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On the number of intersections of two polygons

Jakub Černý, Jan Kára, Daniel Král’,

Pavel Podbrdský, Miroslava Sotáková, Robert Šámal

Abstract. We study the maximum possible number f(k, l) of intersections of the bound-
aries of a simple k-gon with a simple l-gon in the plane for k, l ≥ 3. To determine the
number f(k, l) is quite easy and known when k or l is even but still remains open for k
and l both odd. We improve (for k ≤ l) the easy upper bound kl − l to kl − ⌈k/6⌉ − l
and obtain exact bounds for k = 5 (f(5, l) = 4l − 2) in this case.
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1. Introduction

To determine the maximum complexity of union of two or more geometric
objects in the plane is among basic extremal geometric problems, see e.g. [1], [2],
[3], [5], [6] and [7]. Let k, l ≥ 3 be given integer numbers. We are interested in the
problem of determining the maximum possible number f(k, l) of intersections of
a simple k-gon and a simple l-gon. This problem was studied in [2] — the cases
when k or l is even are solved there, but an unrecoverable error appears in the
case of k and l being both odd. Similar problem was also studied in [4].

We introduce basic definitions and notation in Section 2. The difficulty of
determining the number f(k, l) depends on the parity of k and l. If one of these
numbers is even, the problem is quite easy and solved; we survey the previous
results in Section 3.

We deal with the case of k and l being both odd in Section 4. The bounds
kl− k− l+3 ≤ f(k, l) ≤ kl− l (for k ≤ l) are proved in [2]. If k, l ≥ 7 we improve

the upper bound and prove f(k, l) ≤ kl − ⌈k6⌉ − l for k ≤ l (Theorem 4). The
conjecture is that the lower bound kl− k − l + 3 is tight.

We focus on the number of intersections of an l-gon and a pentagon for l odd
in Section 5. We prove that f(5, l) = 4l− 2 (Theorem 5).

The general problem of determining f(k, l) for k and l both odd, k, l ≥ 7
remains open.

This research was supported by GAUK 158/99 and GAČR 201/99/0242. Institute for Theo-
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of Czech Republic.
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2. Definitions and notation

We mean by a segment a closed line segment. If A and B are points of the
plane, then we write AB for the segment connecting them. We assume throughout
the whole paper that all the end-points of all the segments are in general position.
Two segments intersect if they share an interior point and we call that point their
intersection. The set of segments is intersection-free if no two of segments of the
set intersect. Two segments miss each other if they do not intersect.

The sequence of non-intersecting segments A1A2, A2A3, . . . , AkAk+1 where
Ai 6= Aj for i 6= j is called a path; we write shortly A1A2 . . . AkAk+1 instead of
A1A2, A2A3, . . . , AkAk+1 in the paper. The length of the path is the number of
segments which it contains. If Ak+1 = A1, then the sequence forms a k-gon; if
we do not want to emphasize the length of the sequence, we say a polygon instead
of a k-gon. Intersections of two polygons are the intersections of segments which
form their boundaries. For given k, l ≥ 3 we denote f(k, l) the maximum number
of intersections of some k-gon and l-gon.

Let A and B be two intersection-free sets of segments. Then their non-

intersection graph is a bipartite graph with the vertex set A ∪ B such that a
segment of A is joined by an edge to a segment of B iff these two segments do not
intersect; the segments of A (B) are not mutually joined by edges. We state two
easy observations to get familiar with these definitions:

Observation 1. Let A and B be two intersection-free sets of segments; let A′ ⊆
A and B′ ⊆ B. Then the non-intersection graph of A′ and B′ is the subgraph of

the non-intersection graph of A and B induced by the vertex set A′ ∪ B′.

Observation 2. Let ABCD be a path which forms together with the segment

DA a convex quadrilateral and let p be any segment in the plane. Then the vertex

p has degree at least 1 in the non-intersection graph of A = {AB,BC,CD} and

B = {p}.

Proof: If the degree of p is zero, then p intersects all the three segments AB, BC
and CD which is impossible since A, B, C and D form a convex quadrilateral.

�

3. Intersections with N-gons for even N ’s

The following theorems and lemmas are proved (using a different notation)
in [2]. Note that the upper bounds in Theorem 1 and Theorem 2 easily follow
from Lemma 1.

Lemma 1. Let K be a k-gon and let p be a line. The number of intersections of

p with the segments of K is even and at most k. Thus no line intersects all the

segments of a polygon with odd number of vertices.
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Theorem 1. Let k, l ≥ 3 be two even integers. Then f(k, l) = kl (the lower

bound is shown by Figure 1).

K

L

Figure 1: A k-gon K and an l-gon L with kl intersections for k and l both even.

Theorem 2. Let k ≥ 3 be even and let l ≥ 3 be odd. Then f(k, l) = k(l − 1)
(the lower bound is shown by Figure 2).

K

L

Figure 2: A k-gon K and an l-gon L with k(l − 1) intersections for even k and
odd l.

Note: Figure 1 and Figure 2 can be generalized for arbitrary k, l by an easy trick.
We can substitute one segment of the polygon K (or L) which looks like I by
three segments which look like a narrow N. This can obviously be done in such a
way that we obtain sufficiently many new intersections.

4. Intersections with N-gons for odd N ’s

We assume k ≤ l in the whole section.

The following lower bound on f(k, l) is also shown in [2].
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Theorem 3. Let k, l ≥ 3 be two odd integers. Then f(k, l) ≥ (k−1)(l−1)+2 =
kl − k − l + 3 (see Figure 3).

K

L

Figure 3: A k-gon K and an l-gon L with kl− k − l+ 3 intersections for both k
and l odd.

We focus our attention on proving an upper bound on the number of inter-
sections of two polygons with odd number of vertices in the rest of this section.
There is an easy upper bound kl − l (Theorem 2) which gives the exact value
for k = 3 (in this case, it is equal to the lower bound). For k ≥ 7 we improve
this bound to kl− ⌈k/6⌉ − l in Theorem 4. We first prove several lemmas on the
number of intersections of a path and a non-intersecting set of segments:

Lemma 2. Let ABCDE be a path such that the point D is inside the triangle

ABC. Then there is no intersection-free set B of four segments such that the

non-crossing graph of A = {AB,BC,CD,DE} and B forms a perfect matching.

Proof: Let us suppose there exists such a B. Let p be the segment which misses
only CD and let q be the segment which misses only DE. We can suppose that
p and q do not share an end-point, since we could shorten them otherwise. Note
that p and q do not intersect each other (B is intersection-free) and they both
intersect AB and BC. Hence the segments p, q, AB and BC split the plane into
three regions (see Figure 4); let T be the triangle and Q be the quadrilateral. The
point E has to lie inside the triangle T , since DE intersects p but not q. Thus
the segments CD and DE split the quadrilateral Q into two pentagons; let P be
the convex one of them. It is either P ∩AB = ∅ or P ∩BC = ∅.

Let us suppose first that P ∩ AB = ∅. Let the vertices of P be B′, C′, D′, D
and E′ where B′, C′ ∈ BC, D′ ∈ CD and E′ ∈ DE. Let r be the segment of B
which misses only AB; r does not intersect p or q, but it intersects BC, CD and
DE; thus it has to intersect CD between D′ and D and DE between D and E′.
Then r intersects the segments of the convex pentagon P more than twice, but
this is impossible. The case that P ∩BC = ∅ is symmetric. We have just proved
that no such set B can exist. �
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Figure 4: The triangle ABC, the point D inside it, the triangle T and quadrilat-
eral Q, and the forced position of the point E.

Lemma 3. Let ABCDEFG be a path. Then there is no intersection-free set B
of six segments such that the non-crossing graph of A = {AB, BC, CD, DE,

EF , FG} and B forms a perfect matching.

Proof: Let us suppose the existence of such a B. The lines BC, CD and BD
split the plane into seven regions (see Figure 5): α, β, γ, δ, ǫ, ζ and η.

α

β

γ

δ

ǫ

ζ

η

B

C D

Figure 5: The seven regions α, β, γ, δ, ǫ, ζ and η in which the lines BC, CD
and BD split the plane.

The point E cannot lie in α, since BC and DE do not intersect, it cannot lie
in β due to Observation 1 and Lemma 2 used for the path EDCBA, it cannot lie
in γ due to Observation 2 used for the path BCDE, it cannot lie in ǫ, since any
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segment intersecting both BC and DE would not miss CD, and it cannot lie in η
due to Observation 1 and Lemma 2 used for the path BCDEF . Thus the point
E is either in δ or in ζ.

ψ

ξ

ω

B

C D

E

Figure 6: The regions ξ, ψ and ω; ξ and ψ are marked by gray.

We first deal with the case that the point E lies in ζ. Consider the regions ξ,
ψ and ω as shown in Figure 6. The point F cannot lie in ξ due to Observation 1
and Lemma 2 used for the path CDEFG, it cannot lie in ψ due to Observation 1
and Lemma 2 used for the path FEDCB and it cannot lie in ω, since EF crosses
neither BC nor CD. If F were outside ξ, ψ and ω, it would be impossible to
intersect all the segment except for DE by a segment. We conclude that E
cannot lie in ζ.
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ψ
ρ

B

C
D

E

Figure 7: The regions σ, τ , υ, φ, χ, ψ, ρ and ω; the regions σ, υ, φ and χ are
marked by gray.

The point E has to lie in δ according to the discussion above. Consider the
regions σ, τ , υ, φ, χ, ψ, ρ and ω as shown in Figure 7. We discuss the position of F .
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The point F cannot lie in σ due to Observation 1 and Lemma 2 used for the path
CDEFG, it cannot lie in τ due to Observation 2 used for the path CDEF and
it cannot lie in υ due to Observation 1 and Lemma 2 used for the path FEDCB.
The point F cannot lie in φ or ω, since there would be no segment intersecting
BC, DE and EF which misses CD and the point F cannot lie in ρ, since there
would be no segment intersecting BC, CD and EF which misses DE. Thus the
point F has to lie either in ψ or χ; these two cases are “symmetric” with respect to
changing the orientation of the given path (we take the path GFEDCBA instead
of ABCDEFG) — see Figure 8. We may thus assume w.l.o.g. that F is in ψ.
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Figure 8: The cases that the point F is in ψ or χ are symmetric.
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Figure 9: The segments p and q and the triangle T ′.

The situation is shown in Figure 9. Let B′ be the intersection of the lines BC
and EF and let T be the triangle B′CE. Every line intersecting both CD and
DE has to intersect also B′C and EF . If A were outside T , then there could
not be a segment which misses only BC and a segment which misses only EF
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at once. A similar argument holds also for the point G. Thus both the points A
and G are inside T . Let p be the segment of B which misses only AB and let q
be the segment which misses only FG. Since p (q) intersects CD and DE, the
intersection with BC is between B′ and C. The triangle T is splitted into three
regions by p and q, see Figure 9; let T ′ be the triangular one. We first deal with
the case that one side of T ′ is formed by q. Since FG misses q, the point G has
to lie inside T ′. But then, the segments FG and p do not intersect. If one side
of T ′ is formed by p, then A has to lie inside T ′ and AB and q do not intersect.
Both cases are impossible. But this was the very last possible configuration and
thus the set B does not exist. �

Lemma 3 is the best possible in the sense that there is a path of length five
and a set of five non-intersecting segments such that their non-intersection graph
is a perfect matching (see Figure 10).

Figure 10: A path of length five and a set of five non-intersecting segments such
that their non-intersection graph is a perfect matching.

Lemma 4. Let ABCDEFG be a path and let B be a set of non-intersecting

segments. The following holds for at least one segment r among AB, BC, CD,

DE, EF and FG: If a segment q of B intersects at least five segments of the

path, then it intersects r.

Proof: If the lemma does not hold, then for each segment p of AB, BC, CD,
DE, EF and FG, there exists a segment of B which misses only p. But then
these six segments of B and the path ABCDEFG contradict Lemma 3. �

Theorem 4. Let k, l ≥ 7 be odd. Then f(k, l) ≤ kl − ⌈k/6⌉ − l.

Proof: Let K be any k-gon and let L be any l-gon. Let A be the set of segments
forming the polygon K and let B be the set of segments forming the polygon L;
let G be a non-intersection graph of A and B. Each vertex of G has degree at
least one, since no segment can intersect all the segments of a polygon with odd
number of vertices due to Lemma 1.
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Let p1, . . . , pk be the segments of K. Let r1 be the segment for the path
p1p2p3p4p5p6 with the properties described in Lemma 4, r1 = pi1 for some 1 ≤
i1 ≤ 6. Let r2 be the segment for the path pi1+1pi1+2pi1+3pi1+4pi1+5pi1+6 with
the properties described in Lemma 4, r2 = pi2 for some i1 + 1 ≤ i2 ≤ i1 + 6. By
repeating this procedure we can find segments rj , j = 1, 2, . . . , ⌈k/6⌉, it is easy to
see that the path for r⌈k/6⌉ contains none of the segments r1, r2, . . . , r⌈k/6⌉−1.

Each segment of B misses at least one segment of A different from the segments
r1, r2, . . . , r⌈k/6⌉; otherwise due to Lemma 4 it would have to intersect also r⌈k/6⌉,

r⌈k/6⌉−1, . . . , r2 and r1 hence it would have to intersect all the segments of A
which is impossible due to Lemma 1 since the segments of A form a polygon with
odd number of vertices.

Let A′ ⊆ A be the set {r1, . . . , r⌈k/6⌉}. The degree of each vertex of B in the

subgraph of G induced by (A \ A′) ∪ B is at least one, since each segment of B
misses at least one segment of A\A′; thus this subgraph contains at least l edges.
The degree of each vertex of A′ in the subgraph of G induced by A′∪B is at least
one, since no segment can intersect all the segments of B; this subgraph contains
at least ⌈k/6⌉ edges. The whole graph G thus contains at least ⌈k/6⌉+ l edges
and thus the number of intersections of K and L is at most kl − ⌈k/6⌉ − l. �

5. Intersections with pentagons

Observation 3. Let K be a polygon. Then there exist three consecutive vertices

A,B,C of K such that the interior angle ∠ABC is convex and no vertex of K
lies in the interior of the triangle △ABC.

Proof: As a well known fact every (not necessarily convex) polygon has a tri-
angulation. Let us consider any triangulation T of K. Let G be a graph with the
vertex set consisting of all triangles of T ; two distinct triangles are connected by
an edge iff they are sharing a common segment. Then G is obviously a tree and
we can take A,B,C to be vertices of any leaf of G. �

Lemma 5. Let K be a k-gon for k ≥ 5 odd. Then there are four consecutive

vertices A,B,C,D of K such that one of the four following conditions holds:

(1) No line p intersects all the segments AB, BC and CD.

(2) Every line p which intersects the segments AB and BC intersects also the

segment CD.

(3) Every line p which intersects the segments AB and CD intersects also the

segment BC.

(4) Every line p which intersects the segments BC and CD intersects also the

segment AB.
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Proof: Take the points A,B,C constructed in the Observation 3 and let D
be the vertex neighboring with C (different from B). The lines AB, BC and
CA split the plane into the six regions α, β, γ, δ, ǫ, ζ where the vertex D can lie
(due to the choice of the points A,B,C no vertex of K lies in the interior of the
triangle △ABC) (see Figure 11). We can w.l.o.g. suppose that D does not lie
in the region ζ (if it does we can take A′ = C, B′ = B, C′ = A and D′ the
vertex neighboring with C′ different from B′, then D′ cannot lie in ζ′ = δ unless
the segments CD and C′D′ intersect which is impossible). The vertex D cannot
lie in the region α because AB and CD cannot intersect. If D lies in β then
condition (2) holds. If D lies in γ then condition (3) holds. If D lies in δ then
condition (4) holds. Finally if D lies in ǫ then condition (1) holds. �

α

β

γ

δ

ǫ

ζ

B

A C

Figure 11: The six regions α, β, γ, δ, ǫ, ζ where the vertex D can lie.

Corollary 1. Let K = ABCDE be a pentagon. There are four segments among

AB, BC, CD, DE and EA such that no line intersects all of these four segments.

Proof: Suppose that A,B,C,D are the vertices constructed in Lemma 5. If
condition (1) of Lemma 5 holds then no line intersects all the segments AB, BC,
CD hence we can take e.g. the segments AB, BC, CD and DE. If condition (2)
holds then no line intersects all the segments AB, BC, DE, EA (if such line exists
then it also intersects the segment CD by condition (2) which is impossible due
to Lemma 1). The cases when conditions (3) or (4) hold are similar. �

Theorem 5. Let l ≥ 5 be odd. Then f(5, l) = 4l − 2.

Proof: The inequality f(5, l) ≥ 4l − 2 is assured by Theorem 3. It remains to
prove the upper bound for the number of intersections. Let L be any l-gon and K
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be any pentagon. Each segment of L has at most 4 intersections with segments
of K due to Lemma 1. Thus K and L cannot have more than 4l intersections.
The number of intersections of K and L is even: Imagine that we pass along
the boundary of K; each time we intersect a segment of L, we either enter or
leave the interior region of L and we cannot enter or leave it in any other way.
Thus if the number of intersections is more than 4l − 2, it has to be 4l and each
segment of L intersects exactly four segments of K. But there are four segments
of K which cannot be intersected by a line (more likely by a segment) due to
Corollary 1; let p be the remaining segment of K. Each of the segments of L
has to intersect p (otherwise it would intersect the remaining four segments of K
which is impossible). But p cannot intersect all the segments of L due to Lemma 1
— thus K and L have at most 4l− 2 intersections. �

Note: It is quite obvious that Corollary 1 and thus the upper bound in Theorem 5
can be easily generalized to all k-gons for k ≥ 5 odd. We obtain f(k, l) ≤ kl− l−2
for 5 ≤ k ≤ l and k, l odd. However for k > 5 Theorem 4 gives us the same or
even better bound.

6. Conclusion

We have focused on the case of k and l being both odd. We proved an exact
bounds on f(k, l) when k is 3 or 5 and l is arbitrary odd. The case that k and l
are both odd and at least seven remains open also for k = l = 7. We improved
the simple upper bound of kl − l to kl − ⌈k/6⌉ − l. The original conjecture is
that there are no k-gon and l-gon with more than kl− k− l+3 intersections; the
construction of a k-gon and an l-gon with kl− k− l+3 intersections is described
in Theorem 3. The gap between the lower and the upper bound is still linear in
the number of vertices thus the natural task might be: Improve the upper (lower)
bound on the maximum possible number of intersections of two polygons.
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