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On reflexive subobject lattices

and reflexive endomorphism algebras

Dongsheng Zhao

Abstract. In this paper we study the reflexive subobject lattices and reflexive endomor-
phism algebras in a concrete category. For the category Set of sets and mappings, a
complete characterization for both reflexive subobject lattices and reflexive endomor-
phism algebras is obtained. Some partial results are also proved for the category of
abelian groups.
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Given a bounded operator p : H −→ H on a Hilbert space H , a closed subspace
B of H is called an invariant subspace of p if p(B) ⊆ B. The invariant subspace
problem in functional analysis asks whether the set of all invariant closed sub-
spaces of an operator can consist of only the two trivial subspaces of H . But, as
Halmos pointed out, what people really would like to know is what the set of all
invariant subspaces of an operator, or of a set of operators can look like (see [2]).
The set of all invariant subspaces of a collection of operators is also called a re-
flexive subspace lattice by Halmos. In [3] he proved that if a subspace lattice A is
an atomic Boolean algebra, then it is reflexive. Halmos’s pioneering investigation
has since inspired lots of interesting studies of the lattice characterizations of such
subspace lattices. In 1975, Longstaff generalized Halmos’s result by proving that
A is reflexive if it is a completely distributive lattice (see [6]). However, complete
distributivity is far from being necessary for reflexivity. In fact, by Example 3.1
of [6], a reflexive subspace lattice may even fail to be distributive. It is unlikely
that one can find a necessary and sufficient intrinsic order condition for reflexive
subspace lattices. See [7], [8] for more recent work on reflexive subspace lattices.
On the other hand, one can also consider the algebra B(H) of all bounded

operators on the Hilbert space H . A subalgebra F of B(H) is called reflexive
if there is a collection A of subspaces of H such that F = {p ∈ B(H) : ∀A ∈
A, p(A) ⊆ A}. There have also been extensive studies of reflexive subalgebras for
Hilbert spaces (see e.g. [8]).
In the present paper we study the reflexive families mainly in the category Set

of sets and mappings. In this case, a complete characterization for both reflexive
endomorphism algebras and reflexive subobject lattices is obtained.
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In Section 1 we define reflexive subobject lattice and reflexive endomorphism
algebra for a general concrete category and list some basic properties of such
structures. The second and the third section are about reflexive subset lattices
and reflexive endomorphism algebras in the category of sets and mappings. The
last section is devoted to the study of reflexive subgroup lattices. For this case
we are only able to prove that a subgroup lattice A of an abelian group G is
reflexive if and only if there is a module structure on G, such that A is the set of
all submodules of G.

1. Reflexive subobject lattices and reflexive endomorphism algebras

By [4, Definition 1.1], a concrete category is a category C whose objects are
structured sets, that is, pairs (X, ξ), where X is a set and ξ is a C-structure on X .
Its morphisms are suitable mappings between sets X and Y and the composition
law is the usual composition of mappings. In other words, a concrete category
is a category C together with a faithful functor (forgetful functor) from C to the
category Set of sets (see also [9]). The category Set of sets and mappings, the
category Hspace of Hilbert spaces and bounded linear mappings, the category
Grp of groups and group homomorphisms, and the category Top of topologi-
cal spaces and continuous mappings are among the most important examples of
concrete categories.

Let (X, ξ) and (Y, η) be two objects in a concrete category C. A map f :
X −→ Y is called admissible from (X, ξ) to (Y, η) if f is a C-morphism from
(X, ξ) to (Y, η).

An admissible map f from (X, ξ) to (Y, η) is called optimal if for any object
(C, ω) and any map g : C −→ X , g is admissible from (C, ω) to (X, ξ) whenever
f ◦ g is admissible from (C, ω) to (Y, η) (see [9, Chapter 2,3.14]).

In the following we shall assume the concrete category C has the following extra
properties:

(I1) The identity map idX is admissible from (X, ξ) to itself for any object
(X, ξ) in C.

(I2) If the identity map is admissible from (X, ξ) to (X, τ) as well as from
(X, τ) to (X, ξ), then ξ is the same as τ .

Remark 1. Consider the concrete category Set∗ whose objects are the pairs
(X, pX), where X is a non-empty set and pX is a fixed point of the set X . There
is a unique admissible map f from (X, pX) to (Y, pY ) that sends every x ∈ X to
pY . In this case, the identity map iX : X −→ X is not admissible from (X, pX)
to (X, pX).

However, most of the interesting concrete categories satisfy the condition (I1).

Condition (I2) is also satisfied by all the important concrete categories except
some artificially constructed examples.



On reflexive subobject lattices and reflexive endomorphism algebras 25

Let (X, ξ) be an object of the concrete category C. By [9, Chapter 2,3.20],
a subset A of X is called an optimal subset of (X, ξ) if the inclusion map iA :
A −→ (X, ξ) has an optimal lift, that is if there is a C-structure λ on A such that
the map iA : A −→ X is an optimal admissible map from (A, λ) to (X, ξ) (from
(I2) it follows that such a C-structure λ is unique if it exists).
We shall denote by Sub((X, ξ))), or just Sub(X), the set of all optimal subsets

of (X, ξ), and use S(X) to denote the set of all subsets of Sub(X). Then (S(X),⊆)
is a poset (actually, a complete lattice).
The set HomC(X, X) of all the C-morphisms from (X, ξ) to (X, ξ) forms a

semigroup with idX as an identity, where the operation is the composition of
morphisms. We shall use H(X) to denote the set of all subsets of HomC(X, X).
Again, (H(X),⊆) is a poset.
For any A ∈ S(X), define

Alg A = {f ∈ HomC(X, X) : f(A) ⊆ A, ∀A ∈ A}.

For any H ∈ H(X), define

Lat H = {A ∈ Sub(X) : f(A) ⊆ A, ∀f ∈ H}.

Then the two mappings Alg : S(X) −→ H(X) and Lat : H(X) −→ S(X) form
a Galois connection between (S(X),⊆) and (H(X),⊆) in the following sense:

A ⊆ Lat H ⇐⇒ H ⊆ Alg A

holds for all A ∈ S(X) and H ∈ H(X).
It is routine to verify the following lemma (see e.g. [1, Exercise 11.3]).

Lemma 1. Let A ∈ S(X) and H ∈ H(X). Then,

(1) A ⊆ Lat(Alg A);
(2) H ⊆ Alg(Lat H);
(3) Alg(Lat(Alg A)) = Alg A, Lat(Alg(Lat H)) = Lat H; and
(4) the two mappings Lat : H(X) −→ S(X) and Alg : S(X) −→ H(X) are
order reversing.

Definition 1. (1) A setA of optimal subsets of an objectX in a concrete category
C is called reflexive if

A = Lat(Alg A).

(2) A set H of endomorphisms on X is called reflexive if

H = Alg(Lat H).

In most of the important concrete categories, the intersection of any collection
of optimal subsets of X is still an optimal subset of X , therefore (Sub(X),⊆) is
a complete lattice with X as the top element.

The following lemma can be verified directly.
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Lemma 2. (1) If Sub(X) is closed under arbitrary intersections, then every
reflexive A ∈ S(X) is also closed under arbitrary intersections.
(2) If H ∈ H(X) is reflexive then it contains the identity morphism idX and
is closed under composition, that is, f, g ∈ H imply f ◦ g ∈ H.

(3) H ∈ H(X) is reflexive if and only if there exists A ∈ S(X) such that
H = AlgA; and A ∈ S(X) is reflexive if and only if there is H ∈ H(X)
such that A = Lat H.

(4) If {Ai}i∈I is a collection of reflexive sets of optimal subsets of X , then
⋂

i∈I
Ai is reflexive.

(5) If {Hi}i∈I is a collection of reflexive sets of endomorphisms on X , then
⋂

i∈I
Hi is reflexive.

Remark 2. (1) From Lemma 2(1) it follows that if the same condition is satisfied,
then every reflexive set of optimal subsets is a complete lattice.
(2) Part (2) of Lemma 2 indicates that every reflexive set of endomorphisms on

X is a subsemigroup of HomC(X, X) with respect to the composition operation.

2. Reflexive subset lattices

In this section we consider reflexive sets of subobjects in the category Set of
sets and mappings. For each set X , Sub(X) is now the set of all subsets of X and
HomSet(X, X) is the set of all mappings from X to X . Notice that in this case
Sub(X) is closed under arbitrary intersection.

Theorem 1. A set A ⊆ Sub(X) is reflexive if and only if it satisfies the following
conditions:

(1) A is closed under arbitrary intersections;
(2) A is closed under arbitrary unions.

Proof: The necessity follows from the definition of reflexivity of A and Lem-
ma 2(1). We now prove the sufficiency. Suppose A satisfies the two conditions.
Then it follows that ∅ and X are in A. By Lemma 1(1), it only remains to show
that Lat(Alg A) ⊆ A.
Let A ⊆ X and A /∈ A. We show that there exists f ∈ Alg A such that

f(A) 6⊆ A, thus A /∈ Lat(Alg A). This will yield the required inclusion.
For any C ∈ Sub(X), define C =

⋂

{B ∈ A : C ⊆ B}. Then, by condition (1),
C is the smallest element of A containing C.
Now A ⊆ A, A ∈ A and A 6= A. Since A is closed under union it follows that

A =
⋃

{{x} : x ∈ A}.

Since A 6= A, there exists a ∈ A such that {a} 6⊆ A. Choose a point b ∈ {a} − A,
and define the map f : X −→ X by

f(x) =

{

b, if x = a,

x, otherwise.
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Now let B ∈ A. For any x ∈ B, if x 6= a then f(x) = x ∈ B. If x = a, then

a ∈ B implies {a} ⊆ B, thus f(x) = b ∈ {a} ⊆ B. Hence f(B) ⊆ B for all B ∈ A,
therefore f ∈ Alg A. However f(A) 6⊆ A since b ∈ f(A)− A, so A /∈ Lat(Alg A).
The proof is complete. �

Remark 3. Notice that if a collection of subsets of X satisfies conditions (1)
and (2) in Theorem 1, then it contains ∅ and X , and such a collection is called
an Alexandroff topology on X .

3. Reflexive subsemigroups of HomSet(X, X)

We now investigate the reflexive subsemigroups of HomSet(X, X) for a set X .
A complete characterization for such subsemigroups is obtained. To make the
symbols simpler, in the following we shall use just Hom(X, X) to denote the set
of all morphisms from X to X in the given category.

Definition 2. Let f and g be two mappings from X to X . Define f ≤ g if for
any x ∈ X , f(x) 6= x implies f(x) = g(x).

Remark 4. (1) The binary relation ≤ defined above is a partial order on
Hom(X, X), that is, it satisfies the following conditions:
(a) f ≤ f for each f ;
(b) f ≤ g and g ≤ h imply f ≤ h; and
(c) f ≤ g and g ≤ f imply f = g.

(2) The identity mapping idX : X −→ X is the least element in the partially
ordered set (Hom(X, X),≤).

Recall from [1] that an element a of a poset P is called an atom if 0P < a and
there is no element b satisfying 0P < b < a, where 0P is the least element in P .

Lemma 3. (1) For any two distinct elements a, b in X , the following mapping
h(a, b) : X −→ X is an atom of Hom(X, X):

h(a, b)(x) =

{

b, if x = a,

x, otherwise.

Moreover, every atom of Hom(X, X) is in this form.
(2) Every nonempty subset {fi : i ∈ I} of Hom(X, X) has an infimum.
(3) If a subset {fi : i ∈ I} has an upper bound in Hom(X, X) then
sup{fi : i ∈ I} exists.

(4) Every element f of Hom(X, X) is the supremum of atoms below f .
(5) Every up directed subset of Hom(X, X) has a supremum.

Proof: (1) The mapping h(a, b) fixes every point ofX except a, so it is easily seen
to be an atom. Suppose f is an atom, then f 6= idX , so there exists a ∈ X such
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that f(a) 6= a. If b = f(a), then idX < h(a, b) ≤ f , this then yields f = h(a, b)
because f is an atom.
(2) Given a nonempty collection {fi : i ∈ I} of elements of Hom(X, X), let

M be the set of all atoms which are below every fi(i ∈ I). If M is empty, then
inf{fi : i ∈ I} = idX . Now assume M is nonempty. Define g : X −→ X by

g(x) =

{

b, if there is an atom h(x, b) ∈ M,

x, otherwise.

First, g is well defined. In fact, if h(x, b) and h(x, c) both are atoms in M .
For any fi, we have h(x, b) ≤ fi and h(x, c) ≤ fi, hence h(x, b)(x) = b = fi(x) =
h(x, c)(x) = c. Second, for each i ∈ I and any x ∈ X , if g(x) 6= x then there is an
atom h(x, b) ≤ fi(i ∈ I) such that g(x) = b. Thus b = fi(x), so g ≤ fi(i ∈ I). Now
suppose k ∈ Hom(X, X) is below every fi(i ∈ I). If k(x) 6= x, then k(x) = fi(x)
for every i ∈ I. Then h(x, b) ∈ M , where b = k(x). Thus k(x) = g(x), and hence
k ≤ g. So g = inf{fi : i ∈ I}.
(3) follows from (2) and a general fact on the existence of suprema of subsets

that have an upper bound (see [1]).
(4) For each f ∈ Hom(X, X), let M be the set of all the atoms below f , then

from the proof of (2) it follows that f = sup{h : h ∈ M}.
(5) If {fi : i ∈ I} is an up directed set, then the mapping f defined below is

well defined and is the supremum of {fi : i ∈ I}:

f(x) =

{

fi(x), if there is an fi such that fi(x) 6= x,

x, otherwise.

The proof is complete. �

Notice that (Hom(X, X),≤) is not a complete lattice unless X is a singleton
set because it does not have a top element if X contains at least two distinct
elements.

Lemma 4. If H ⊆ Hom(X, X) is reflexive, then it satisfies the following condi-
tions:

(1) the identity mapping idX is in H, and if f, g ∈ H then the composition
g ◦ f of f and g is also in H;

(2) if f ≤ g and g ∈ H then f ∈ H;
(3) if {fi : i ∈ I} ⊆ H and sup{fi : i ∈ I} exists, then sup{fi : i ∈ I} ∈ H.

Proof: (1) By Lemma 2(2).
(2) Suppose f ≤ g and g ∈ H. If A ∈ Lat H, then for each x ∈ A, if f(x) = x

then f(x) ∈ A, if f(x) 6= x then f(x) = g(x) because f ≤ g, so f(x) = g(x) ∈ A.
Hence f(A) ⊆ A holds for every A ∈ Lat H, thus f ∈ Alg(Lat H) = H.
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(3) Put h = sup{fi : i ∈ I}. For every A ∈ Lat H and i ∈ I we have fi(A) ⊆ A.
Recall that {fi : i ∈ I} has an upper bound. Then in a similar way as in the
proof of Lemma 3(5) we can show that h is given by the following formula: for
each x ∈ X ,

h(x) =

{

fi(x), if there is an i ∈ I such that fi(x) 6= x,

x, otherwise.

Now for any A ∈ Lat H and any x ∈ A, if h(x) 6= x then there exists fi such that
h(x) = fi(x) ∈ A. Thus h(A) ⊆ A, that is h ∈ Alg(Lat H) = H. �

Definition 3. A subset H of Hom(X, X) is called a closed subalgebra of
Hom(X, X) if it satisfies the three conditions (1), (2) and (3) in Lemma 4.

A subset A of X is called invariant under a mapping f : X −→ X if f(A) ⊆ A.

Lemma 5. Suppose that H is a closed subalgebra of Hom(X, X). Then for any
a ∈ X , the subset B = {a} ∪ {h(a) : h ∈ H} is invariant under every g ∈ H.

Proof: For any x ∈ B and g ∈ H, if x = a then obviously g(x) = g(a) ∈ B; if
x = h(a) for some h ∈ H, then g(x) = g ◦ h(a) = f(a) ∈ B, where f = g ◦ h is
still in H. Hence B is invariant under g. �

Lemma 6. If H is a closed subalgebra of Hom(X, X) and g ∈ Hom(X, X) but
g /∈ H, then there exists B ⊆ X such that B is invariant under every f ∈ H but
not invariant under g.

Proof: Let

g = sup{h ∈ H : h ≤ g}.

Then by Lemma 3(3) and condition (3) of closed subalgebra, g is well defined and
is in H. In addition, g ≤ g and g 6= g. Hence g 6≤ g, thus there exists a ∈ X such

that g(a) 6= a and g(a) 6= g(a). But g ≤ g, so g(a) = a. We claim that for every
f ∈ H, f(a) 6= g(a). In fact, if there exists f ∈ H with f(a) = g(a), then the
atom h(a, g(a)) is below f , so is in H. Also h(a, g(a)) ≤ g, hence h(a, g(a)) ≤ g,

which then implies g(a) = h(a, g(a))(a) = g(a). However, g(a) = a 6= g(a). This
contradiction confirms our claim. Now put B = {a} ∪ {f(a) : f ∈ H}. By
Lemma 5, it follows that B is invariant under every f ∈ H. However, g(B) 6⊆ B
because g(a) /∈ B. �

Combining the above lemmas, we obtain the following main result in this sec-
tion.

Theorem 2. A subset H of Hom(X, X) is reflexive if and only if it is a closed
subalgebra.
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Remark 5. Now on the set Hom(X, X) there is a semigroup structure and a par-
tial order. The reader may wonder whether the two structures make Hom(X, X)
an ordered semigroup, that is whether f ≤ g and h ≤ k imply f ◦ h ≤ g ◦ k.
Unfortunately, as the following example shows, this is not always true.
Let X = {1, 2, 3}, h(1) = 2, h(2) = 2, h(3) = 3, f(1) = 3, f(2) = 2, f(3) = 3,

g(1) = 3, g(2) = 1, g(3) = 3. Then f < g but f ◦ h 6≤ g ◦ h, since f ◦ h(1) = 2 and
g ◦ h(1) = 1 6= f ◦ h(1).

4. Some remarks on reflexive subgroup lattices

Let Ab be the category of abelian groups and group homomorphisms. For any
abelian group G, let Sub(G) denote the set of all subgroups of G and Hom(G, G)
be the set of all group homomorphisms f : G −→ G. There have been lots of
studies of the lattice-theoretical characterization of groups based on the lattice
(Sub(G),⊆) (see e.g. [12]). For example, G is cyclic if and only if Sub(G) is
distributive and satisfies the maximal conditions ([12, Theorem 1.2.5]). Also
(Sub(G),⊆) is distributive if and only if G is locally cyclic (see [10]).
Given a collection A ⊆ Sub(G), it is easy to verify that if A is reflexive then

(i) it is closed under arbitrary intersections, (ii) it is closed under arbitrary sums,
and (iii) it contains the two trivial subgroups. However, unlike for the category
of sets, these three conditions are not sufficient for reflexivity as the following
example shows.

Example 1. Let (Z,+) be the additive group of integers and A = {{0}, Z, 2Z}.
Then A satisfies the above three conditions. But Alg A = Hom(Z, Z) is the set
of all homomorphisms from Z to Z, and Lat(AlgA) = Sub(Z). Thus A is not
reflexive.

Example 2. Let G be a group and N Sub(G) be the set of all normal subgroups
of G. Then N Sub(G) = {A ∈ Sub(G) : fa(A) ⊆ A, ∀a ∈ G}, where for each
a ∈ G, fa : G −→ G is the inner automorphism defined by

fa(x) = a−1xa, x ∈ G.

Thus N Sub(G) = Lat({fa : a ∈ G}), so it is reflexive.

The following result indicates that reflexive subgroup lattices are exactly the
sets of submodules.

Proposition 1. Let G be an abelian group. Then A ⊆ Sub(G) is reflexive if
and only if there is a ring R such that G is an R-module and A is the set of all
submodules of G.

Proof: Suppose A = Lat(Alg A). Let R = AlgA. Then R is a ring with an
identity. The multiplication of R is the composition and the addition is defined
as the pointwise addition. The evaluation mapping

vG : R × G −→ G,
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defined by vG(f, a) = f(a), makes G an R-module. Obviously a subgroup A is a
submodule of G if and only if it is invariant under every f ∈ Alg A, if and only
if A ∈ A.
Conversely, suppose G is an R-module. Let A be the set of all submodules

of G. Then A ⊆ Sub(G). For each r ∈ R, the mapping mr : G −→ G is a group
homomorphism, where mr(a) = r · a. In addition, A ∈ A if and only if it is a
subgroup of G and is invariant under every mr. Thus A = Lat({mr : r ∈ R}), so
it is reflexive. �

Compared with the cases of sets and Hilbert spaces, the characterization of
reflexive subgroup lattices is far from being achieved. Finding a necessary and
sufficient lattice condition for such reflexive families seems still remote.

Remark 6. (1) Consider the additive group (R,+) of real numbers. Let Z be
the subgroup of all integers. It is easy to show that if f ∈ Alg({Z}) then for each
rational number r, f(r) = f(1)r where f(1) is an integer. From this it follows
that every subgroup of (Q,+) is in Lat(Alg({Z})), where Q is the additive group
of all rational numbers. Now let A be a subgroup of (R,+) such that A 6⊆ Q

and A 6= R. Choose a number b ∈ A − Q and extend {b, 1} into a basis of R,
regarded as a Q-vector space. Define a linear transformation T : R −→ R that
takes b to a number in R−A and sends 1 to 1. Then T ∈ Alg({Z}) but T (A) 6⊆ A.
Hence Lat(Alg({Z})) = Sub(Q)∪{R}, where Sub(Q) denotes the collection of all
subgroups of (Q,+).
(2) For the additive group (Z,+) of integers, Sub(Z) is the only reflexive sub-

group lattice. It is easy to show that if G is a cyclic group, then Sub(G) is the only
reflexive subgroup lattice. But we do not know whether the converse implication
is also true.
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