus consider the partition of X
in the family of sets

A = {z : δ(y, z) <
1

2A
min(δ(x′, y), δ(x, y))}

B =
{

z :
1

2A
min(δ(x′, y), δ(x, y)) ≤ δ(z, y) < 2Aδ(x, y)

}

,

C = {z : 2Aδ(x, y) ≤ δ(z, y)}.
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Moreover, from (5.34) it follows that

(5.35) δ(x, x′) <
1

2A
δ(x, y) < δ(x′, y),

and thus δ(x, x′) < min(δ(x, y), δ(x′, y)). Therefore, the set A may be partitioned
into the nonempty sets

A1 =
{

z : δ(y, z) ≤
1

2A
δ(x, x′)

}

,

A2 =
{

z :
1

2A
δ(x, x′) ≤ δ(y, z) <

1

2A
min(δ(x′, y), δ(x, y))

}

.

On the other hand, notice that the left side of (5.3) is

|K(y, x)−K(y, x′)|

≤

∫

K1/φ(y, z)
∣

∣(Kφ(z, x)−Kφ(y, x)) − (Kφ(z, x
′)−Kφ(y, x

′))
∣

∣ dµ(z).

Denoting g(z) the function inside the above integral, the smoothness estimate

on Kφ, inequalities (4.6), since sφ < θ, and (5.35), the fact that φ(t)/t1+θ is
quasi-decreasing and, finally, (4.4) lead to the bound

(5.36)

∫

A1

g(z) dµ(z)

≤

∫

A1

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(y, x)| dµ(z)

+

∫

A1

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x

′)−Kφ(y, x
′)| dµ(z)

≤ C

(

φ(δ(y, x))

δ(y, x)1+θ
+
φ(δ(y, x′))

δ(y, x′)1+θ

)

×

×

∫

δ(y,z)≤ 1

2A
δ(x,x′)

δ(y, z)θ

φ(δ(y, z))δ(y, z)
dµ(z)

≤ C
φ(δ(y, x))

δ(y, x)1+θ
δ(x, x′)θ

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.
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We now reorder g(z) to write

(5.37)

∫

A2

g(z) dµ(z)

≤

∫

A2

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(z, x

′)| dµ(z)

+

∫

A2

1

φ(δ(y, z))δ(y, z)
|Kφ(y, x

′)−Kφ(y, x)| dµ(z)

= H1 +H2.

Nevertheless, for z ∈ A2, δ(x, y) ≤ A(δ(x, z) + δ(y, z)) ≤ A(δ(x, z) + 1
2Aδ(x, y))

holds, and then δ(x, y) ≤ 1
2Aδ(x, z). Therefore, from the fact that φ(t)/(t

1+θ) is
quasi-decreasing, (5.34) and (4.4) it follows that

(5.38)

H1 ≤ Cδ(x, x′)θ
∫

δ(y,z)≥ 1

2A
δ(x,x′)

1

φ(δ(y, z))δ(y, z)

φ(δ(x, z))

δ(x, z)1+θ
dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))

δ(x, y)1+θ

∫

δ(y,z)≥ 1

2A
δ(x,x′)

1

φ(δ(y, z))δ(y, z)
dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))

δ(x, y)1+θ
1

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

Similarly

(5.39)

H2 ≤ Cδ(x, x′)θ
φ(δ(x, y))

δ(x, y)1+θ

∫

δ(y,z)≥ 1

2A
δ(x,x′)

1

φ(δ(y, z))δ(y, z)
dµ(z)

≤ Cδ(x, x′)θ
φ(δ(x, y))

δ(x, y)1+θ
1

φ(δ(x, x′))

≤ C
δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.

Thus, (5.36), (5.37), (5.38) and (5.39) give

(5.40)

∫

A
g(z) dµ(z) ≤ C

δ(x, x′)θ−sφ

δ(x, y)1+θ−sφ
.
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On the other hand,

∫

B
g(z) dµ(z)

≤

∫

B

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(z, x

′)| dµ(z)

+

∫

B

1

φ(δ(y, z))δ(y, z)
|Kφ(y, x

′)−Kφ(y, x)| dµ(z)

= G1 +G2.

From (5.34), it follows that

G2 ≤ C
δ(x, x′)θ

δ(x, y)1+θ
φ(δ(x, y))

∫

δ(y,z)≥ 1

2A
min(δ(x′,y),δ(x,y))

1

φ(δ(y, z))δ(y, z)
dµ(z).

But from (5.35), for z ∈ B we have

(5.41) δ(y, z) ≥
1

4A2
δ(x, y) = Cδ(x, y),

and thus,

(5.42)

G2 ≤ Cδ(x, x′)θ
φ(δ(x, y))

δ(x, y)1+θ

∫

δ(z,y)≥Cδ(x,y)

1

φ(δ(y, z))δ(y, z)
dµ(z)

≤ C
δ(x, x′)θ

δ(x, y)1+θ
.

To get a bound for G1, we first notice that from (5.34) it follows that δ(y, x)
and δ(y, x′) are equivalent, since (5.35) holds and, also, δ(y, x′) ≤ A(δ(y, x) +

δ(x, x′)) ≤ (A+ 12 )δ(y, x).

We now cut the set B in

D1 = B ∩ {z : δ(z, x) < 4A2δ(x, x′)},

and D2 = B ∩ {z : δ(z, x) ≥ 4A2δ(x, x′)},

and thus we write

G1 ≤

(
∫

D1

+

∫

D2

)

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(z, x

′)| dµ(z) = G11 +G12.
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From (5.41), 1/(φ(t)t) quasi-decreasing, (4.6), as iφ > 0, and since for z ∈ D1 it

holds that δ(z, x′) ≤ A(δ(z, x) + δ(x, x′)) ≤ A(4A2 + 1)δ(x, x′), it follows that

G11 ≤ C

∫

δ(z,x)<4A2δ(x,x′)

1

φ(δ(y, z))δ(y, z)

(

φ(δ(z, x))

δ(z, x)
+
φ(δ(z, x′))

δ(z, x′)

)

dµ(z)

≤ C
1

φ(δ(y, x))δ(y, x)
(

∫

δ(z,x)<4A2δ(x,x′)

φ(δ(z, x))

δ(z, x)
dµ(z)

+

∫

δ(z,x′)<A(4A2+1)δ(x,x′)

φ(δ(z, x′))

δ(z, x′)
dµ(z))

≤ C
1

φ(δ(y, x))δ(y, x)
φ(δ(x, x′)).

Furthermore, from (5.34) and (2.1) it follows that

(5.43) G11 ≤ C
δ(x, x′)iφ

δ(y, x)iφ+1
.

On the other hand, (5.41) and (2.1) lead to

(5.44)

G12 ≤ δ(x, x′)θ
∫

δ(z,x)≥4A2δ(x,x′)

1

φ(δ(y, z))δ(y, z)

φ(δ(z, x))

δ(z, x)1+θ
dµ(z)

≤ C
δ(x, x′)θ

φ(δ(y, x))δ(y, x)

∫

δ(z,x)≥4A2δ(x,x′)

φ(δ(z, x))

δ(z, x)1+θ
dµ(z)

≤ C
1

φ(δ(y, x))δ(y, x)
φ(δ(x, x′))

≤ C
δ(x, x′)iφ

δ(x, y)iφ+1
.

Thus, looking at (5.42), (5.43) and (5.44), and since iφ < θ, we conclude that

(5.45)

∫

B
g(z) dµ(z) ≤ C

δ(x, x′)iφ

δ(x, y)iφ+1
.

At last, to get a bound on the set C we write

(5.46)

∫

C
g(z) dµ(z)

≤

∫

δ(y,z)≥2Aδ(y,x)

1

φ(δ(y, z))δ(y, z)
|Kφ(z, x)−Kφ(z, x

′)| dµ(z)

+

∫

δ(y,z)≥2Aδ(y,x)

1

φ(δ(y, z))δ(y, z)
|Kφ(y, x

′)−Kφ(y, x)| dµ(z)

= J1 + J2.



On the composition of integral and derivative operators . . . 119

Notice that for z ∈ C it holds that δ(y, x) ≤ 1
2A δ(y, z) ≤

1
2 (δ(y, x) + δ(x, z)),

hence δ(y, x) ≤ δ(x, z), and, from (5.34), it follows that δ(x, z) ≥ 2Aδ(x, x′).
Furthermore, since 1/φ(t)t is quasi-decreasing, we have

(5.47)

J1 ≤ δ(x, x′)θ
∫

δ(y,z)≥2Aδ(y,x)

1

φ(δ(y, z))δ(y, z)

φ(δ(z, x))

δ(z, x)1+θ
dµ(z)

≤ C
δ(x, x′)θ

φ(δ(x, y))δ(x, y)

∫

δ(x,z)≥δ(y,x)

φ(δ(z, x))

δ(z, x)1+θ
dµ(z)

≤ C
δ(x, x′)θ

δ(y, x)1+θ
.

Finally, from (5.34) we deduce that

(5.48)

J2 ≤
δ(x, x′)θ

δ(y, x)1+θ
φ(δ(y, x))

∫

δ(y,z)≥2Aδ(y,x)

1

φ(δ(y, z))δ(y, z)
dµ(z)

≤ C
δ(x, x′)θ

δ(y, x)1+θ
.

From (5.46), (5.47) and (5.48) we have got that

(5.49)

∫

C
g(z) dµ(z) ≤ C

δ(x, x′)θ

δ(y, x)1+θ
.

Nevertheless, since 0 < iφ < θ and θ − sφ < θ, from (5.40), (5.45) and (5.49) it
turns out that

|K(y, x)−K(y, x′)| ≤ C
δ(x, x′)min(iφ,θ−sφ)

δ(y, x)1+min(iφ,θ−sφ)
,

for δ(x, y) > 2Aδ(x, x′). The proof of this theorem is thus finished. �

We remark that once the standard conditions of size and smoothness on the
kernel of Tφ have been proved, the T 1-theorems stated in [HV1] give an al-
ternative proof of the fact that Tφ is a Calderón-Zygmund operator bounded
on the generalized Besov and Triebel-Lizorkin spaces. In fact, it was proved
in [H] that Tφ1 = T ∗

φ1 = 0 and Tφ is a weakly bounded operator, that is,

|〈Tφf, g〉| ≤ C‖f‖β‖g‖β(µ(B))
1+2β , for f and g ∈ Λβ0 (B) and B a ball.
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