Comment.Math.Univ.Carolin. 44,1 (2003)1-7

On the Diophantine equation qq"__—l_ =y

AMIR KHOSRAVI, BEHROOZ KHOSRAVI

Abstract. There exist many results about the Diophantine equation (¢"* —1)/(¢ — 1) =
y™, where m > 2 and n > 3. In this paper, we suppose that m = 1, n is an odd integer
and q a power of a prime number. Also let y be an integer such that the number of prime
divisors of y — 1 is less than or equal to 3. Then we solve completely the Diophantine
equation (¢"™ —1)/(q¢ — 1) = y for infinitely many values of y. This result finds frequent
applications in the theory of finite groups.
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The theory of finite groups leads to some Diophantine equations in which the
variables are restricted to be prime or a power of a prime number.

There exist many results about the Diophantine equation

=9 inintegers ¢ >1, y>1, n>2, m>2.

A long standing conjecture claims that the Diophantine equation (x) has finitely
many solutions, and, may be, only those given by
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=112, =202, and

Among the known results, let us mention that Ljunggren [14] solved () completely
when m = 2 and Ljunggren [14] and Nagell [16] when 3|n and 4|n: they proved
that in these cases there is no solution, except the previous ones.



A.Khosravi, B. Khosravi

Also Equation (x) is completely solved when ¢ is square (there is no solution in
this case [17], [5], [1]); when ¢ is a power of any integer in the interval {2,---,10}
(the only two solutions are listed above [4]); when ¢ is a power of a prime number,
say p, and ply — 1 [4]; or when m is a prime number and every prime divisor of ¢
also divides y — 1 [6].

For more information and in particular for finiteness type results under some
extra hypothesis, we refer the reader to Shorey & Tijdeman [19], [20] and to the
survey of Shorey [18].

If k is an integer, then 7(k) is the set of prime divisors of k. Y. Bugeaud and
M. Mignotte in [4] solved the Equation () when m > 2 and ¢ be a power of a
prime number, say p, and p|ly — 1. Hence in this paper we consider Equation ()
when m = 1 and ¢ be a power of a prime number, say p. Obviously ply — 1.
Also we let 2 f/n and |7(y — 1)| < 3. Then we solve completely the Diophantine
equation % = y. This result finds frequent applications in the theory of finite
groups.

Lemma A ([4], [8]). With the exceptions of the relations (239)% — 2(13)% = —1
and 3% — 2(11)? = 1, every solution of

p] — 2p5 = +1; pi1,pe primes; 1,8 > 1,

has exponents r = s = 2; i.e., it comes from a unit p; — p2.21/2 of the quadratic
field Q(21/2) for which the coefficients p1, po are prime.

Remark. Although it is proved that (with two exceptions) the above equation
becomes p% — Zp% = +1, we do not know whether or not there are infinitely many
prime pairs p1, p2 that satisfy this equation.

Lemma B ([8]). The only solution of the equation p] — p5 = 1, where p1, pa are
prime numbers and r,s > 1, is 32 — 23 = 1.

Remark ([11]). If n > 1 and @™ — 1 is prime, then a = 2 and n is prime, but
the converse is not true. Prime numbers of the form 2" — 1 are called Mersenne
primes.

Also if @ > 2 and @™ + 1 is prime, then a is even and n = 2, but the converse
is not true. Prime numbers of the form 2™ + 1 are called Fermat primes.

Main Theorem. Let q be a power of a prime number, |r(y —1)| < 3 and n > 3
an odd integer. Then the solutions of the Diophantine equation
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are listed in table (I):
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Table I

q n Y conditions

2 3 7

8 3 73
p—1 |3 pP—p+1 p is a Fermat prime

p 3| pP+p+1 p is a Mersenne prime

2 7 127

2 5 31

2« 5 225;—:11 2% + 1 and 22% 4 1 are Fermat primes, a > 1

p 3] pP4+p+1 p is a prime number such

that pTH is a power of a prime number
2p—1 |3 [4p2—2p+1 p is a prime number such
that 2p — 1 is a power of a prime number

3 5 121
2392 |3 | 3262865763

7 5 2801

p? 3| pt+p2+1 p32+1 = p’? where p’ is a prime number

b 5 b::ll b=2%"1_1and p=22*"3—-22"1 11 are prime

PROOF: Let (g, n,y) be a solution of (1). Let y = A+ 1, where |m(A)| < 3. Then

a1 —1)  q(g™ N2 1) D/2 1 1)

— = A.
q—1 q—1

(2)

Also (¢=D/2 —1,¢(n=1/2 1 1)]2, ¢ — 1|/¢""~1)/2 — 1 and hence ¢("~1)/2 4 1]A.

. nfl_l
If |7(A)| = 1 then n = 2, since (¢, =

If |7(A)| = 2 then y = 2*pP + 1, where p, z are prime numbers and «, 3 are
positive integers. Now we have ¢(¢" 1 —1)/(¢ — 1) = 2*p®. Therefore ¢ = 2% or
qg=7pP. Let ¢ = 2 then q(”_l)/2 +1= pﬁ,, for some 3’ < 3. Therefore p = 2 or
x = 2, and hence y = ZO‘pB + 1. Now we consider two cases:

Case 1. ¢ =2¢

) = 1, which is a contradiction.

Then q(”_l)/2 +1=p% and % =1, since (q(”_l)/2 -1, q("_l)/2 +1)=1.

Hence n =3, 2% +1 = pP. If & = 1 then p® = 3, and hence (2,3,7) is a solution
of (1). If @, # > 1 then a = 3, p® = 32 by Lemma B. Hence (8, 3,73) is a solution
of (1), too. If 3 =1 then p = 2% 4 1. Since p is a prime number, o = 2¢. Hence
if p= 22 4+ 1, t > 1, is a prime number, then (p — 1,3,p2 —p+ 1) is a solution
of (1). Special cases are (4, 3,21), (16, 3,273), (256, 3,65793).
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Case 2. ¢ = pP

Obviously if n # 3 then q(n%)/lz_l > 2. Therefore % =1and ¢ 1/2 4

1 = 2 which implies that n = 3, p® +1 = 2% By using Lemma B, § = 1,
p =2%—1, and hence « is a prime number. Therefore if p = 2% — 1 is a prime
number, then (p,3,p? + p + 1) is a solution of (1). Special cases are (3,3,13),
(7,3,57).

If |7(A)| = 3, then y = a®b’p* + 1, where , 3 and X are positive integers.
Similar to the case |1(A)| = 2, we have y = 2°b%p* + 1, and ¢ = 2% or ¢ = b° or
q= p)‘, where «, 0 and A are positive integers.

Step 1. ¢ = 2¢

Then (n-1)/2
g0(n-1)/2 _ 1
—-1)/2 _ A NG

Obviously n # 3, since 8 # 0. Now we consider 3 cases:

(1.1) If a(n —1)/2 = 1 then 8 = 0, which is a contradiction.

(1.2) If a(n — 1)/2 > 1, A > 1 then a(n — 1)/2 = 3 and p* = 3%, by Lemma B.
Then n =7 and a = 1, since n # 3. Hence (2,7,127) is a solution of (1).

(1.3) If A = 1 then p = 2*(»~1)/2 1 1. Hence a(n —1)/2 = 2! > 1, since p is a
prime number. Therefore

bﬁ 20c(n—1)/2 -1 (2a(n—1)/4 _ 1)(2a(n—1)/4 + 1)

20 —1 20 —1

and since (22(n=1/4_1 20(n=1)/44 1) — 1 we have n = 5, and p = 22¢+1.
Hence b° = 2% + 1. Now we consider 3 subcases:
(1.3.1) If o = 1 then b = 3, p = 5 and y = 31. Hence (2, 5,31) is a solution
of (1).
(1.3.2) If @ > 1, 3 > 1 then % = 32 and @ = 3 by Lemma B. But then
p = 65 which is not a prime number, a contradiction.
(1.3.3) If 3 =1 then b = 2% + 1 and p = 22% + 1. Hence (2%, 5, 24 4232 ¢
222 1 2% 1) is a solution of (1), where 2% + 1 and 22 + 1 are prime
numbers.

Step 2. ¢ = b°
Then (q("_l)/2 -1, q("_l)/2 +1) =2, and n # 3. Similar to the last step we have
3 subcases:
(2.1) It
pBn—1)/2 _ 1

w1 P +

)
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then S(n —1)/2 =1, by Lemma B, which is a contradiction since n > 3.
(2.2) If
pB(n=1)/2 _ 1

b -1

then similarly to (2.1), we have n = 3 which is a contradiction.
(2.3) If

— p)\7 bﬁ(n—l)/Q + 1 — 20!,

pBn=1)/2 _q
bd—1
then by using Lemma A we consider 4 cases:

(231) If f(n—1)/2 = 1thenn =3, 3 =1and ¢ = b. Then a = 1,
b+1 = 2p*. Hence if (b, p, A) is a solution of the Diophantine
equation b+ 1 = 2p*, then (b, 3, b2 + b + 1) is a solution of (1).

(2.3.2) If A = 1 then 6P(»=D/2 4 1 = 2p. Let m = ”T_l Hence ¢™ — 1 =
2071(g— 1) and ¢"™ + 1 = 2p.
If m is odd and m > 1 then 2p = ¢™ + 1= (¢ +1)(¢™ L —---+ 1),
which is a contradiction, since p is a prime number. Therefore m = 1,
a = 1 and hence y = 2bﬁp—|— 1, 2p = b% + 1. Hence if p is a prime
number and 2p — 1 is a power of a prime number then (2p — 1, 3,
4p? — 2p + 1) is a solution of (1).
If m is even then let m = 2k. Now we have (¢ — 1)(¢* + 1) =
2071(g — 1). Therefore k = 1, n = 5 and ¢ + 1 = 2%~ 1. Hence
b% +1 =221 By using Lemma B, § =1 and hence b = 20~1 — 1,
Now if b =291 — 1 and p = 22073 — 22~1 1 1 are prime numbers,
then (b, 5,b% + b3 + b2+ b+1) is a solution of (1). But we guess that
the only possible case is (3,5,121).

(2.3.3) If p* = 13% and b°("=1)/2 = 2392 then f(n —1)/2 = 2.
If 6=2,n=3then a =1 and y = 3262865763.
If 3= 1,n =5 then 22 =L — 240 which is not a power of 2, which
is a contradiction. Hence (2392, 3,3262865763) is a solution of (1).

(2.3.4) If A\ =2 and B(n — 1)/2 = 2 then we have two subcases:

(2.34.1) If 3 =1,n =5 then b> +1 = 2p? and b+ 1 = 2%~ 1. Hence p? =
220=3 _9a=1 1 1 which implies that (p—1)(p+1) = 2471272 —1).
Therefore p—1 =2*"2 and p+1 = 2(2°"2—1). Hence « = 4, p = 5,
b =T and y = 2801. Therefore (7,5,2801) is a solution of (1).

(2.3.4.2) If 3 = 2 and n = 3 then b? + 1 = 2p?. Hence if b and p are odd
prime numbers such that b2 + 1 = 2p? then (b2,3,b6* + b2 +1)is a
solution of (1).

)

(2.4) If
i W

S o B/ g
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then we get a contradiction since b and p are odd numbers.

Now the proof of the main theorem is completed. O

Remark. Sometimes in the theory of finite groups we need the solutions of (1),
where y is prime.

REFERENCES

Bennett M., Rational approximation to algebraic number of small height: The Diophantine
equation |axz™ — by™| =1, J. Reine Angew Math. 535 (2001), 1-49.

Bugeaud Y., Linear forms in p-adic logarithms and the Diophantine equation (™ —1)/(x —
1) = y?, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381.

Bugeaud Y., Laurent M., Minoration effective de la distance p-adique entre puissances de
nombres algébriques, J. Number Theory 61 (1996), 311-342.

Bugeaud Y., Mignotte M., On integers with identical digits, Mathematika 46 (1999), 411—
417.

Bugeaud Y., Mignotte M., Roy Y., Shorey T.N., On the Diophantine equation (™ —1)/(x—
1) = y9, Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372.

Bugeaud Y., Mignotte M., Roy Y., On the Diophantine equation (z"™ —1)/(x — 1) = y9,
Pacific J. Math. 193 (2) (2000), 257-268.

Bugeaud Y., Hanrot G., Mignotte M., Sur l’equation diophantiene (z"™ —1)/(x — 1) = y1
III, (French), Proc. London Math. Soc. IIL. Ser. 84 (1) (2002), 59-78.

Crescenzo P., A Diophantine equation arises in the theory of finite groups, Adv. Math. 17
(1975), 25-29.

Edgar H., Problems and some results concerning the Diophantine equation 1+ A + A% 4
-+ A*~1 = PY Rocky Mountain J. Math. 15 (1985), 327-329.

Guralnick R.M., Subgroups of prime power index in a simple group, J. Algebra 81 (1983),
304-311.

Hardy G.H., Wright E.M., An Introduction to Theory of Numbers, Oxford University Press,
1962.

Le M., A note on the Diophantine equation (z™ —1)/(x — 1) = y™, Acta Arith. 64 (1993),
19-28.

Le M., A note on perfect powers of the form x™ 1 + ... + x + 1, Acta Arith. 69 (1995),
91-98.

Ljunggren W., Noen setninger om ubestemte likninger av formen (z™ —1)/(x — 1) = y9,
Norsk. Mat. Tidsskr. 25 (1943), 17-20.

Mollin R.A., Fundamental Number Theory with Applications, CRC Press, New York, 1998.
Nagell T., Note sur l’equation indéterminée (™ —1)/(x — 1) = y9, Norsk. Mat. Tidsskr. 2
(1920), 75-78.

Saradha N., Shorey T.N., The equation (z"™ —1)/(x — 1) = y9 with = square,, Math. Proc.
Cambridge Philos. Soc. 125 (1999), 1-19.

Shorey T.N., Exponential Diophantine equation involving product of consecutive integers
and related equations, (English) Bambah, R.P. (Ed.) et al., Number theory; Basel, Birk-
hauser, Trends in Mathematics, (2000), 463—-495.

Shorey T.N., Tijdeman R., New applications of Diophantine approrimation to Diophantine
equations, Math. Scand. 39 (1976), 5-18.



On the Diophantine equation qq":ll =y

[20] Shorey T.N., Ezponential Diophantine equations, Cambridge Tracts in Mathematics 87
(1986), Cambridge University Press, Cambridge.

[21] Yu L., Le M., On the Diophantine equation (™ —1)/(x — 1) = y™, Acta Arith. 83 (1995),
363-366.

241, GOLNAZ STREET, GOLBAHAR STREET, DANESHJOU BLVD., VELENJAK, TEHRAN 19847,
IRAN

FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER ENGINEERING, UNIVERSITY FOR
TEACHER EDUCATION, 599 TALEGHANI AVE., TEHRAN 15614, IRAN

E-mail: khosravibbb@yahoo.com

(Received June 1,2002, revised November 18,2002)



