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C1,α local regularity for the solutions of the p-Laplacian

on the Heisenberg group. The case 1 + 1√
5

< p ≤ 2

Silvana Marchi

Abstract. We prove the Hölder continuity of the homogeneous gradient of the weak

solutions u ∈ W 1,p
loc of the p-Laplacian on the Heisenberg group Hn, for 1+ 1√

5
< p ≤ 2.
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1. Introduction

In this paper we deal with the regularity of the weak solutions u ∈W
1,p
loc (Ω, X),

1 + 1√
5
< p ≤ 2, of the equation

(1) divH~a(Xu) = 0,

where divH~a(Xu) =
∑2n

k=1Xka
k(Xu) and ak(q) = |q|p−2qk, k = 1, . . . , 2n.

Here Ω is an open subset of the Heisenberg group Hn, the vector fields Xk,
k = 1, . . . , 2n, are the generators of the corresponding Lie algebra with their
commutators up to the first order and Xu = (X1u, . . . , X2nu).

Our main object is the local Hölder continuity of the homogeneous gradientXu.
To this aim we consider approximate equations and we prove the property uni-
formly for their solutions. Then we gain the result for the solutions u of the
equation (1) via a limit argument.
Let us recall the definitions of the functional spaces needed (see [7]). For any

positive integer j, let us set s = (s1, . . . , sj), where si ∈ {1, . . . , 2n} for any
i = 1, . . . , j, and set |s| = j.
Let us denote by Xs the operator Xs1Xs2 . . . Xsj . For any q ≥ 1 and any

positive integer h,Wh,q(Hn, X) denotes the set of functions f ∈ Lq(Hn) such that
Xsf ∈ Lq(Hn) for |s| ≤ h, with norm ‖f‖h,q = ‖f‖Lq(Hn)+

∑

|s|≤h ‖Xsf‖Lq(Hn).
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34 S.Marchi

W
h,q
loc (Ω, X) is the set of functions f such that ϕf ∈ Wh,q(Hn, X) for any ϕ ∈

C∞
0 (Ω).

We say that u ∈W
1,p
loc (Ω, X) is a local weak solution of (1) if

(2)

∫

Ω
ak(Xu)Xk(ϕ) dx = 0

for all ϕ ∈ W 1,p(Ω, X) with suppϕ ⊂ Ω. Here and in the following repeated
indices denote summation.

We can now state the main results of this paper.

From now on Ω
′
will denote an arbitrary open subset of Ω such that Ω

′ ⊂⊂ Ω
and B(ρ), ρ > 0, will denote any homogeneous ball of radius ρ (see Section 3).

Theorem 1.1. Let u ∈W
1,p
loc (Ω, X), 1+

1√
5
< p ≤ 2, be a local weak solution of

(1). Then for any σ ∈ (0, 1) there exists a positive constant γ(σ) depending only
on σ and the data such that, for any homogeneous ball B(R) ⊂⊂ Ω′

,

(3) ‖Xu‖∞,B(R−σR) ≤ γ(σ)

(

1

|B(R)|

∫

B(R)
|Xu|p dx

)1/p

.

In particular |Xu| ∈ L∞
loc(Ω

′
) and for every compact K ⊂ Ω′

, there exists a

constant C0 > 0 depending only on the data and on dist(K, ∂Ω
′
) such that

‖Xu‖∞,K ≤ C0.

Theorem 1.2. Let u ∈W 1,ploc (Ω, X), 1+
1√
5
< p ≤ 2, be a local weak solution of

(1). Then for any homogeneous ball B(R) ⊂⊂ Ω′
there exist positive constants ν

and η ∈ (0, 1) depending only on the data and on dist(B(R), ∂Ω′
) such that

(4) max
i=1,...,2n

oscB(ρ) Xiu ≤ ν
( ρ

R

)η
sup

B(R/2)
|Xu|

for all ρ < R/2. In particular Xu is locally Hölder continuous in Ω
′
, i.e. for every

compact K ⊂ Ω′
there exist C1 > 0 and α ∈ (0, 1) depending only on data and

on dist(K, ∂Ω
′
) such that

|Xu(x)−Xu(y)| ≤ C1d(x, y)
α, x, y ∈ K,

where d denotes the homogeneous distance associated to Hn (see Section 3).

Our results extend to the Heisenberg group setting some properties which hold,
in the Euclidean context, for the solutions of the p-Laplacian, but even of more
general nonlinear elliptic equations.
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Let us recall in particular on this subject the papers of K. Uhlenbeck [27],
N.N. Ural’tzeva [28], L. Evans [6] for p ≥ 2, and P. Tolksdorf [26], E. Di Benedetto
[5] and J.L. Lewis [14] for 1 < p < +∞.
In general these methods consist in differentiating the equation and proving

that the derivatives of the solutions solve another partial differential equation.
But this procedure does not fit the Heisenberg context due to the lack of

commutativity of the vector fields. In fact, even difference quotiens along any left-
invariant vector field produce derivatives in the second commutator’s direction.

If p = 2 L. Capogna [1] solved this problem for sub-elliptic equations having
the p-Laplacian as a prototype, establishing at first a control on the L2 norm
of the derivatives in the commutator’s direction. This is the key point in the
matter. Thanks to this result he could prove the differentiability of the equation
and gradient’s Hölder continuity.

In [18] we proved the same result for the p-Laplacian when 2 ≤ p < 1+
√
5. Here

we extend it to 1 + 1√
5
< p < 2. Because of the worsening of the degeneracy, in

both cases we are forced to smooth the problem introducing regularized equations

(5) divH ~aǫ(Xuǫ) = 0

for small ǫ > 0, where ~aǫ(q) = [(ǫ + |q|2)(p−2)/2q]. Following an adaptation of
Di Benedetto’s method [5] we attempt to obtain “uniform” Hölder continuity
for Xuǫ. However this method requires differentiability of equations (5) too, that
in turn requires a control in Lp of some derivatives of uǫ.

If p > 2 we could limit ourselves to establish an Lp estimate for Tuǫ (T is the
second commutator of the vector fields). But the case p < 2 is much more tricky.
In fact, besides the Lp estimate for Tuǫ we proved in [19], here we further need
an Lp-control of the derivatives of Tuǫ along the vector fields. We prove this
result via an iterated application of fractional difference quotiens and repeated
inclusions between functional spaces. As this is a crucial step we treat it apart
in Section 7. The limit p > 1 + 1√

5
comes from [19]. A different technique could

improve the result.

Finally we would give a brief description of the content of each section. Sec-
tions 2 and 3 are devoted to recall basic knowledge and preliminary results. In
Section 4 we prove the differentiability of equations (5). We multiply them by a
particular test function, defined by double difference quotiens and apply a Lemma
of Cutŕı-Garroni [4] which enables us to commute the vector fields with the dou-
ble difference quotiens. Thanks to this tool and the Lp estimate of Tuǫ from
Section 7, we can then apply Giusti’s method [Giusti] and conclude about the
W 2,p local regularity for uǫ (see Theorem 4.1). This is enough to differentiate
equations (5).
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Thanks to this tool in Sections 5 and 6 we prove boundedness and local Hölder
continuity of Xiuǫ by the methods of Di Benedetto [5]. As these estimates are
uniform in ǫ, this enables us to establish Theorems 1.1 and 1.2 about u by standard
arguments [13], [14], possibly up to subsequences.

The general plan of this paper is the same as of [19]. The principal differences
concern the crucial Sections 4 and 7 and part of Section 6. They are outlined in
detail.
We limit ourselves to sketch the remainder, referring the reader to [5], [18], [19]

for a closer examination.

2. Basic knowledge

The Heisenberg groupHn is the Lie group whose underlying manifold is R
2n+1

with the following group law: for all x = (x′, t) = (x1, . . . , x2n, t), y = (y′, s) =
(y1, . . . , y2n, s),

x ◦ y = (x′ + y′, t+ s+ 2[x′, y′])

where [x′, y′] :=
∑n

i=1(yixi+n − xiyi+n).
Hn is a homogeneous group, that is a group with dilations. A norm for Hn

which is homogeneous of degree 1 with respect to the dilations is

|x|4 = |(x′, t)|4 = |x′|4 + t2 for any x = (x′, t) ∈ Hn

and the associated distance is

d(x, y) := |y−1 ◦ x|, x, y ∈ Hn, where y−1 = −y.

B(x, r) will denote the homogeneous ball centered in x ∈ Hn with radius r > 0.

The Lie algebra L(X) of left-invariant vector fields corresponding to Hn is
generated by

Xi = ∂xi + 2xi+n∂t

Xi+n = ∂xi+n − 2xi∂t

T = −4∂t

for i = 1, . . . , n, where [Xi, Xi+n] = −[Xi+n, Xi] = T , i = 1, . . . , n, and
[Xj , Xk] = 0 in any other case.
The vector fields Xi do not commute with right translations. In particular we

cannot interchange them with difference quotiens operators

Dhw(x) =
w(x ◦ h)− w(x)

|h| , D−hw(x) =
w(x ◦ h−1)− w(x)

−|h|
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for any x ∈ Hn, h = (h′, 0), hi ≥ 0 for any i = 1, . . . , 2n.
For any i = 1, . . . , 2n let hi, (hi)−1 be the elements of the group whose j-th

component is hi, or resp. −hi, if j = i and 0 otherwise. We have

(6) XiD±hi = D±hiXi

for every i = 1, . . . , 2n, but XkD±hi 6= D±hiXk if k 6= i.
For any s > 0 let h∗s, (h

∗
s)

−1 be the elements of the group whose (2n+1)-th
component is s or −s respectively and 0 otherwise. For any s > 0 and any
α ∈ (0, 1) let

Dh∗
s,α
w(x) =

w(x ◦ h∗s)− w(x)

sα
, D−h∗

s,α
w(x) =

w(x ◦ (h∗s)−1)− w(x)

−sα .

For every i = 1, . . . , 2n we have

(7) XiD±h∗
s,α
= D±h∗

s,α
Xi.

3. Difference quotiens and a priori bounds

For more details on this argument see also [4], [1]. Let us consider any w ∈
C∞
0 (Ω) and any h = (h

′, 0) = (h1, . . . , h2n, 0) with hi ≥ 0 for i = 1, . . . , 2n.
Remark 3.1. It is easy to show that

(8) D−hDhw(x) =
2w(x) − w(x ◦ h)− w(x ◦ h−1)

−|h|2 = DhD−hw(x).

Remark 3.2. For any function w ∈ Lp(Ω) with compact support ω ⊂ Ω, for any
f ∈ L

p/(p−1)
loc (Ω) and for any h such that |h| < d(ω, ∂Ω) we have

(9)

∫

fD±hw dx = −
∫

wD∓hf dx.

Lemma 3.3 (see [4, Lemma 2.7], [18, Lemma 3.3]). For any w ∈ C∞
0 (Ω) and for

any i = 1, . . . , n,

(10) Xi(D−hDhw(x)) = D−hDh(Xiw(x))−
hi+n

2|h|2 [(Tw)(x◦h)− (Tw)(x◦h
−1)],

(11) Xi+n(D−hDhw(x))

= D−hDh(Xi+nw(x)) +
hi

2|h|2 [(Tw)(x ◦ h)− (Tw)(x ◦ h−1)].
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Lemma 3.4 (see [4, Lemma 2.9], [18, Lemma 3.4]). For any w ∈ C∞
0 (Ω) and for

any i = 1, . . . , 2n,

(12) lim
hi→0

D±hiw = Xiw.

Lemma 3.5 ([1, Proposition 2.3]). Let p > 1 and let ψ ∈ L
p
loc(Ω) and g ∈ C∞

0 (Ω)
with ω = supp g ⊂⊂ Ω. Let i ∈ {1, . . . , 2n}. If there are some constants ǫ0 > 0
and C > 0 such that

(13) sup
0<hi<ǫ0

∫

ω
|D±hiψ|p dx ≤ Cp

then Xiψ ∈ Lp(ω) and ‖Xiψ‖Lp(ω) ≤ C. Conversely, if Xiψ ∈ Lp
loc(Ω), then (13)

holds for any ω = supp g ⊂⊂ Ω, g ∈ C∞
0 (Ω) and C = 2‖Xiψ‖Lp(ω). The same

result holds if we substitute D±hi and Xi by D±h∗
s,1
and ∂t, respectively.

Lemma 3.6 (see [1, Theorem 2.6], [19, Lemma 3.6]). Let ψ ∈ C∞(Ω) and let
g ∈ C∞

0 (ω), with suppω ⊂⊂ Ω. Then there exists a positive constant C such
that, for any small ǫ0 > 0 and any p > 1

(14)

sup
0<s<ǫ0

∫

Ω
|D±h∗

s,1/2
(ψg)|p dx

≤ C
2n
∑

i=1

{

sup
0<hi<ǫ0

∫

Ω
|Dhi(ψg)|p dx + sup

0<hi<ǫ0

∫

Ω
|D−hi(ψg)|p dx

}

.

From Lemmas 3.5 and 3.6 we easily deduce

Corollary 3.7. Let the assumptions of Lemma 3.6 hold true. Then there exists
a constant C > 0 such that, for any small ǫ0 > 0 and any p > 1

(15) sup
0<s<ǫ0

∫

Ω
|D±h∗

s,1/2
(ψg)|p dx ≤ C

∫

Ω
|X(ψg)|p dx.

4. W
2,p
loc regularity for the solutions of the approximate equation

This section is devoted to prove the W 2,p local regularity of the solutions of
equations (5) and, as a by-product, to differentiate equations (5). This will be a
basic tool in order to apply the Di Benedetto’s machinery [5] to obtain uniform
boundedness and Hölder continuity of ∇uǫ (see Sections 5, 6).
Here we will exploit a local W 1,p estimate of Tuǫ whose proof can be found in

Section 7.
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Theorem 4.1. Let 1 + 1√
5
< p ≤ 2 and, for any ǫ ∈ (0, 1), let uǫ ∈ W 1,ploc (Ω, X)

be a local weak solution of (5).

Then uǫ ∈W
2,p
loc (Ω, X) and, for any Ω

′′ ⊂⊂ Ω′

∫

Ω
′′
V p−2

ǫ |X2uǫ|2 dx ≤ C(Ω
′′
,Ω

′
, ǫ,Hǫ, p),

where Hǫ =
∫

Ω′ (V p
ǫ + |uǫ|p) dx and V 2ǫ = ǫ+ |Xuǫ|2.

Proof: For notational simplicity we will drop the subscript ǫ and denote the
solution of (5) by u. We briefly recall some piece of notation used in the previous
sections; for any ǫ > 0 and for any z ∈ R

2n we will denote

V 2(z) = ǫ+ |z|2,
W 2hi(x) = ǫ+ |Xu(x)|2 + |Xu(x ◦ hi)|2,

zhi
(θ) = Xu+ θhiDhiXu,

zhi

k (θ) = Xku+ θhiDhiXku.

Let B(3R) be a homogeneous ball of radius 3R such that B(3R) ⊂ Ω′
. For

an arbitrary i = 1, . . . , n, let ϕ = −(D−hiDhi + D−hi+nDhi+n + DhiD−hi +

Dhi+nD−hi+n)w, where w = g12u and g is a cut-off function between B(R) and
B(2R). Let us observe that the existence of cut-off functions in the Heisenberg
group follows from standard methods whenever one observes that the horizontal
gradient of the gauge distance has length less or equal than 1 (this is a trivial
computation from the definition in Section 2). Let us recall that hi is always
assumed to be nonnegative.

In [19] we proved Tw ∈ L
p
loc(Ω

′
) (see Theorem 7.1 in Section 7 of the present

paper). Thanks to this fact and to Lemma 3.3 we obtain ϕ ∈ W
1,p
0 (Ω, X); this

makes ϕ a right test function for equation (5).
Let us multiply equation (5) for the test function ϕ. On account of Remark 3.2

and Lemma 3.3 we obtain

(16)

0 =

2n
∑

k=1

∫

Ω
D±hiak D±hiXkw dx+

2n
∑

k=1

∫

Ω
D±hi+nak D±hi+nXkw dx

+

∫

Ω

[

D±hiai+n −D±hi+nai
]

Twdx

= I1 + I2 + I3,

where ± in I1, I2 and I3 means the sum of the terms corresponding to both the
signs. Let us observe that D±hiak D±hiXkw denotes the product of the functions

D±hiak and D±hiXkw. Here and in the following we omit the parentheses for
sake of simplicity.
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Estimates of I1 and I2. Let us observe that, for any i, k = 1, . . . , 2n

(17)

Dhiak =
1

hi

∫ 1

0

d

dθ
ak(Xu+ θhiDhiXu) dθ

=

∫ 1

0
ak
j (Xu+ θhiDhiXu)DhiXju dθ

= αkj
hiDhiXju

where αkj
hi :=

∫ 1

0
ak
j (Xu+ θhiDhiXu) dθ and the sum over j is understood even

if not explicitly written. Here ak
j denotes the derivative of a

k with respect to its

j-th variable.
Using the previous notation we have

(18) ak
j (z

hi
) = (p− 2)V p−4(zhi

)zhi

k zhi

j + V
p−2(zhi

)δkj

where δkj = 1 if k = 1 and δkj = 0 if k 6= j. An easy calculation gives

(19)

2n
∑

k,j=1

ak
j (z

hi
)DhiXkuDhiXju ≥ (p− 1)V p−2(zhi

) |DhiXu|2.

In virtue of (17) and (19) we easily obtain

(20)

2n
∑

k=1

Dhiak DhiXku =

2n
∑

k,j=1

α
kj
hiDhi XkuDhiXju

≥ c

∫ 1

0
V p−2(zhi

)dθ |DhiXu|2.

By [9, Lemma 8.3] we have

(21)

∫ 1

0
V p−2(zhi

) dθ ≥ cW p−2
hi .

Hence, from (20) and (21) we have

(22)
2n
∑

k,j=1

Dhiak DhiXku ≥ cW p−2
hi |DhiXu|2.
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Let us observe that

(23) DhiXkw = g
12DhiXku+ 12 g

11XkuDhig

+ 12g11DhiuXkg + 12g
11 uDhiXkg + 132ug

10DhigXkg.

Then, from (22) and (23) we obtain

(24)

2n
∑

k=1

∫

Ω
DhiakDhiXkw dx ≥ c

∫

Ω′
g12W

p−2
hi |DhiXu|2 dx

+ 12

∫

Ω′
g11DhiakXkuDhig dx + 12

∫

Ω′
g11DhiakDhiuXkg dx

+ 12

∫

Ω′
g11 uDhiak DhiXkg dx + 132

∫

Ω′
g10 uDhiak DhiXkg dx

= J1 + J2 + J3 + J4 + J5.

Estimate of J2, . . . , J5. Let us observe that, for any k, j = 1, . . . , 2n,

(25) |αkj
hi | ≤ cW p−2

hi .

On account of (17), (25), Hölder inequality and the decomposition p−1 = p+(p−2)
2 ,

we have

(26)

|J2| = 12 |
∫

Ω
′
g11α

kj
hi DhiXjuXkuDhig dx|

≤ c

∫

Ω′
g11W

p−1
hi |DhiXju||Dhig| dx

≤ δ

∫

Ω′
g12W

p−2
hi |DhiXu|2 dx+ cδ−1

∫

Ω′
g10W

p
hi |Dhig|2 dx.

As for hi < R

(27)

∫

B2R

W
p
hi dx ≤

∫

B3R

V p dx,

it follows from (26) and (27) that

(28) |J2| ≤ δ

∫

Ω
′
g12W

p−2
hi |DhiXu|2 dx+ cδ−1R−2

∫

Ω
′
V p dx.

We choose another suitable approach to estimate |J3|, |J4| and |J5|.
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To this end, let us observe that for any i, k = 1, . . . , 2n

(29) Dhiak =
1

hi

∫ 1

0
∇Ha

k(Xu(x ◦ δθhi)) · hi dθ

=

∫ 1

0
Xia

k(Xu(x ◦ δθhi)) dθ = Xiα
k
hi

where the functions αk
hi :=

∫ 1
0 a

k(Xu(x ◦ δθhi)) dθ can be estimated as

(30) |αk
hi | ≤ Yhi :=

∫ 1

0
(ǫ+ |Xu(x ◦ δθhi)|2)

p−1
2 dθ.

On account of (6), (29) and Remark 3.2 we have

(31)

J3 = − 12
∫

Ω′
αk

hiXi[g
11DhiuXkg] dx

= − 12
∫

Ω′
αk

hiDhiXiu g
11Xkg dx

− 12
∫

Ω′
αk

hiDhiu [11 g10XigXkg + g
11XiXkg] dx

and then, by (30)

(32) |J3| ≤ cR−1
∫

Ω′
g11Yhi |DhiXu| dx+ cR−2

∫

B2R

g10Yhi |Dhiu| dx.

The first integral on the right-hand side of (32) can be estimated taking into
account the following decomposition

(33)

R−1g11Yhi |DhiXu| = R−1g11YhiW
2−p
2

hi W
p−2
2

hi |DhiXu|
≤ δg12W p−2

hi |DhiXu|2 + cδ−1R−2g10Y 2hiW
2−p
hi

≤ δg12W
p−2
hi |DhiXu|2 + cδ−1R−2g10(W p

hi + Y
p

p−1

hi ).

To estimate the second integral on the right-hand side of (32) let us observe at
first that

(34) Yhi |Dhiu| ≤ c(|Dhiu|p + Y
p

p−1

hi ).

Moreover

(35)

∫

B(2R)
g10 Y

p
p−1

hi dx

≤
∫ 1

0
{
∫

B(2R)
g10 (1 + |Xu(x ◦ δθhi)|2)

p
2 dx} dt ≤

∫

B(3R)
V p dx.
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From (27), Lemma 3.5 and (32), . . . , (35) we finally obtain

(36) |J3| ≤ δ

∫

Ω′
g12W p−2

hi |DhiXu|2 dx + cR−2
∫

Ω′
V p dx.

Analogously we have

(37)

J4 = − 12
∫

Ω′
αk

hi Xi[g
11 uDhiXkg] dx

= − 12
∫

Ω′
αk

hi Xiu g
11DhiXkg dx

− 12
∫

Ω
′
αk

hi u [11g
10Xig DhiXkg + g

11XiDhiXkg ] dx

and then, by (30)

(38) |J4| ≤ 12R−2
∫

Ω
′
g11Yhi |Xu| dx+ 144R−3

∫

Ω
′
g10Yhi u dx.

Estimating as in (34), (35) we finally obtain

(39) |J4| ≤ cR−3
∫

Ω
′
(V p + |u|p) dx.

The same holds for |J5|:

(40) |J5| ≤ cR−3
∫

Ω
′
(V p + |u|p) dx.

From (22), (28), (36), (39), (40) and choosing δ small, we obtain that there

exist some positive constants c and c
′
such that

(41)
2n
∑

k=1

∫

Ω′
DhiakDhiXkw dx

≥ c

∫

Ω′
g12W

p−2
hi |DhiXu|2 dx− c

′
R−3

∫

Ω′
(V p + |u|p) dx.

An analogous result can be obtained switching between hi and −hi. In conclusion

there are some positive constants c and c
′
, possibly different from those in (41),

such that

(42) I1 =

2n
∑

k=1

∫

Ω′
D±hiakD±hiXkw dx

≥ c

∫

Ω
′
g12W

p−2
±hi |D±hiXu|2 dx− c

′
R−3

∫

Ω
′
(V p + |u|p) dx.

The estimate of I2 proceeds exactly in the same way.
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Estimate of I3. By Theorem 7.2, we have Tw ∈ W 1,ploc (Ω
′
, X) and

∫

Ω′
|XTw|p dx ≤ C(ǫ, R,H, p)

for a certain positive constant C depending on ǫ, R, H , p. This inequality and
the methods applied to J3, . . . , J5 give now

(43)

∣

∣

∣

∣

∫

Ω′
Dhiai+nTwdx

∣

∣

∣

∣

≤ c

∫

Ω′
|αi+n

hi | |XTw| dx

≤ c

∫

Ω′
Yhi |XTw| dx ≤ C(ǫ, R,H, p)

for some other constant C(ǫ, R,H, p) > 0. The other three terms of I3, that is
∫

Ω′ D−hiai+nTw dx,
∫

Ω′ D+hi+naiTw dx,
∫

Ω′ D−hi+naiTw dx can be estimated
in the same way. So we obtain

(44) I3 ≥ −C(ǫ, R,H, p).

From (42), the analogous estimate of I2 and (44) we finally obtain, for any
i = 1, . . . , 2n,

(45)

∫

Ω
′
g6W

2−p
hi |DhiXu|2 dx ≤ C(ǫ, R,H, p).

If 2α = p(p− 2) then, for any i = 1, . . . , 2n
(46) |DhiXu|p =Wα

hiW
−α
hi |DhiXu|p ≤W

p
hi +W

p−2
hi |DhiXu|2.

Inequalities (46), together with (27) and (45) enable us to affirm that, for any
i = 1, . . . , 2n

DhiXu is bounded in Lp(B(R)).

By Lemma 3.4, possibly up to a subsequence, DhiXu converges in L
p
loc(B(R)) to

XiXu for h
i → 0 and then u ∈ W 2,ploc (B(R), X).

Moreover we can extract from it a subsequence converging a.e. x ∈ B(R). By
Lemma 3.4

Whi → (ǫ + 2|Xu|2)1/2 a.e. x ∈ B(R) as hi → 0.

The proof of Theorem 4.1 is then finished passing to the limit hi → 0 in (45)

on account that Ω
′′
can be covered by a finite number of balls B(R) for R small

enough. �

Remark 4.2. We would like to point out that, thanks to Theorem 4.1, we can
now differentiate formally equations

∫

ak
ǫ (Xuǫ)Xkϕ = 0 along Xi, i = 1, . . . , 2n,

obtaining

(47)

∫

B(R)
ak
ǫ,j(Xuǫ)XiXjuǫXkϕdx = 0

for any ϕ ∈ W 1,p0 (B(R), X), B(R) ⊂ Ω
′
.
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5. Local boundedness of the gradient

Here we are concerned with the uniform, local boundedness of uǫ and ∇uǫ (see
Propositions 5.1, 5.2, for the proofs we refer to [3] and [18] respectively).
We point out that the proof of Theorem 5.2 insists on the differentiability

of equations (5), proved in Theorem 4.1, so its validity is limited to the range

1 + 1√
5
< p ≤ 2. However Proposition 5.1 holds for any p > 1.

Let us observe that Theorem 1.1 is an easy consequence of Theorem 5.2, stand-
ing its uniform validity, via a standard limit argument ([13], [14]).

Proposition 5.1 ([3, Theorem 3.4]). Let p > 1. For any compact K ⊂ Ω′

there exists a constant C > 0 depending only on the structural constants and on

dist(K, ∂Ω
′
) such that

‖uǫ‖∞,K ≤ C

for all ǫ > 0.

Let x0 ∈ Ω
′
be arbitrary fixed and, for any ρ > 0, let B(ρ) be the ball centered

at x0 of radius ρ. Let B(R) ⊂⊂ Ω′
.

Theorem 5.2 ([18, Theorem 5.2]). Let 1+ 1√
5
< p ≤ 2. For any σ ∈ (0, 1) there

exists a constant γ(σ) depending only on the structural constants and σ such that

‖[ǫ+ |Xuǫ|2]‖∞,B(R−σR) ≤ γ(σ)
1

|B(R)|

∫

B(R)
[ǫ+ |Xuǫ|2]p/2 dx

for all ǫ > 0.

Although the proof of Theorem 5.2 is referred to [18, Theorem 5.2], we want
to underline its dependence on the differentiability of equation (5). In fact it is
accomplished substituting in (47) the test function ϕ = XiuǫV

α
ǫ g
2, α > 0, where

g is a cut-off function between B(R − σR) and B(R), σ ∈ (0, 1), and applying
standard methods.

6. Local Hölder continuity of the gradient

Our purpose is to establish the Hölder continuity of Xuǫ at x0, uniformly in
ǫ > 0. The technique is due to [6], [5], with few adaptations due to [17].
We will not deal with all the proofs in depth. We will mostly refer to [5], even

if we will discuss all needed modifications in details. We outline that Proposi-
tion 6.1 holds true for any p > 1, while the validity of Propositions 6.2, 6.4 and
Theorem 6.5, which depend on the results of the former section, is limited to the
range 1 + 1√

5
< p ≤ 2.

Let us observe that Theorem 1.2 easily follows from Theorem 6.5 via a standard
limit technique (see [13], [14]).

The following result can be found in [3, Theorem 3.35].
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Proposition 6.1 (Local Hölder continuity of uǫ). For any compact K ⊂ Ω′

there exist constants C, β ∈ (0, 1) depending only on the structural constants and
dist(K, ∂Ω

′
) such that

|uǫ(x)− uǫ(y)| ≤ C|x − y| β, x, y ∈ K,

for all ǫ > 0.

As before let x0 be an arbitrary point of Ω
′
and, for any ρ > 0, B(ρ) be the ball

centered at x0 of radius ρ. We will choose R > 0 in such a way that B(2R) ⊂ Ω′
.

Let us now set ϕ = ±(Xiuǫ−k)±ξ2 in (47), for k ∈ R and i = 1, . . . , 2n, where
ξ is a cut-off function with support in B(R). We easily obtain

(48)

∫

B(R)
V p−2

ǫ |X(Xiuǫ − k)±|2 ξ2 dx ≤ γ

∫

B(R)
V p−2

ǫ |(Xiuǫ − k)±|2|Xξ|2 dx

for all ǫ > 0, where V 2ǫ = ǫ + |Xuǫ|2 and γ is a structural constant independent
on ǫ, R.

Let us observe that, due to Theorem 5.1 and the results of [1], the solutions uǫ

are now smooth. Therefore, for any ρ ≤ R, ǫ > 0, we can set

µǫ(ρ) = max
i
sup
B(ρ)

|Xiuǫ|

ωǫ(ρ) = max
i
oscB(ρ) Xiuǫ.

Proposition 6.2. Let 2ρ < R. Set

λ =
µǫ(2ρ)

2
.

Then there exists a positive constant C0 depending only on the data but inde-
pendent of ǫ, R, λ, such that, if for some 1 ≤ i ≤ 2n

|{x ∈ B(2ρ) |Xiuǫ < λ}| ≤ C0 |B(2ρ)|
then

Xiuǫ ≥
λ

4
, ∀x ∈ B(ρ).

Analogously if

|{x ∈ B(2ρ) |Xiuǫ > −λ}| ≤ C0 |B(2ρ)|
then

Xiuǫ ≤ −λ
4
, ∀x ∈ B(ρ).

Proof: We will drop the subscript ǫ. As in [5, Proposition 4.1] we distinguish be-
tween ǫ ≥ λ2 and ǫ < λ2. In the first simpler case the proof is easily accomplished
using (48) as in [5, Proposition 4.1]. Let now ǫ < λ2.
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Lemma 6.3. Let v = |Xiu|p/2 signXiu. Then

(49)

∫

B(r−σr)
|X(v − h)−|2 dx ≤ γh20(σr)

−2|A−
h,r|

for any σ ∈ (0, 1), r ≤ 2ρ, h ≤ h0 = λp/2 and for a suitable positive structural

constant γ, independent on ǫ, r, σ, h, where A−
h,r =: {x ∈ B(r) | v(x) < h}.

Proof of Lemma 6.3: We refer the reader to [5, Section 4] for the details of
the proof. Here we recall only the main steps of it for convenience of the reader.
If we set in (47) the test function ϕη = −[(|Xiu|+ η)p−2Xiu− k]−ξ2, k ∈ R

+,
where η is a small positive number which will be let tend to 0 and ξ is a cut-off
function with support in B(ρ), then we obtain

(50)

∫

B(ρ)
V p−2|X(v − k

p
2(p−1) )−|2ξ2 dx

≤ γ

∫

B(ρ)
|(|Xiu|p−2Xiu− k)−|2|Xξ|2 dx

where v := |Xiu|p/2 signXiu, for a structural constant γ independent on ǫ. From
(50), recalling the definition of λ we deduce for any r < 2ρ,

(51) λp−2
∫

B(r)
|X(v − k

p
2(p−1) )−|2ξ2 dx

≤ γ

∫

B(r)
|(|Xiu|p−2Xiu− k)−|2|Xξ|2 dx

for a new constant γ independent on ǫ, r, σ. If we choose k ≤ λp−1 in (51) and
denote by h any number such that h ≤ h0 = λ

p/2, then we obtain (49).

Let us now continue the proof of Proposition 6.2.

Let H = supB(2r) (v − h0)
−. Let us observe that if H < h0

2 , then Xiu >
λ
4 ,

for any x ∈ B(2ρ). Therefore we may assume H ≥ h0
2 . For any integer j ≥ 0 let

(52)
rj = ρ+

ρ

2j
, hj = h0 −

H

4
(1 − 1

2j
),

Bj = B(rj), Aj = A
−
hj ,rj

, µj = |A−
hj ,rj

|.

If we set in (49) h = hj , r = rj , r − σr = rj+1, for an arbitrary j ≥ 0, then we
obtain

(53)

∫

Bj+1

|X(v − hj)
−|2 dx ≤ C 22j

h20
ρ2

|Aj |.
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Let s ∈ (p, pQ
Q−p). Applying Poincaré’s inequality [15] to the function (v− hj)−ξ,

where ξ is a cut-off function between Bj+2 and Bj+1 we have, on account of the
doubling property,

(54)

(
∫

Aj+1

|(v − hj)
− ξ|s dx

)1/s

≤ c ρ

(
∫

Aj+1

|X(v−hj)
−|p dx +ρ−p2pj

∫

Aj+1

|(v−hj)
−|p dx

)1/p

|B(ρ)|1/s−1/p.

By Hölder inequality, (53) and (54) we obtain
(55)

H

2j+1
|Aj+2| ≤

∫

Aj+2

|(v − hj)
−| dx

≤ (
∫

Aj+1

|(v − hj)
− ξ|s dx)1/s |Aj+1|1−1/s

≤ cρ{(
∫

Aj+1

|X(v − hj)
−|2 dx )p/2 |Aj+1|

2−p
2

+ ρ−p2pj
∫

Aj+1

|(v − hj)
−|p dx}1/p |B(ρ)|1/s−1/p |Aj+1|1−1/s

≤ c {ρ(
∫

Aj+1

|X(v − hj)
−|2 dx )1/2 |Aj+1|

2−p
2p

+ 2j (

∫

Aj+1

|(v − hj)
−|p dx)1/p}|B(ρ)|1/s−1/p |Aj+1|1−1/s

≤ c2jH |Aj |1/p |B(ρ)|1/s−1/p|Aj+1|1−1/s

from which we obtain for any j ≥ 0

(56)
|Aj+2|
|B(ρ)| ≤ c 24j

( |Aj |
|B(ρ)|

)1+χ

where χ = 1p − 1s > 0. In particular (56) gives for any l ≥ 1

(57)
|A2l|
|B(ρ)| ≤ c(28)(l−1)

(

|A2(l−1)|
|B(ρ)|

)1+χ

.

It follows from (57) and [12, Lemma 4.7, p. 66] that there exists a positive con-
stant C0 depending only on c and b = 2

8 such that, if |A0| ≤ C0|B0|, then
liml→+∞A2l = 0, which implies |{x ∈ B(ρ) |Xiu <

λ
22/p }| = 0, and thenXiu ≥ λ

4
for any x ∈ B(ρ), so Proposition 6.2 is proved. �
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Proposition 6.4 ([5, Proposition 4.2], [18, Proposition 6.4]). Let 2ρ < R. If
the assumptions of Proposition 6.4 fail, then there exists a positive structural
constant σ0 ∈ (0, 1) independent on ǫ, ρ, such that

µǫ(ρ/2) ≤ σ0µǫ(2ρ).

Theorem 6.5. There exist positive constants γ and η ∈ (0, 1) depending only
on the data and dist(B(R), ∂Ω

′
) such that

oscB(ρ)Xiuǫ ≤ γ(
ρ

R
)η sup

B(R/2)
|Xuǫ|, i = 1, . . . , 2n

for every 2ρ < R and every ǫ > 0.

Proof: The proof is the same as that of [5, Proposition 4.3] using a result of
[17]. Here we limit ourselves to describe the general idea of the proof and we refer
the reader to [18] for any details.
We prove the existence of positive structural constants α ∈ (0, 1), δ0 and σ0

independent of ǫ such that, for all small ρ > 0, if the subset of B(ρ) where Xuǫ

degenerates is “small”, then the equation behaves in B(ρ) as a nondegenerate
elliptic equation (see Proposition 6.2). In this case, by [17, Theorem 2.1], we
obtain ωǫ(ρ/2) ≤ δ0ρ

α.
On the other hand if Xuǫ degenerates in a “thick” portion of B(ρ), then we

have µǫ(ρ/2) ≤ µǫ(2ρ) (see Proposition 6.4).
The Hölder continuity follows from both cases by a standard iteration tech-

nique [12].
�

7. Estimate of Tuǫ

In this section we prove that, for any 1+ 1√
5
< p ≤ 2, the local weak solutions

uǫ of equation (5) satisfy Tuǫ, XTuǫ ∈ Lp
loc(Ω

′
). Just as before, Ω

′
will denote

an arbitrary open bounded subset of Ω such that Ω
′ ⊂⊂ Ω.

Theorem 7.1 ([19, Theorem 1.1]). Let 1 + 1√
5
< p ≤ 2 and, for any ǫ ∈ (0, 1),

let uǫ ∈ W
1,p
loc (Ω, X) be a local weak solution of (5). Let B(3R) be an arbitrary

homogeneous ball of radius 3R such that B(3R) ⊂ Ω′
and let g be a cut-off

function between B(R) and B(2R). Then T (g4uǫ) ∈ Lp(Ω
′
) and

(58)

∫

Ω′
|T (g4uǫ)|p dx ≤ CR−4p

∫

Ω′
(V p

ǫ + |uǫ|p) dx

where V 2ǫ = ǫ+ |Xuǫ|2.
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Theorem 7.2. Let the assumptions of Theorem 7.1 hold. Then T (g12uǫ) ∈
W 1,ploc (Ω

′
, X) and

(59)

∫

Ω′
|XT (g12uǫ)|p dx ≤ C(R, ǫ,Hǫ, p)

where Hǫ =
∫

Ω
′ (V p

ǫ + |uǫ|p) dx and V 2ǫ = ǫ+ |Xuǫ|2.
Proof: From Lemma 3.5 and Theorem 7.1 we easily deduce for any small s > 0

(60)

∫

Ω
′
|Dh∗

s,1/2
(g4uǫ)|p dx ≤ csp/2C(R,Hǫ, p).

Let us multiply the equation (5) by the test function ϕ = D−h∗
s,1/2
(g10Dh∗

s,1/2
uǫ).

Let us observe that ϕ ∈ W
1,p
0 (Ω, X). In the following we will drop the subscript

ǫ for the sake of simplicity. On account of (7) and Remark 3.2 we obtain

(61)

∫

Ω′
Dh∗

s,1/2
ak g10XkDh∗

s,1/2
u dx+ 10

∫

Ω′
Dh∗

s,1/2
ak Dh∗

s,1/2
u g9Xkg dx = 0.

For any p > 1 the first integral on the left-hand side of (61) can be estimated by
the same argument we applied to J2 in Section 4: as

(62) Dh∗
s,1/2

ak = α
kj
h∗

s,1/2
Dh∗

s,1/2
Xju

where α
kj
h∗

s,1/2
:=
∫ 1
0 a

k
j (Xu+ θs

1/2Dh∗
s,1/2

Xu) dθ, then we have

(63)

∫

Ω′
Dh∗

s,1/2
ak g10XkDh∗

s,1/2
u dx ≥ c

∫

Ω′
g10W

p−2
h∗

s
|Dh∗

s,1/2
Xu|2 dx

where W 2h∗
s
(x) = ǫ+ |Xu(x)|2 + |Xu(x ◦ h∗s)|2.

Let us now estimate the second integral on the left-hand side of (61). As

|s1/2Dh∗
s,1/2

Xu| ≤ 2Wh∗
s
,

we obtain, for γ = 2−p
p ,

|
∫

Ω′
Dh∗

s,1/2
ak Dh∗

s,1/2
u g9Xkg dx|(64)

≤
∫

Ω′
W

p−2
h∗

s
|Dh∗

s,1/2
Xu| |Dh∗

s,1/2
u| g9|Xkg| dx
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≤ c

∫

Ω
′
W

p−2+γ
h∗

s
s−γ/2|Dh∗

s,1/2
Xu|1−γ |Dh∗

s,1/2
u| g9|Xkg| dx

( by Young’s inequality with exponents
p

p− 1 and p )

≤ δ

∫

Ω′
g10W p−2

h∗
s

|Dh∗
s,1/2

Xu|2 dx

+ cR−pδ−1
∫

Ω
′
(|Dh∗

s,1/2
(g4u)|p + |u|p|Dh∗

s,1/2
g4|p )s−γp/2 dx

( on account of (60))

≤ δ

∫

Ω′
g10W

p−2
h∗

s
|Dh∗

s,1/2
Xu|2 dx

+ δ−1sp−1C(R,H, p).

Hence, on account of (63) and (64) with small δ, (61) gives

(65)

∫

Ω′
g10W p−2

h∗
s

|Dh∗
s,1/2

Xu|2 dx ≤ sp−1C(R,H, p).

If 2σ = p(2− p) and q =
p(p−1)(2−p)

4 then, by Young’s inequality with exponents
2
2−p and

2
p , (65) gives

∫

Ω′
g10|Dh∗

s,1/2
Xu|p dx =

∫

Ω′
g10Wσ

h∗
s
W−σ

h∗
s
|Dh∗

s,1/2
Xu|p dx

≤ cs
2q
2−p

∫

Ω′
g10W p

h∗
s
dx+ s

−2q
p

∫

Ω′
g10W p−2

h∗
s

|Dh∗
s,1/2

Xu|p dx

≤ s
p(p−1)
2 C(R,H, p)

from which we deduce
∫

Ω′
|Dh∗

s,1/2
X(g10u)|p dx ≤ s

p(p−1)
2 C(R,H, p)

and hence

(66)

∫

Ω′
|Dh∗

s,p/2
X(g10u)|p dx ≤ C(R,H, p).

Let us now recall some basic definitions and relative properties we will need in
the sequel.
For p ≥ 1 and fractional l > 0, let wl,p denote the completion of D(R) with

respect to the norm

‖ϕ‖wl,p =

(
∫

‖∆sϕ‖p
w[l],p

|s|−1−p{l} ds
)1/p

.
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Here ∆sϕ(t) := ϕ(t + s) − ϕ(s), [l] and {l} are the integer and fractional parts
of l, respectively. Further W l,p denotes the completion of D(R) with respect to
the norm ‖ϕ‖wl,p + ‖u‖Lp .
If F denotes the Fourier transform in the real variable t, then for l ∈ R we

define the fractional derivative of ϕ as

∂α
t ϕ = F−1|ξ|αFϕ

and we denote Ll
tϕ := F−1(1+ |ξ|2)l/2Fϕ. For p > 1 and l > 0, let hl,p and H l,p

denote the completion of D(R) with respect to the norms

‖ϕ‖hl,p = ‖F−1|ξ|lFϕ‖Lp , ‖ϕ‖Hl,p = ‖F−1(1 + |ξ|2)l/2Fϕ‖Lp

respectively. Let us observe that

(67) (Lp,W 1,p)l+τ,∞ ⊂W l,p

for 0 < l < 1, p > 1 and small τ > 0 (see [24, Theorem 1, p. 64; (1), (4), p. 25;

(11), p. 189]) where (Lp,W 1,p)θ,∞ = {ϕ ∈ Lp : sup0<|s|<σ
‖ϕ(·+s)−ϕ(·)‖Lp

|s|θ <∞},
and

(68) wl,p ⊂ hl,p

for l > 0, 1 < p < 2 (see [16, Theorem 7.1.3-1]).

Now we can continue the proof of Theorem 7.2. The following lemma
holds true.

Lemma 7.3. Let η, w ∈ C∞
0 (Ω) and let p > 1, 0 < l < 1. Then

(69) ‖ηX(∂l
tw)‖Lp(Ω

′
) ≤ c ‖∂l

t(ηXw)‖Lp(Ω
′
).

We omit the proof of Lemma 7.3 because it obviously follows from an important
result due to Capogna [2, Theorem 2.12] in the more general Carnot group setting.
Let us observe that even if the proof of Capogna is accomplished for p = 2, still
it works alike for p 6= 2.
From (66), (67), (68) and for 1 + 1√

5
< p ≤ 2 and small τ > 0 we obtain

(70) ‖∂p/2−τ
t X(g10u)‖p

Lp(Ω′ )
≤ C(R,H, p)

and then, by Lemma 7.3

(71) ‖X(∂p/2−τ
t (g10u))‖p

Lp(Ω
′
)
≤ C(R,H, p).
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From Corollary 3.7, (67) and (68) we deduce

(72) ‖∂1/2−τ
t (ηw)‖p

Lp(Ω′)
≤ ‖X(ηw)‖p

Lp(Ω′ )

for any η, w ∈ C∞
0 (Ω

′
) and small τ > 0. From (71) and (72) we deduce

(73) ‖∂1/2−τ
t (∂

p/2−τ
t (g10u))‖Lp(Ω

′
) ≤ C(R,H, p).

As in virtue of Theorem 7.1

(74) ‖∂p/2−τ
t (g10u)‖Lp(Ω′ ) ≤ C(R,H, p)

then from (73) and (74) we obtain (see [23, Lemma V-3.2.2, p. 133])

‖L1/2−τ
t (∂

p/2−τ
t (g10u))‖Lp(Ω′) ≤ C(R,H, p)

and then
‖∂p/2−τ

t (L1/2−τ
t (g10u))‖Lp(Ω′ ) ≤ C(R,H, p).

As in virtue of Theorem 7.1, ‖L1/2−τ
t (g10u)‖Lp(Ω′ ) ≤ C(R,H, p), then

(75) ‖L(p+1)/2−2τt (g10u)‖Lp(Ω′ ) ≤ C(R,H, p).

As for q ≥ r > 1, l − 1r ≥ m− 1q

H l,r(R) ⊂ Hm,q(R)

(see for example [24, (15), p. 206]), we deduce from (75)

‖T (g10u)‖Lq(Ω′ ) ≤ C(R,H, p)

whenever p−1
2 − 2τ − 1

p ≥ −1q . In particular for 1 + 1√
5
< p < 2 and small τ we

obtain
‖T (g10u)‖L2(Ω

′
) ≤ C(R,H, p)

and then, by Lemma 3.5 also

(76)

∫

Ω
′
|Dh∗

s,1
(g10u)|2 dx ≤ C(R,H, p)

for any small s > 0.
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At this point let us set ϕ = D−h∗
s,1
(g12Dh∗

s,1
u) in equation (5) and repeat the

machinery from (61) to (63) obtaining

(77)

∫

Ω
′
Dh∗

s,1
ak g12XkDh∗

s,1
u dx ≥ c

∫

Ω
′
g12W

p−2
h∗

s
|Dh∗

s,1
Xu|2 dx.

In virtue of (76), the second term on the left-hand side of (61) can now be
estimated as follows

(78)

|
∫

Ω′
Dh∗

s,1
ak Dh∗

s,1
u g11Xkg dx|

≤
∫

Ω
′
W

p−2
h∗

s
|Dh∗

s,1
Xu| |Dh∗

s,1
u| g11|Xg| dx

≤ δ

∫

Ω
′
g12W

p−2
h∗

s
|Dh∗

s,1
Xu|2 + CR−2δ−1

∫

Ω
′
g10W

p−2
h∗

s
|Dh∗

s,1
Xu|2 dx

≤ δ

∫

Ω′
g12W

p−2
h∗

s
|Dh∗

s,1
Xu|2 + δ−1ǫp−2C(R,H, p).

Hence (76) and (77) give now for small δ > 0

(79)

∫

Ω
′
g12W p−2

h∗
s

|Dh∗
s,1
Xu|2 dx ≤ C(ǫ, R,H, p).

If 2α = p(p− 2), then

(80) |Dh∗
s,1
Xu|p =Wα

h∗
s
W−α

h∗
s
|Dh∗

s,1
Xu|p ≤W

p
h∗

s
+W

p−2
h∗

s
|Dh∗

s,1
Xu|2.

It follows from (79) and (80) that for any i = 1, . . . , 2n, Dh∗
s,1
Xiu is bounded

in Lp(B(R)) and thus, possibly up to a subsequence, it converges in Lp(B(R))
to TXiu as s → 0 and a.e. in B(R). So, since T commutes with Xi, Tu ∈
W 1,ploc (B(R), X); moreover the limit s→ 0 on (79), (80) gives

∫

Ω
′
g12|Dh∗

s,1
Xu|p dx ≤ C(ǫ, R,H, p)

and then, by Lemma 3.5
∫

Ω′
g12 |TXu|p dx ≤ C(ǫ, R,H, p)

from which we easily deduce
∫

Ω′
|XT (g12u)|p dx ≤ C(ǫ, R,H, p)

and the proof is concluded. �
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Hörmander vector fields, Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171–188.

[18] Marchi S., C1,α local regularity for the solutions of the p-Laplacian on the Heisenberg

group. The case 2 ≤ p < 1 +
√
5, Z. Anal. Anwendungen 20 (2001), no. 3, 617–636.

[19] Marchi S., Lp regularity of the derivatives in the second commutator’s direction for non-

linear elliptic equations on the Heisenberg group, in print on Accademia dei XL.

[20] Moser J.,On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math.
XIV (1991), 577–591.

[21] Nagel A., Stein E.M., Wainger S., Balls and metrics defined by vector fields I: Basic prop-
erties, Acta Math. 155 (1985), 103–147.

[22] Serrin J., Local behaviour of solutions of quasi-linear elliptic equations, Acta Math. 111
(1964), 247–302.

[23] Stein E.M., Singular Integrals and Differentiability Properties, Princeton Univ. Press, Prin-
ceton, 1970.

[24] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North Holland,
Amsterdam-New York-Oxford, 1978.

[25] Triebel H., Theory of Function Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983.
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