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Estimation functions and uniformly most

powerful tests for inverse Gaussian distribution

Ion Vladimirescu, Radu Tunaru

Abstract. The aim of this article is to develop estimation functions by confidence regions
for the inverse Gaussian distribution with two parameters and to construct tests for
hypotheses testing concerning the parameter λ when the mean parameter µ is known.
The tests constructed are uniformly most powerful tests and for testing the point null
hypothesis it is also unbiased.
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1. Introduction

The inverse Gaussian distribution was first derived by Schrodinger (1915) in
connection to the first hitting time in Brownian motion. In statistics it was derived
by Wald (1947) for sequential testing, by Hadwiger (1940) and Tweedie (1957).
Some monographs dedicated to this subject are Chhikara and Folks (1989), Se-
shadri (1994) and Seshadri (1999).
A bivariate inverse Gaussian distribution is investigated in Essam and Nagi

(1981). Although in the literature there are several goodness-of-fit tests, see
Edgeman et al. (1988), O’Reilly and Rueda (1992), Pavur et al. (1992), Mergel
(1999) and Henze and Klar (2001), and some other empirical distribution function
tests such asKolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson-
Darling test and the Watson test have been investigated in Gunes et al. (1997),
there are no uniformly most powerful tests developed for testing in the inverse
Gaussian context.
The inverse Gaussian distribution has many applications in actuarial statistics

(for example Ter Berg 1980, 1984) and it has been also used lately in mathematical
finance due to its useful properties such as closure under convolution and flexibility
in modeling positively-skewed and leptokurtic sets of data.
The main aim of this paper is to propose estimation functions by confidence

regions and some uniformly most powerful tests for the λ parameter when the
mean parameter µ is known. Various point, unidirectional and bidirectional tests
are considered for testing hypotheses.
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All probability density functions in this paper are considered with respect to
the Lebesgue measure on the relevant metric space, most often this is ℜ the set
of real numbers. For any random variable g we denote by Fg the cumulative
distribution function of g and by ρg the probability density function of g.
The inverse Gaussian distribution Gλ,µ has the following probability density

function

ρ(x : λ, µ) =

(

λ

2πx3

)
1
2

exp

[

−
λ

2µ2
(x − µ)2

x

]

1(0,∞)(x).

Under this parameterization, the inverse Gaussian distribution has mean µ
and variance µ3/λ. Its shape is modeled by the value of λ/µ. The cumulant
generating function is the inverse of that of the normal or Gaussian distribution
and this is the reason for the name of this distribution, the inverse Gaussian.
The next results are useful to prove the main results of this paper.

Theorem 1. Let (Ω,F , P ) be a probability space and f : Ω −→ ℜ be a random
variable having the distribution Gλ,µ. Then

(a) cf ∼ Gcλ,cµ for any c > 0;

(b) λ
µ2
(f−µ)2

f ∼ χ2(1), where χ2(1) is the chi-square distribution with one

degree of freedom.

The first point was proved in Tweedie (1957) while the second can be found in
Shuster (1968).

For any positive integer n the cumulative distribution function of the chi-square
distribution χ2(n) is denoted by Fn(·).
Using the characteristic function it can be easily shown that if f1, . . . , fn are

random variables independent and identically distributed with distribution Gλ,µ
then

(1)
1

n

n
∑

i=1

fi ∼ Gnλ,µ.

Consider the statistical model given by

(2)
(

(0,∞),B(0,∞), {Gλ,µ | λ, µ > 0}
)(n)

.

The mappings

pri : (0,∞)
n −→ (0,∞)

defined by pri(x
(n)) = xi for any x(n) = (x1, . . . , xn) ∈ (0,∞)

n and any i =
1, . . . , n are independent, identically distributed with distribution Gλ,µ.
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Theorem 1 above implies that

(3)
1

n

n
∑

i=1

pri ∼ Gnλ,µ.

Applying then the second point of Theorem 1 we get that

(4) nλ

(

1
nµ

∑n
i=1 pri −1

)2

1
n

∑n
i=1 pri

∼ χ2(1).

Next we need to define the functions πn(·; ·) : (0,∞)
n × (0,∞)→ (0,∞) by

πn(x
(n);λ) =

nλ

x̄n

(

1

µ
x̄n − 1

)2

,

where x̄n =
1
n

∑n
i=1 xi. In other words,

(5) πn(·;λ) = nλ

(

1
nµ

∑n
i=1 pri −1

)2

1
n

∑n
i=1 pri

for any λ > 0.

2. Main results for estimation functions

In this section we are preparing the way to the main results providing confidence
regions and uniformly most powerful tests.

Lemma 1. Let n be a positive integer and µ be a positive real number. Then

(6) πn(·;λ) > 0, Gn
λ,µ − a.e.

for any λ > 0.

Proof: Obviously πn(x
(n);λ) ≥ 0 for any x(n) ∈ (0,∞)n and λ > 0. In addition

Gn
λ,µ({x

(n) ∈ (0,∞)n | πn(x
(n);λ) = 0}) =

(

Gn
λ,µ ◦ (πn(·;λ))

−1
)

({0})

= χ2(1)({0}) = 0.

Similarly with the construction above, if n is a positive integer and λ is a
positive real number we can define π̃n(·; ·) : (0,∞)

n × (0,∞)→ (0,∞) by
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π̃n(x
(n);µ) =

nλ

x̄n

(

1

µ
x̄n − 1

)2

where x̄n =
1
n

∑n
i=1 xi. Once again

(7) π̃n(·;µ) = nλ

(

1
nµ

∑n
i=1 pri −1

)2

1
n

∑n
i=1 pri

∼ χ2(1)

for any µ > 0. �

Theorem 2. Let
(

(0,∞),B(0,∞), {Gλ,µ | λ, µ > 0}
)(n)

be a statistical model.

(a) If µ > 0 and α ∈ (0, 1) are known and 0 < u < v such that χ2(1)([u, v]) =

1− α then the mapping δn : (0,∞)
n −→ 2(0,∞) defined as

(8) δn(x
(n)) = {λ > 0 | u ≤ πn(x

(n);λ) ≤ v}

is an estimation function by confidence regions at the level of significance

1− α for the parameter λ.
(b) If λ > 0 and α ∈ (0, 1) are known and 0 < u < v are real numbers

such that χ2(1)([u, v]) = 1− α then the mapping δ̃n : (0,∞)
n −→ 2(0,∞)

defined as

(9) δ̃n(x
(n)) = {µ > 0 | u ≤ π̃n(x

(n);µ) ≤ v}

is an estimation function by confidence regions at the level of significance

1− α for the parameter µ.

Proof: (a) From (5) it follows that πn(·;λ) is (B(0,∞)n ,B(0,∞))-measurable while

(4) implies that Gn
λ,µ ◦(πn(·;λ)

−1 = χ2(1) for any λ > 0. Thus πn(·; ·) is a pivotal

function for the parameter λ.
Taking into account that χ2([u, v]) = 1−α we conclude that δn(·) is an estima-

tion function by confidence regions at level of significance 1−α for the parameter λ.

(b) The proof is similar with that for (a) replacing πn(·;λ) by π̃n(·;µ).

Combining the above theorem with Lemma 1 we get that

δn(x
(n)) =

[

x̄n

n( 1µ x̄n − 1)2
u,

x̄n

n( 1µ x̄n − 1)2
v

]

, Gn
λ,µ − a.e.
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Let hn;β be the quantile of order β for the χ2(n) distribution and α1, α2 ∈ (0, 1)
such that α1 + α2 = α. Then

δ̄n(x
(n)) =

[

x̄n

n( 1µ x̄n − 1)2
h1;α1 ,

x̄n

n( 1µ x̄n − 1)2
h1;1−α2

]

, Gn
λ,µ − a.e.

provides an estimation method by confidence regions at the level of confidence α
for the parameter λ.
Moreover, the above theorem may be used to conclude that the mapping δ̄∗n :

(0,∞)n −→ 2(0,∞) defined as

δ̄∗n =

[

1

x̄n

(

1−

√

vx̄n

nλ

)

,
1

x̄n

(

1−

√

ux̄n

nλ

)]

∪

[

1

x̄n

(

1 +

√

ux̄n

nλ

)

,
1

x̄n

(

1 +

√

vx̄n

nλ

)]

provides an estimation method by confidence regions at level of significance 1−α
for the parameter 1µ . �

3. Preliminary results for testing hypotheses

Lemma 2. Let (Ω,F , P ) be a probability space, λ a positive real number and
f : Ω→ ℜ a random variable such that λf ∼ χ2(1). Then, the probability density
function of the random variable f is

(10) ρ(x;λ) =

(

λ

2π

)
1
2

x−
1
2 exp (−

λx

2
)1(0,∞)(x).

Proof:

Ff (x) = P (f < x) = P (λf < λx)1(0,∞)(x)

=

(

λ

2π

)
1
2

x−
1
2 exp (−

λx

2
)1(0,∞)(x).

Consider the probability measure νλ on the set of real numbers ℜ having the
probability density ρ(·;λ). For any positive parameter λ it is obvious then that
supp(νλ) = [0,∞) and, if Tλ : ℜ → ℜ is a function defined as Tλ(x) = λx, then

νλ ◦ T−1
λ = χ2(1). Hence, if the random variable h has the distribution νλ then

the random variable λh has the distribution χ2(1). �
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Lemma 3. Let νλ be a probability distribution having the probability density

(11) ρ(x;λ) =

(

λ

2π

)
1

2

x−
1
2 exp (−

λx

2
).

The statistical model
(

(0,∞),B(0,∞), {νλ | λ > 0}
)

has a monotone likelihood

ratio.

Proof: Consider 0 < λ1 < λ2. Then

ρ(x;λ2)

ρ(x;λ1)
=

(

λ2
λ1

)1/2

exp (−
λ2 − λ1
2

x) = hλ1,λ2(T (x)),

where T : (0,∞) → ℜ, T (x) = −x is a (B(0,∞),Bℜ)-measurable function and

the function hλ1,λ2 : ℜ → ℜ defined by

hλ1,λ2(x) =

(

λ2
λ1

)1/2

exp (
λ2 − λ1
2

x)

is increasing. �

4. Main results for testing hypotheses

Theorem 3. Consider the statistical model

(12)
(

(0,∞),B(0,∞), {Gλ,µ | λ > 0}
)(n)

with µ > 0 and n known. Let λ0 > 0 be a fixed value of parameter λ and α a
level of significance.

(a) For testing the null hypothesis H0 : λ ∈ (0, λ0] versus the alternative
H1 : λ ∈ (λ0,∞), the pure test ϕn = 1Cn

with

(13) Cn =

{

x(n) ∈ (0,∞)n |
n

x̄n

(

1

µ
x̄n − 1

)2

<
h1;α
λ0

}

is uniformly most powerful.

(b) For testing the null hypothesis H0 : λ ∈ [λ0,∞) versus the alternative
H1 : λ ∈ (0, λ0), the pure test ϕn = 1Cn

with

(14) Cn =

{

x(n) ∈ (0,∞)n |
n

x̄n

(

1

µ
x̄n − 1

)2

>
h1;1−α

λ0

}
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is uniformly most powerful.

(c) Let 0 < λ1 < λ2 be some known values. For testing the hypothesis H0 : λ ∈
(0, λ1]∪ [λ2,∞) versus H1 : λ ∈ (λ1, λ2) at the level of significance α, a uniformly
most powerful test is the pure test ϕn = 1Cn

where

(15) Cn =

{

x(n) ∈ (0,∞)n | −
n

x̄n

(

1

µ
x̄n − 1

)2

∈ [c1, c2]

}

and c1 < 0 and c2 are determined from the conditions

F1(−c1λ1)− F1(−c2λ1) = α,

F1(−c1λ2)− F1(−c2λ2) = α.

(d) Let 0 < λ1 < λ2 be some known values. For testing the hypothesis H0 :
λ ∈ [λ1, λ2] versus H1 : λ ∈ (0, λ1) ∪ (λ2,∞) at the level of significance α, a
uniformly most powerful test is the pure test ϕn = 1Cn

where

(16)

Cn =

{

x(n) ∈ (0,∞)n | −
n

x̄n

(

1

µ
x̄n − 1

)2

< c1

}

∪

{

x(n) ∈ (0,∞)n | −
n

x̄n

(

1

µ
x̄n − 1

)2

> c2

}

and c1 < c2 < 0 are determined from the conditions

F1(−c1λ1)− F1(−c2λ1) = 1− α,

F1(−c1λ2)− F1(−c2λ2) = 1− α.

(e) Let λ > 0 be some known value. For testing the hypothesis H0 : λ = λ0
versus H1 : λ > λ0 at the level of significance α, an unbiased, uniformly most
powerful test is the pure test ϕn = 1Cn

where

(17)

Cn =

{

x(n) ∈ (0,∞)n | −
n

x̄n

(

1

µ
x̄n − 1

)2

< c1

}

∪

{

x(n) ∈ (0,∞)n | −
n

x̄n

(

1

µ
x̄n − 1

)2

> c2

}

and c1 < c2 < 0 are determined from the conditions

F1(−c1λ0)− F1(−c2λ0) = 1− α,

∂

∂λ
(F1(−c1λ)− F1(−c2λ)) |λ=λ0 = 0.



160 I. Vladimirescu, R. Tunaru

Proof: (a) Consider the probability density function νλ given in (11) and the
statistical model

(18)
(

(0,∞),B(0,∞), {νλ | λ > 0}
)

.

If vn : (0,∞)
n → (0,∞) is an application defined by

vn(x
(n)) =

n

x̄n

(

1

µ
x̄n − 1

)2

then the above statistical model can be rewritten as
(

(0,∞),B(0,∞), {G
n
λ,µ ◦ v−1n | λ > 0}

)

.

Using Lemma 3 this statistical model has a monotone likelihood ratio with
respect to the statistic T (x) = −x. Applying Lehmann’s theorem (see Lehmann,
1959, for further details), we get that the pure test ϕ0 = 1C0 with

C0 = {x > 0 | π(x) > c}

where c < 0 is determined from the condition νλ0(C0) = α, is uniformly most
powerful at the level of significance α for testing H0 : λ ∈ (0, λ0] against the
alternative H1 : λ ∈ (λ0,∞).
Observe that

α = νλ0(C0) = νλ0({x > 0 | −x > c}) = νλ0({x > 0 | λ0x < −cλ0})

= χ2(1)({x > 0 | λ0x < −cλ0})

= F1(−cλ0).

Now, −cλ0 = h1;α or c = −h1:α
λ0
and therefore

C0 = {x > 0 | x <
h1;α
λ0

}.

At the same time

α = νλ0(C0) = (Gλ0,µ ◦ v−1n )

(

{x > 0 | x <
h1;α
λ0

}

)

= Gn
λ0,µ

(

{x(n) ∈ (0,∞) | vn(x
(n)) <

h1;α
λ0

}

)

.

Thus, the uniformly most powerful critical region at the level of significance α,
for testing the null hypothesis H0 : λ ∈ (0, λ0] versus H1 : λ ∈ (λ0,∞) is given
by (13).
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(b) Starting with the statistical model (18) the pure test ϕ0 = 1C0 where C0 =
{x > 0 | T (x) < c} and c being determined from the condition νλ0(C0) = α is
uniformly most powerful at the level of significance α for testing H0 : λ ∈ [λ0,∞)
versus H1 : λ ∈ (0, λ0).
First remark that

α = νλ0({x > 0 | −x < c}) = νλ0({x > 0 | λ0x > −cλ0})

= χ2(1)({x > 0 | λ0x > −cλ0})

= 1− F1(−cλ0).

This means that −λ0c = h1;1−α or c = −
h1;1−α

λ0
. Thus,

C0 =

{

x > 0 | x >
h1;1−α

λ0

}

.

From this point the proof continues similarly as in (a).

(c) The statistical model (18) is of exponential type since

(19) ρ(x;λ) = c(λ)d(x) exp (Q(λ)T (x)),

where c(λ) =
(

λ
2π

)1/2
; d(x) = x−

1
2 ; T (x) = −x; Q(λ) = λ

2 for any λ > 0,

x > 0. It is obvious that d and T are measurable and that Q is increasing, so
using a theorem from Lehmann, 1959, p. 128, gives a uniformly most powerful
test at the level of significance α for testing H0 : λ ∈ (0, λ1] ∪ [λ2,∞) versus
H1 : λ ∈ [λ1, λ2]. The test is ϕ0 = 1C0 where C0 = {x > 0 | c1 < T (x) < c2}
with c1, c2 being calculated from the conditions

(20) νλ1(C0) = α, νλ2(C0) = α.

Proceeding as in the proof of points (a), (b) we get that c1 < 0 and that the
equations (20) are equivalent to

F1(−c1λ1)− F1(−c1λ1) = α,

F1(−c1λ2)− F1(−c2λ1) = α.

In addition

α = νλ1(C0) = (G
n
λ1,µ

◦ v−1n )({x > 0 | −c2 < x < −c1})

= Gn
λ1,µ
({x(n) ∈ (0,∞)n | −c2 < vn(x(n)) < −c1})

= Gn
λ1,µ
({x(n) ∈ (0,∞)n | c1 < −vn(x(n)) < c2})
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and analogously

α = Gn
λ2,µ
({x(n) ∈ (0,∞)n | c1 < −vn(x(n)) < c2}).

For the statistical model ((0,∞),B(0,∞), {Gλ,µ | λ > 0})(n) the result now follows.

(d) The proof is very similar to the above for (c) observing that Q is a contin-
uous and increasing function and applying a well-known theorem from Lehmann,
1959.

(e) Starting again from the theorem from Lehmann, 1959, we can say that the
pure test ϕ0 = 1C0 , where

C0 = {x > 0 | T (x) < c1} ∪ {x > 0 | T (x) > c2}

and c1, c2 are calculated from the conditions

νλ0(C0) = α(21)

∂

∂λ
(νλ(C0)) |λ=λ0 = 0(22)

is uniformly most powerful and unbiased at the level of significance α for testing
the null hypothesis H0 : λ = λ0 versus H1 : λ > 0. The first equation from (21)
is equivalent to

F1(−cλ0)− F1(−c2λ0) = 1− α.

Take into account that

νλ(C0) = νλ({x > 0 | x > −c1} ∪ {x > 0 | x < −c2})

= νλ({x > 0 | λx > −λc1}) + νλ({x > 0 | λx < −λc2})

= χ2(1)({x > 0 | x > −λc1}) + χ2(1)({x > 0 | x < −λc2})

= F1(−λc2) + 1− F1(−λc2).

Thus, the second equation from (21) is equivalent to

∂

∂λ
(F1(−c2λ)− F1(−c1λ)) |λ=λ0= 0.

Similarly to the proof detailed for (a) above, we get the stated result. �
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5. Conclusion

The inverse Gaussian distribution has been used for many decades in actuarial
statistics and it makes its way through mathematical finance. This distribution
is a flexible positive-support probabilistic model with two parameters.
Although in the literature there are several goodness-of-fit tests and some

other empirical distribution function tests such as Kolmogorov-Smirnov test, the
Cramer-von Mises test, the Anderson-Darling test and theWatson test, there are
no uniformly most powerful tests developed for testing in the inverse Gaussian
context.
The theorems proved in this paper fill a gap in the literature about uniformly

most powerful tests. The theoretical results proved here may be used for model
selection, so making a useful link to the practical world of actuary and finance.
In addition, in the first part of the paper, estimation functions through confi-

dence regions are constructed for the parameters of the inverse Gaussian distri-
bution.
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