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Filling boxes densely and disjointly

J. Schröder

Dedicated to my teacher Professor Gerhard Preuss on the occasion of his 62nd birthday

Abstract. We effectively construct in the Hilbert cube H = [0, 1]ω two sets V, W ⊂ H

with the following properties:

(a) V ∩ W = ∅,
(b) V ∪ W is discrete-dense, i.e. dense in [0, 1]D

ω , where [0, 1]D denotes the unit
interval equipped with the discrete topology,

(c) V ,W are open in H. In fact, V =
S

N
Vi,W =

S
N

Wi, where Vi =
S2i−1

−1
0

Vij ,

Wi =
S2i−1

−1
0

Wij . Vij , Wij are basic open sets and
(0, 0, 0, . . . ) ∈ Vij , (1, 1, 1, . . . ) ∈ Wij ,

(d) Vi ∪ Wi, i ∈ N is point symmetric about (1/2, 1/2, 1/2, . . . ).

Instead of [0, 1] we could have taken any T4-space or a digital interval, where the reso-
lution (number of points) increases with i.

Keywords: Hilbert cube, discrete-dense, disjoint, disconnected, covering, constructive,
computation, digital interval, T4-space

Classification: Primary 54-04; Secondary 05-04, 54B10

Introduction

This is a paper in computational general topology. It originates in problems
of submaximal spaces and the attempt to construct dense connected subspaces of
product spaces. Our V ∪W is not connected, despite fulfilling strong conditions.
A similar, non-constructive, instance was discovered in [Wat90], using essentially
the compactness of [0, 1]. In order to proceed in a strictly constructive manner, we
will develop a language with a simple grammar. Translating words of this language
into H yields Vi and Wi. Since on the one hand we need examples as basis for the
induction process and on the other hand our imagination is poorly developed in
higher dimensions, the symbolic mathematical software Maple 6.01 c© was used to
create and check higher-dimensional cases, mainly utilizing its set data structure.
Pictures were created by means of Maple 6.01 c© as well.This numeric investigation
into set-theoretic topology leads to some, albeit simple, general theorems at the
end of this article.
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Definition 1. Let E ⊂ N be finite and H = [0, 1]ω.

(a) pE : H → [0, 1]E is the projection of H onto the finite subproduct [0, 1]E

of H. For p{i}, i ∈ N, we write pi.

(b) A ⊆ H is called discrete-dense, if pE [A] = [0, 1]
E for all finite E ⊂ N.

(c) Let A ⊆ H. The carrier c(A) of A is defined by c(A) = {i | i ∈ N∧ pi[A] 6=
[0, 1]}.

Remark 2.

(a) In other words, A ⊆ H is discrete-dense, if A covers all finite faces of H or
equivalently A is dense in [0, 1]D

ω, where [0, 1]D is the unit interval equipped
with the discrete topology.
(b) What is the idea behind the construction of Vi and Wi? We start by defining
W0 as follows: c(W0) = {0}, p0[W0] = {1}. Hence W0 = {1} ×

∏

≥1[0, 1]. Simi-

larly V0 = {0} ×
∏

≥1[0, 1] (see Fig. 1). In the following pictures we draw only
factors indexed by the carrier. V0, W0 do not cover H, nor are they open. This
latter problem we will address later. In the next step we have to increase the first
factor of W0, V0 and shrink the second to keep disjointness:

W1 = [1/2, 1]× {1} ×
∏

≥2[0, 1]

V1 = [0, 1/2]× {0} ×
∏

≥2[0, 1]

(see Figure 2). So, V1 ∪ W1 covers the first coordinate. V2 ∪ W2 is designed to
cover the first two coordinates (i.e. the square). We are expanding W0 and W1
halfway to the nearest opposite member V0 and V1:

W2 = [3/4, 1]× [0, 1]× {1} ×
∏

≥3[0, 1] ∪ [1/4, 1]× [1/2, 1]× {1} ×
∏

≥3[0, 1]

V2 = [0, 1/4]× [0, 1]× {0} ×
∏

≥3[0, 1] ∪ [0, 3/4]× [0, 1/2]× {0} ×
∏

≥3[0, 1]

(see Figure 3, note that W2 lies in the top face of the cube and V2 at the bottom).
The next step takes place in a cube. We have to expand W2 going halfway in the
direction to V0, V1, V2. At the top level opposite to W2 there is V0, V1. Applying
the same procedure as before we arrive at the sets:

W3 = [5/8, 1] × [0, 1] × [1/2, 1] × {1} ×
∏

≥4[0, 1] ∪
[1/8, 1] × [1/4, 1] × [1/2, 1] × {1} ×

∏

≥4[0, 1] ∪

[7/8, 1] × [0, 1] × [0, 1] × {1} ×
∏

≥4[0, 1] ∪

[3/8, 1] × [3/4, 1] × [0, 1] × {1} ×
∏

≥4[0, 1] .

V3 is obtained by applying the symmetry transformation s(x) := 1 − x to the
factors, i.e. s[[a, b]] = [1 − b, 1 − a], e.g. s[[3/8, 1]] = [0, 5/8]. (Compare with
Lemma 15.)
(c) The next definition provides the tool to construct Wij and Vij .
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Definition 3. Let the alphabet {↓, ↑, ε,⊕,⊖} be given. A word in the language
L is any finite sequence of uparrows ↑ and downarrows ↓ or a single ε, ⊕ or ⊖.

Definition 4. Let w 6= ε,⊕,⊖ be a word in L with length n, n ∈ N. We are
defining the lth derived word, l ∈ N, of w. If w = a1a2a3 . . . an, then d0(w) = w
and

dl(w) :=



























al+1al+2 . . . an if l < n and al = an,

ε if l < n and al 6= an,

⊕ if l = n and an =↓,

⊖ if l = n and an =↑,

ε if l > n.

Example 5. Let w =↓↑↓↑↓= d0(w). Then










d1(w) =↑↓↑↓, d2(w) = ε,

d3(w) =↑↓, d4(w) = ε,

d5(w) = ⊕, d6(w) = d7(w) = · · · = ε.

Definition 6. Let 0 < x < y < 1. The meaning of ↑ and ↓ is to be a map
from < into [0, 1]× [0, 1]. (The relation < is a subset of [0, 1]× [0, 1].) In detail:
(x,y)↓ = (x, x+y

2
)

(x,y)↑ = (x+y
2

,y)
. Additionally we need two initial symbols:

•↓ = (0,1/2)
•↑ = (1/2,1) .

Example 7. Letw =↓↑↓↑↓. Then •w = • ↓↑↓↑↓= (0, 1/2) ↑↓↑↓= (1/4, 1/2) ↓↑↓=
(1/4, 3/8) ↑↓= (5/16, 3/8) ↓= (5/16, 11/32).

Definition 8. Let w = a1a2 . . . an be a word in L and •w = (x, y). Define the
closed interval

•w• =



























[y, 1] if an =↓,

[0, x] if an =↑,

[0, 1] if an = ε (necessarily n = 1),

{1} if an = ⊕ (necessarily n = 1),

{0} if an = ⊖ (necessarily n = 1).
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Example 9. Let w =↓↑↓↑↓. Then •w• = [11/32, 1].

Definition 10.

(a) Given a binary number b = b1b2 . . . bn then b1 is the highest value bit and bn

is the lowest.

(b) Let w = a1a2 . . . an be a word in L \ {⊕,⊖, ε}. Define a binary number
b1b2 . . . bn = bw by

bi :=

{

1 if ai =↑,

0 if ai =↓.

(c) Let b1b2 . . . bn = b be a binary number. Define a word a1a2 . . . an = wb in L
by

ai :=

{

↑ if bi = 1,

↓ if bi = 0.

Lemma 11. Let v = a1a2 . . . am, w = a1a2 . . . ambm+1 . . . bn, n ≥ m be words
in L \ {⊕,⊖, ε} (w is an extension of v). Let •v = (r, s), •w = (x, y). Then
r ≤ x ≤ y ≤ s.

Proof: By Definition 6, r can increase only and s can decrease only. �

Lemma 12. Let w = a1a2 . . . an, w′ = a′1a
′
2 . . . a′n be words in L \ {⊕,⊖, ε}.

Assume •w = (x, y), •w′ = (x′, y′). Then

(a) [bw ≤ bw′ ⇔ •w• ⊇ •w′•] if an = a′n =↓;
(b) [bw ≤ bw′ ⇔ •w• ⊆ •w′•] if an = a′n =↑;
(c) if a1 =↓ and a′1 =↑ then [0, x] ∩ [y

′, 1] = ∅.

Proof: If •w = (x, y), •w′ = (x′, y′) and a1 =↓, a
′
1 =↑, then x < y ≤ 1/2 ≤ x′ <

y′. Hence [0, x]∩ [y′, 1] = ∅ and [y, 1] ⊇ [y′, 1] and [0, x] ⊆ [0, x′]. Now let l be the
last index where w and w′ coincide, a1a2 . . . al = a′1a

′
2 . . . a′l. Then al+1 =↓ and

a′l+1 =↑. Let •a1a2 . . . al = (r, s). Then x < y ≤ r+s
2 ≤ x′ < y′. �

Remark 13.

(a) Lemma 12 implies that •w• is uniquely determined by w.

(b) [0, x] ∩ [y′, 1] = ∅ remains true, even if w and w′ have different length (see
Lemma 11) or if a1a2 . . . al = a′1a

′
2 . . . a′l and al+1 =↓ and a′l+1 =↑.

Definition 14. Let w be a word in L. The 1-complement −w is defined by

−w =



















ε if w = ε

⊖ if w = ⊕

⊕ if w = ⊖

r(a1)r(a2) . . . r(an) if w = a1a2 . . . an



















, where r(ai) =

{

↑ if ai =↓,

↓ if ai =↑.
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Lemma 15. Let w be a word in L \ {⊕,⊖, ε} and •w = (x, y), •w• = [0, x] or
•w• = [y, 1]. Then •−w = [1− y, 1−x], •−w• = [1−x, 1] or •−w• = [0, 1− y],
respectively.

Proof: It is sufficient to show • − w = (1 − y, 1 − x). Let wn = a1a2 . . . an.
We will proceed by induction on n: If w1 =↑, then •w1 = (1/2, 1), −w1 =↓
and • − w1 = (0, 1/2). Let wn+1 = wn ↑ be given and •wn = (x, y). Hence

•wn ↑= (x+y
2 , y). By induction hypothesis •−wn = (1− y, 1− x). Now −(wn ↑)

= (−wn) ↓ and •(−wn) ↓= (1− y, 1− x) ↓= (1− y, 1−y+1−x
2 ) = (1− y, 1− x+y

2 ).
The cases w1 =↓, wn+1 = wn ↓ are alike. �

Lemma 16. Let w be a word in L \ {⊕,⊖, ε}. Then •w ↓ • ∪ •w ↑ • = [0, 1].

Proof: Let •w = (x, y). Then •w ↓ • = [x+y
2 , 1] and •w ↑ • = [0, x+y

2 ]. �

Definition 17. Let Bn = {00 . . .00, 00 . . .01, 00 . . .10, . . . , 11 . . . 11} be the set
of all n-bit binary numbers. Let cj = bj1bj2 . . . bjn ∈ Bn, 0 ≤ j < 2n (so

cj = j). Set (see Definition 4 and 10)
Wnj =

Q
∞

i=0 •(d
i(wcj ))• if j is even

Vnj =
Q

∞

i=0 •(d
i(wcj ))• if j is odd

. Further,

set
Wn =

S<2n

j evenWnj

Vn =
S<2n

j odd Vnj

.

11110 ↑↑↑↑↓ ε ε ε ε ⊕

11100 ↑↑↑↓↓ ε ε ε ↓ ⊕

11010 ↑↑↓↑↓ ε ε ↑↓ ε ⊕

11000 ↑↑↓↓↓ ε ε ↓↓ ↓ ⊕

10110 ↑↓↑↑↓ ε ↑↑↓ ε ε ⊕

10100 ↑↓↑↓↓ ε ↑↓↓ ε ↓ ⊕

10010 ↑↓↓↑↓ ε ↓↑↓ ↑↓ ε ⊕

10000 ↑↓↓↓↓ ε ↓↓↓ ↓↓ ↓ ⊕

01110 ↓↑↑↑↓ ↑↑↑↓ ε ε ε ⊕

01100 ↓↑↑↓↓ ↑↑↓↓ ε ε ↓ ⊕

01010 ↓↑↓↑↓ ↑↓↑↓ ε ↑↓ ε ⊕

01000 ↓↑↓↓↓ ↑↓↓↓ ε ↓↓ ↓ ⊕

00110 ↓↓↑↑↓ ↓↑↑↓ ↑↑↓ ε ε ⊕

00100 ↓↓↑↓↓ ↓↑↓↓ ↑↓↓ ε ↓ ⊕

00010 ↓↓↓↑↓ ↓↓↑↓ ↓↑↓ ↑↓ ε ⊕

00000 ↓↓↓↓↓ ↓↓↓↓ ↓↓↓ ↓↓ ↓ ⊕

bw d0(w) d1(w) d2(w) d3(w)d4(w)d5(w)

Fig. 4: dim = 5
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Theorem 18. Let E = {0, 1, . . . , n − 1}. Then pE [Vn ∪ Wn] =
∏

E [0, 1] and
Wn ∩ Vm = ∅ for all m ≤ n.

Proof: We proceed by induction on n and j. We need the following notation:
c1(c0) is the binary number c followed by 1(0), 1c(0c) is the binary number c pre-
ceded by 1(0). cm/2 is the binary number cm (= m) divided by 2. Let Wn+1 =
⋃<2n+1

j even W(n+1)j . W1 = [1/2, 1]×{1}×
∏

≥2[0, 1], V1 = [0, 1/2]×{0}×
∏

≥2[0, 1]

(see Fig. 2) cover the first coordinate and W1 is disjoint to V0, V1. Assume
that Wn ∪ Vn covers (the product of) the first n coordinates. Take a point
(x1, x2, . . . , xn+1) ∈

∏n
0 [0, 1]. By symmetry and induction hypothesis we may

assume that there is Wnj such that (x2, . . . , xn+1) ∈ p{0,1,... ,n−1}[Wnj ] (so j

is even). We show now by induction on j that there is W(n+1)k or V(n+1)l
with (x1, x2, . . . , xn+1) ∈ W(n+1)k or (x1, x2, . . . , xn+1) ∈ V(n+1)l . Let c0 =

00 . . . 0 ∈ Bn. If (x2, . . . xn+1) ∈
∏n−1
0 •(di(wc0))• and x1 /∈ •(w0c0)•, then

x1 ∈ •(wc01)• by Lemma 16 and (x1, x2, . . . xn+1) ∈
∏n
0 •(d

i(wc01))• (the
reader might wish to follow the line of proof by looking at Fig. 4). Assume we
have shown for all j < m; j, m even, that (x2, . . . , xn+1) ∈ p{0,1,... ,n−1}[Wnj ]

implies (x1, x2, . . . , xn+1) ∈ p{0,1,... ,n}[W(n+1)k ∪ V(n+1)l] for some k, l. Let

(x2, . . . , xn+1) ∈ p{0,1,... ,n−1}[Wnm]. Take cm ∈ Bn, hence p{0,1,... ,n−1}[Wnm] =
∏n−1
0 •(di(wcm))•. If x1 ∈ •(w0cm)• we are finished, because then
(x1, x2, . . . , xn+1) ∈ •(w0cm) • ×p{0,1,... ,n−1}[Wnm] = p{0,1,... ,n}[W(n+1)m] =
∏n
0 •(d

i(w0cm))•. If x1 /∈ •(w0cm)•, then x1 ∈ •(w0cm/21)•. Note cm= b1b2 . . . bn,

bi ∈ {0, 1}, bn = 0. •(di(wcm))• is either a proper subset of [0, 1] or equal to
[0, 1]. Since x2 ∈ •(d0(wcm))• = •(wcm)• and Lemma 12 we have x2 ∈ •(wcj )• ⊇
•(wcm)• for all cj ≤ cm, cj ∈ Bn even. The idea is to construct a set V(n+1)l with

(x1, x2, . . . , xn+1) ∈ p{0,1,... ,n}[V(n+1)l] assuming that for all even j < m we have

(x2, . . . xn) /∈ p{0,1,... ,n−1}[Wnj ]. Let q : {1, 2, . . . , n} × Bn → {0, 1} be the func-

tion which picks the i-th digit in cm. (e.g. t = 10 renders q(1, t) = 1, q(2, t) = 0)
If •di(wcm)• = [0, 1] we know q(i, cm) = 1 by Definition 4. Let cti differ from
cm in exactly the i-th digit, where i ∈ {u | 1 ≤ u ≤ n ∧ q(u, cm) = 1}. Of course
cti < cm and •di(wcti

)• = •wbi+1...bn
•, where cti = b1b2 . . . bi−10bi+1 . . . bn. Now

(x2, . . . , xn+1) /∈ p{0,1,...n−1}[Wnti ] and since cti , cm differ in one digit only it

implies xi+2 /∈ •wbi+1...bn
•, hence xi+2 ∈ •wbi+1...bn−11• = •di(wcm/21)•. Hence

(x1, x2, . . . , xn+1) ∈
∏n
0 •d

i(w0cm/21)• = V(n+1)0cm/21
. We are now turning to

the quest for disjointness. Assume Wnl ∩ Vmk = ∅ for all m, n < t; 0 ≤ l < 2n, l
even; 0 ≤ k < 2n, k odd.

1. Then Wtl ∩ Vtk = ∅, because pt[Wtl] = {1} and pt[Vtk ] = {0}.
2. By symmetry we may limit ourselves to the case Wtl, Vmk.
3. If cl starts with a 0 and ck starts with a 1 we are finished, because af-
ter deleting the first coordinate disjointness follows from the induction
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hypothesis.
4. If cl starts with a 1 and ck starts with a 0 we may apply Remark 13 to
get disjointness in the first coordinate. Therefore cl, ck both commence
with 0 or 1.
(a) cl, ck coincide for the length of ck. Then •wck = (x, y), •wck• = [0, x]
and •wcl = (x

′, y′), where x ≤ x′ < y′. •wcl• = [y
′, 1] is disjoint

from [0, x]. (We only need the first coordinate of Wtl, Vmk.)
(b) Let cl, ck coincide below position i and let q(i, cl) = 0, q(i, ck) = 1.
Then disjointness follows from the induction hypothesis, because the
next derived word does not translate into [0, 1].

(c) Let cl, ck coincide below position i and let q(i, cl) = 1, q(i, ck) = 0.
In this case we may not apply the induction hypothesis, because
pi[Vmk ] = pi[Wtl] = [0, 1], but we can apply again Remark 13(b) to
get disjointness in the first coordinate.

�

Remark 19.

(a) We succeeded in filling the Hilbert space H densely and disjointly. But our
setsWn, Vn are closed. How can we achieve openess? The distance ofWn and Vm,
m < n in the hypercube [0, 1]n is at least 2−n. We choose a positive ǫ < 1

2 and

replace all intervals [y, 1] appearing in Wn by (y − ǫ2−n, 1]. A symmetric change
is applied to Vn: [0, x] is replaced by [0, x + ǫ2−n). The remaining problem are
the sets {1} and {0} which force Wn to be disjoint from Vn. We choose a small
δ > 0 and replace {1} by (1, 1 + δ] and {0} by [−δ, 0). As a consequence our
construction takes place in the space [−δ, 1+ δ]ω using intervals (y − ǫ2−n, 1+ δ]
and [−δ, x+ ǫ2−n), which, of course, does no harm.

(b) Fig. 5 and Fig. 6 give an indication how the setsWnj , j < 2n−1 look in the 8-
dimensional hypercube (we skip odd indices j). They are to be understood in the
following way: Each picture consists of 128 slices each consisting of 8 factors. The
factors represent the length of the closed interval [y, 1]. The cartesian product of
the 8 factors in one slice yields one set W8j .

(c) Fig. 5 and Fig. 6 were created by the following Maple 6.01 c© session:

> restart;
> N:=8;
N := 8
> h:=proc(r,t)
> x:=0;
> y:=1;
> if t>1 and r[nops(r)-t+2]=1 then x:=0 else
> for s from nops(r)-t+1 by -1 to 1 do
> if r[s]=0 then y:=(x+y)/2 else x:=(x+y)/2 fi:
> od;
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> fi;
> end;
>
Warning,‘x‘ is implicitly declared local to procedure ‘h‘
Warning,‘y‘ is implicitly declared local to procedure ‘h‘
Warning,‘s‘ is implicitly declared local to procedure ‘h‘
h := proc(r, t)
local x, y, s;
x := 0;
y := 1;
if 1 < t and r[nops(r) - t + 2] = 1 then x := 0
else for s from nops(r) - t + 1 by -1 to 1 do
if r[s] = 0 then y := 1/2*x + 1/2*y
else x := 1/2*x + 1/2*y
end if
end do
end if
end proc
>
> a:= array(0. .2(̂N-1)-1,1. .N);
a := array(0 . . 127, 1 . . 8, [])

> for i from 0 by 2 to 2N̂ - 1 do
> if i<2(̂N-1) then z:=i+2(̂N-1):
> c:=convert(z,base,2):
> c[nops(c)]:=0:
> else
> c:=convert(i,base,2):
> fi:
> for j from 1 by 1 to N do
> a[i/2,j]:= h(c,j);
> od:
> od:
> b:=map(x->1-x,a):
> M:=convert(b,matrix):
> plots[matrixplot](M,heights=histogram,orientation=
[-62,35],axes=framed,color=white);
> plots[matrixplot](M,heights=histogram,orientation=
[105,35],axes=framed,color=white);
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Fig. 5: Front view, see Remark 19(b)

Fig. 6: Rear view, see Remark 19(b)

Remark 20.

(a) Are there more general spaces X than [0, 1] on which our algorithm can run?
The basic step takes two open sets O0, O1 with disjoint closures and selects two
open sets O1/4, O3/4 satisfying O0 ⊂ O1/4, O1 ⊂ O3/4 and O1/4 ∪ O3/4 = X ,

cl(O0)∩cl(O3/4) = ∅, cl(O1)∩cl(O1/4) = ∅. Such constructions can be carried out
in any T4-space. In fact, we have the stronger Lemma 22. Recall that a space is
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called functionally T2 if its topology is finer than a completely regular T1 topology.

(b) The other line of generalization looks at the information we need to pursue
the construction. At least we need to have the defining end points of all inter-
vals. For the first step the space I2 = {0, 1, 2, 3, 4} suffices with open points
{0}, {2}, {4} and closed points {1}, {3}. The next iteration already needs
I3 = {0, 1, 2, 3, 4, 5, 6, 7, 8}where even numbers are open and odd numbers closed.
These digital intervals In with increasing resolution can be used to verify Theo-
rem 18 on a computer up to a fixed dimension n.

(c) Digital intervals are Alexandroff spaces (each point has a minimal open neigh-
borhood). The next Lemma 21 reconciles Remark 20(b) with [Wat90], who states
that discrete-dense subspaces of products of connected Alexandroff spaces are
connected.

Lemma 21. Let (X,X ) be a connected Alexandroff space and (Oi)N be an
increasing sequence of non-empty open sets such that cl(Oi) ⊆ Oi+1. Then
⋃

N
Oi = X .

Proof:
⋃

N
Oi =

⋃

N
cl(Oi) is closed and open. �

Lemma 22. Let (X,X ) be a functionally T2 space. Then Xω can be filled

densely and disjointly as H.

Proof: Lemma 22 is true (even trivial) ifX is disconnected. LetX be connected.
Take two points a, b ∈ X and a continuous map f : X → [0, 1] with f(a) = 0
and f(b) = 1. f is surjective. Define A(i, cj) =: f

−1[•(di(wcj ))•] if j is odd and

B(i, cj) =: f
−1[•(di(wcj ))•] if j is even (see Definition 17). �

Note added in proof: After my talk at the Free University of Berlin Vladimir
Kadets communicated the following elegant method to show the existence of dis-
joint, discrete-dense open sets: Define φ : H → [0, 1] by φ(x) :=

∑∞
1

xi
2i
for

x = (xi) ∈ H = [0, 1]ω. Then φ−1[[0, 1/2)] and φ−1[(1/2, 1]] are as required. How
do they look? His, St. Watson’s [Wat90] and my sets are different.
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