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Perfect sets and collapsing continuum

MIROSLAV REPICKY

Abstract. Under Martin’s axiom, collapsing of the continuum by Sacks forcing S is cha-
racterized by the additivity of Marczewski’s ideal (see [4]). We show that the same
characterization holds true if @ = ¢ proving that under this hypothesis there are no small
uncountable maximal antichains in S. We also construct a partition of “2 into ¢ perfect
sets which is a maximal antichain in S and show that sC-sets are exactly (subsets of)
selectors of maximal antichains of perfect sets.
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1. General remarks

Let (P, <) be a partial order. We say that elements (conditions) p,q € P are
compatible and write p A g # 0 if there is r € P such that » < p and r < gq.
Otherwise p and ¢ are incompatible and we write p A ¢ = 0. A family of pairwise
incompatible elements is called an antichain. For p € P, Plp = {q € P : ¢ < p}.
Let us recall some cardinal invariants for P:

(P
sat(P
a(k,P
ctr (P

min{|X|: X is a dense subset of P},

min{x : every antichain has size < s},

min({7(P)} U {|A| : A C P is a maximal antichain with |A| > k}),
min{x : Irp cf(7" (P)) < &}.

— — ~— —

The hereditary version of a cardinal invariant x(-) for partial orders is defined by
hx(P) = min{x(P[p) : p € P}. The symbols hr(P), hsat(P), ha(x,P) denote the
hereditary versions of the cardinals 7(P), sat(lP), a(k, P), respectively.

A matrix on P is a sequence of antichains in P (the antichains may be maximal).
Let A be a matrix on P. A matrix A is shattering if for every p € P there exists
an antichain A € A such that [{g € A:pAg#0} > n(P). A matrix A is weakly
shattering if ) 4c 4 [{g € A: pAq# 0} > 7(P) for every p € P. A matrix is a
base matrix if |JA is a dense subset of P. The following two theorems contain
some well known basic facts about all these notions.
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Theorem 1.1. (1) A shattering matrix is weakly shattering.

(2) There exists a base matrix on P of size 7(P).

(3) If hw(P) = w(P), then every base matrix on IP is weakly shattering.

(4) There exists a shattering matrix on P if and only if hsat(P) = 7(P)*.

(5) If there is a weakly shattering matrix on P of size < 7(P), then hsat(P) =
m(P)T.

(6) For every weakly shattering matrix there exists a weakly shattering base
matrix of the same size.

(7) If hsat(P) = 7(P)™", then for every base matrix on P there exists a shat-
tering base matrix on P of the same size.

(8) If hsat(P) = 7(P)™, then there exists a shattering matrix on IP of size

cf(m(P)).

PROOF: The assertions (1)—(5) are easy to see. For the rest of the proof let us fix
a dense set D C P with |D| = n(P).

(6) Let A= {Aq : a < K} be a weakly shattering matrix on P. There exists a
one-to-one mapping ¢ : D — |J, o {a} x A, ¢ = (¢1, p2), such that pApa(p) # 0
for every p € D. For every p € D let us fix an element r(p) € P below p and ¢3(p)
and let A, = {r(p) : v1(p) = a}. The matrix A = {A,, : a < K} is a weakly
shattering base matrix on P.

(7) For p € P let By, be an antichain below p of size 7(P). If A is a base matrix
on PP, then the matrix A" = {Upea Bp : A € A} is a shattering base matrix on P.

(8) Let D = |U{Dq : a < cf(n(P))} with |Dq| < w(P). By the Balcar-
Vojtés’s Theorem (see [1] or [6]) for each « there is a disjoint refinement A,
of Dy. Therefore {Aq : @ < cf(n(P))} is a base matrix on P and by assertion (7)
there exists a shattering matrix on P of the same size. (]

From now on we assume that hm(P) = 7(IP) and we define:

sh(P) = min{|A| : A is a weakly shattering matrix on P},
shy(P) = min({7(P)} U {k : r.0.(P) is (k, 7(P), A)-nowhere distributive}).

We use the definition of the three-parameter distributivity from [2]. Clearly,
sh(P) = min{|A| : A is a base matrix on P} = min({r(P)} U {|]A4] : Ais a
shattering matrix on P}) = sh p)(P). Again, hsh(P) denotes the hereditary
version of the cardinal sh(P).

Theorem 1.2. Let us assume that hr(P) = = (P).
(1) If r.0.(P) is (k, A, A)-nowhere distributive, then r.o0.(P) is (x,cf A, cf \)-
nowhere distributive.
(2) If r.0.(P) is (K, cf A, cf \)-nowhere distributive, then r.o.(P) is (k, A, cf A)-
nowhere distributive.
(3) If k < cf A, thenr.o.(P) is (k,cf A, cf X\)-nowhere distributive if and only
if IFpcf A <k.
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(4) If hsh(P) = sh(P), then I-p |7V (P)| = sh" (P).

(5) IFkp m(P) = |7V (P)].

(6) min{shes (py(P), cf(n(P))} < cfr(P) < min{sh(P), cf(n(P))} and there are
two possibilities: Either hsat(P) = 7(P)* and shep r(p)(P) < cfr(P) <
sh(P) < cf(n(P)), or hsat(P) < 7n(P) and sh(P) = n(P).

(7) If sheprpy(P) = sh(P) (eg., if m(P) is regular, or if a(cf(n(P)),P) =

7(P)), then cfr(P) = min{sh(P), cf(x(P))}.

(8) If hsat(P) > AT, then shy(P) < (cf\) - sup,)shx(P) and shepy(P) <

cf shy (P).

—_——

PRrOOF: The assertions (1) and (2) are easy.

(3) Let {A¢ : & < cfA} be an increasing cofinal sequence in A and let x <
cfX. Let f be a P-name of an unbounded function from « to A\. For a < & let
Ao = {|If(a) € e, Aer1)]l - € < cEA}\ {0}. The matrix {Aqy : @ < K} witnesses
the (k,cf A, cf A)-nowhere distributivity of r.o.(P). Conversely, if {4y : o < K}
is a matrix on r.0.(P) with Aq = {ag¢ : § < cf A} witnessing the (k, cf A, cf )-
nowhere distributivity of r.o.(P), then the formula || f(a) = Aell = aq ¢ defines a
P-name of an unbounded function from x to A.

(4) Let us assume that p and p are such that p IFp |7V (P)| = p. Let f be a P[p-
name of a function from p onto 7(P) and for o < u let Ay be a maximal antichain
in P[p consisting of ¢ € P|p deciding f (). Since every g € Plp forces that f is onto
7(P) = w(P|p), easily, it can be verified that {Aq : o < p} is a weakly shattering
matrix on P[p. Therefore sh(P) = sh(P[p) < p and p IFp sh" (P) < |7V (P)).

Let sh(P) = . If sh(P) = 7(P), then clearly, IFp |7 (P)] < shY (P). Let us
assume that sh(P) < 7(P). Then by Theorem 1.1(5), hsat(P) = n(P)*. For every
q € P let us fix a maximal antichain {(¢)¢ : £ < 7(P)} below q. As sh(P) = »
there is a base matrix A = {Ay : o < k} (with all antichains maximal). We define
a P-name f of a function from s onto 7V (P) by | f(a) = ¢| = V{(g)¢ : g € A}
Therefore IFp |7V (P)| < shY (P).

(5) Clearly, IFp 7(P) < |7V (P)|. Let p and  be such that p IFp 7(P) = & and
hsh(P[p) = sh(P[p). Let f be a P-name of a function from & into P such that
plFp (Vg € P)Ba < k) f(a) < q. Let An, @ < &, be a maximal antichain of
conditions below p deciding f(a). For ¢ < plet Bag = {r € Ao : ¢ A7 # 0}
and By, , = {s € P: (3r € Bag)r IFp f(a) = s}. The set [, By 4 is a dense
subset of P for every ¢ < p and |Ba,q| > |By, 4| Therefore . |Bag| > 7(P) =
m(Pp) and hence the matrix {Aq : @ < k} is weakly shattering on P[p. Hence
sh(P[p) <  and by (4) we have p IFp |7V (P)| < 7(P). A density argument proves
that IFp |7 (P)| < 7(P).

(6) By (1)-(3) we easily obtain the inequalities min{sh.¢ (p(P), cf(n(P))} <
cfr(P) < min{sh(P), cf(x(P))}. If hsat(P) = 7(P)*", then, by Theorem 1.1(8),
sh(P) < cf(w(P)). Since shefp)(P) < sh(P), by (5), Shcfﬂ.(ﬂm)( ) < cfr(P). If
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hsat(P) < 7(P), then sh(P) = 7(P) by Theorem T1.1(5)
(7) immediately follows by (6), and (8) can be obtained by an easy computation.
(]

In the case hsat(P) = 7(P)™, in some special cases (e.g., if 7(P) is regular,
or a(cf(w(P)),P) = 7(P), etc., see Theorem 1.2(7) or (8)), sh(P) is regular (even
in V7°(P)), But in general it is not clear whether sh(P) is a regular cardinal.

We use the standard terminology. By M and N we denote the ideal of meager
sets and the ideal of null sets, respectively, b is the least cardinality of an un-
bounded family and 0 is the least cardinality of a dominating family of functions
in the ordering <* on “w defined for f, g € “w by f <* g if and only if f(n) < g(n)
for all but finitely many n € w. add(I) is the additivity of an ideal I, cov(I) is
the least size of a set Iy C I such that |JIp = (U, non(]) is the least size of
a subset of |JI not belonging to I, and cof([) is the least size of a set Iy C I
which is cofinal in (I,C). Sacks forcing S is the set of perfect trees p C <“2
where p is stronger than ¢, p < ¢, if p C q. For p € S and s € <¥2 we denote
ps={te€p:sCtortCs}, [p]={re¥2:Vnanep}, [s]={re¥2:sCx}.
Every perfect set in “2 is of the form [p] for some p € S.

2. Maximal antichains in S

Important is the question what the possible sizes of small maximal antichains
in Sacks forcing are. By the next well-known theorem, a(w1,S) > cov(M) and we
prove in Theorem 2.5 below that a(wi,S) > 0.

Theorem 2.1. For a cardinal k the following conditions are equivalent:
(1) K < cov(M);
(2) for every family B of perfect sets such that |B| < k and “2\ |JC is
uncountable for every C € [B]|<%, “2\ |JB # 0;
(3) for every family B of perfect sets such that |B| < k and “2\ |JC is
uncountable for every C € [B]<%, “2\ |J B contains a perfect set.

PRrROOF: The implications (3) — (2) — (1) are obvious. We prove (1) — (3).

Let £ < cov(M) and let B be a family of perfect sets such that |B| < x and
@2\ |JC is uncountable for every C' € [B]|S¥. Let q be the set of all s € <¥2
such that [s]\ |JC' is uncountable for every C' € [B]=“. By the assumption, §) € ¢
and it follows that ¢ is a perfect tree and for every perfect set [p] € B, [p] N [q] is
nowhere dense in [g]. As k < cov(M), MA(countable) implies the existence of a
perfect tree r < ¢ such that [r] N [p] = 0 for all [p] € B (using a countable forcing
for adding a perfect set of Cohen reals). g
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We need the following special case of Exercise 7.13 in [5]:

Lemma 2.2. If G is a dense G subset of “2 such that “2\ G is dense in “2,
then there exists a homeomorphism f from G onto “w.

PROOF: By the assumptions no relatively clopen subset of G is compact. Let Uy,
n € w, be open sets in “2 such that G = ﬂnEW Uy, and Up41 C U, for all n. For
s € “Yw let us define ts € <“2 by induction on |s| so that s C s’ if and only if
ts Cty, tg =0, and [ts] N Unt1 = Ujeults— @] for |s| = n. Then for z € G we
let f(x) be the unique element y € “w such that t,}, C z for all n € w. (]

Theorem 2.3. If B is a family of perfect sets in “2 and |B| < 0, then the set
“2\ |J B is either at most countable or contains a perfect set.

PROOF: Let us assume that |B| < 0 and the set X = “2\ |J B is uncountable.
Let Y be a countable subset of X without isolated points. Let ¢ € S be such that
[¢] =Y. By Lemma 2.2 there is a homeomorphism f from G = [¢] \ Y onto “w.
For F € B, FNY = () and hence F NG = F N [q]. It follows that f“(F NG) is
compact and hence bounded in “w. As |B| < 0, there is an y € “w not dominated
by any member of the set |Jpep f“(F' NG). Then the set E = f~({z € “w:V¥n
x(n) > y(n)}) is an uncountable relatively closed subset of G disjoint from | J B.

(]

If 0 = ¢, then using Theorem 2.3 one can construct a partition of “2 into ¢
perfect sets. In the next theorem we prove that partitions of “2 into ¢ perfect sets
exist in ZFC. We shall use the following notation:

Let p € S and « € [p]. Let {ky : n € w} be the increasing enumeration of
the set {k € w : (z[k)™(0) € p and (z[k)"(1) € p} and let T € “2 be such
that Z(n) # x(n) for all n € w. Let us define 7(p, ,1) = P(zk,)~ (@ (kn)) = 15 €
p:s C (xlkn) " (Z(kn)) or (zlkn) " (Z(kn)) C s}. Then the system [7(p,z,n)],
n € w, is a partition of [p] \ {«}. In particular, [7(<¥“2,x,n)], n € w, is a partition
of “2\ {z} into clopen sets.

For A CSlet By = {[p] : p € A} and let \/ A denote the Boolean sum of A
in r.0.(S). In the Boolean sums we will consider only those A C S for which
\/ A € S. Notice that \/,, 7(p,z,n) = U,, 7(p, z,n) = p.

Theorem 2.4. Let D be a dense subset of S.

(1) There exists a maximal antichain A C D such that the family By is
disjoint and for every p € S with [p] C |J B4 there exists C € [B4]|<¢ such
that [p] CUC.

(2) There exist maximal antichains A C D and A C S, both of size ¢, such
that By is a disjoint family, Bz is a partition of “2, and the following
conditions are satisfied:

(a) for every ¢ € A\ A the set Ay = {p € A : p < ¢} is countable,

q=\Ag, and [[¢] \UBa,| =1

319
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(b) For every g € S, if |[¢q]\UBal| < ¢, then |[{p € A:[g]N[p] # 0} < ¢
(c) foreveryge S, {p € A:gAp# 0} <cifand only if {p€ A:
[ [p] # 0} <.
In particular, by (b), |“2\ U Bal =c¢.

PROOF: The assertion (1) is Lemma 1.1 in [4] and it clearly follows from (2). The
following proof of (2) is a modification of the proof in [4].

Let {gq : @ < ¢} be an enumeration of S such that for each ¢ € S, ¢ = ¢, for
¢ many o’s, and let {yq : @ < ¢} be an enumeration of “2 without repetitions.

Let A’ be a maximal antichain in S such that the set {[p] N [s] : p € A’} has
size ¢ for every s € <“2 (for example, find pairwise disjoint perfect sets [ps] C [s],
s € <¥2 and split each [ps] into ¢ many disjoint perfect sets). Without loss of
generality we can assume that D C {p: 3¢ € A’ p < ¢q}. By induction on o < ¢
we construct p,, € D, countable A/, C D, and x4 € “2. Let us assume that D35
A/ﬁ, x for < a have been constructed and that the set Al = Up<a A% U{ps}
is an antichain.

If the set [¢a] \ ({75 : B < a}UJ Bar) is nonempty, then let zq be its element;
otherwise let o = zg.

If go is compatible with some p € A, then we set po, = pg. Otherwise the set

Xa={zg:<atU{yg: B<atU([eg]NUBar)
UU{lggl N[ga] : B < o and gg A ga = 0}

has size < ¢ and let po € D, po < qq, be such that [po] N Xo = 0. Notice that if
Pa # Po, then x4 # xg for all 3 < a.

If Yo € UBanugp,)» then we set Af, = {po}. Assume that ya & UBarugp,}-
By the assumption put on D the antichain A” U{pq} is nowhere locally maximal
and for every n € w there is 7y, ,, such that p A7, , = 0 for p € A7 U{pa}. The
set

Xan = {Ig (B < O‘} U {yﬁ 1B < a} U ([T:Jz,n] n UBAgU{pQ})
UU{lgsl N [r;m] : < aand gg A rﬁl’n =0}

has size < ¢. Let ra,n € D, ra,n < 1, 5, be such that [ro )N Xa,n = 0 and let A}, =
{ra; :n € w}. Then ran = 7(V AL, Ya,n) and [\ AL] = {ya} UUpeolran]-

By the construction it is clear that A = | J A is a maximal antichain in S refining
the antichain A’. It follows that its size is ¢. Let {Aq : @ < ¢} be an enumeration
of the family A without repetitions and let A = {\/ Ay : @ < ¢}. Then A is a
maximal antichain in S. By is a disjoint family and as A/, # {pg} if and only
if yo ¢ UBa, [V ALl = {ya} UU By, whenever Af, # {po}. Therefore By is a
partition of “2 and condition (a) is satisfied. We prove conditions (b) and (c).
Let g € S be arbitrary.
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(b) If the set {p € A : [p] N [q] # 0} has size ¢, then, for every a such that
ga = q, the set [ga] \ Bax has size ¢ and hence xo # 7 for all 8 < a. Therefore
the set {Zq : go = ¢} has size ¢ and is a subset of [¢] \ |J Ba.

(c) There is # < ¢ such that ¢ = gg. Let us assume that the set B = {p € A:
g Ap # 0} has size < ¢. Let v > 3 be such that B C Ai;. We prove that the set
{pe A:lgn[p] # 0} is a subset of A7 and hence it has size < c.

For every a > 7, if po, ¢ A/“;’ then po # po and gg A ga = 0. Therefore po < qa
is such that [gg] N [pa] = 0.

For every o > 7, if A, \ AY # 0, then Af, # {po} and A}, = {ran : n € w}
where 74,5, < 74, , and pA7g, , = 0 for all p € AY O AY, n € w. It follows that
ag N Tgm = 0 and hence 7q,n < fo,n is such that [rq,p] is disjoint from [gg]. So,
if A}, # {po}, then [gg] N [p] = 0 for all p € A,. O

Let us consider the following families:

A1 ={A: Ais a maximal antichain in S and By is a disjoint family},

Ay = {B: B is a partition of “2 into closed sets},

A3 ={A: A is a maximal antichain in S, B4 is a disjoint family, and the
set “2\ | By has size c},

Ay ={A: A is a maximal antichain in S, B4 is a disjoint family, and the
set “2\ | By is uncountable}.

By Theorem 2.4 all these families are nonempty and by Theorem 2.3 the families
As and A4 do not contain countable antichains. Let us define the cardinals:

a; = min{|A| : X € 4; and |A| > w1}, i1=1,2,3,4,

a; = sup{|A|"T : A € A; and |A| < ¢} U {w1}, i=1,2, 3, 4.
covy = min{|B]| : B is a family of perfect sets such that the set “2\|J B
is uncountable and does not contain a perfect set},

covg = min{|B| : B is a family of perfect sets such that the set “2\|J B
has size ¢ and does not contain a perfect set}.

Theorem 2.5. (1) 0 =covy < a(wy,S) < a1 = ag < min{ag,as}; a3 = dag.
(2) covy < covy < as.
3) For every i, a; < a; if and only if a; = wy if and only if a; = c.
4) For every i, a1 < a; if and only if a; = c.
5) If a; = ¢, then, for all i, a; = ¢ and a; = wy.
6) If ag = ¢, then a1 = ag and a; = as.
7) If a3 = ¢, then a1 = ¢ if and only if ag = c.
) a; = max{asg, as}.

Py

8
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PRrOOF: (1) The inequality ® < cov; is Theorem 2.3. To prove covi < 0, without
loss of generality let us assume that ¢ > 0. Let X = {zq,yaq : @ < w1} C “2
be a Hausdorff gap (see [3]), ie., za <* 23 <* yg <* yo for a < f < wy,
and for every x € “2 there is a < wj such that x4 £* © or © £* yo. Let
Ko ={r €%2: 24 £" v or x £* ya} for a < wi. Then K, C Kg for a < g3,
K, N X is countable, and consequently, the sets Ky \ X, a < w1, are Gy sets
covering “2 \ X. The Baire space “w is a union of ? many compact sets and as
every Polish space is a continuous image of “w, every Polish space is a union of <
compact sets. It follows that every set K, \ X a union of < 0 compact sets and
hence “2\ X is a union of < ? compact sets. Considering the perfect kernels of
these compacts (obtained by removing countable sets) we obtain a family of <
perfect subsets of “2 whose union has uncountable complement of size < ¢ and
hence covy < 0.

Let us assume that a(w1,S) < covy and we prove a contradiction. Let A C S
be a maximal antichain of size a(wi,S). The set X = J{[p] N[q] : p,q € 4,
p # q} has size < ¢. For every p € A let 2, € [p] \ X be arbitrary. The family
A ={7(p,xp,n) : p € Aand n € w} is a maximal antichain in S because if [p|N[q]
is uncountable for some p € A, then [7(p, zp,n)] N [¢] is uncountable for some n.
The set Y = “2\ |J B4/ is uncountable as it contains the set {z}, : p € A} and as
a(w1,S) < covy, there is a perfect set [q] C Y. But [p]Ng] C {xp} forallp e A
which contradicts the assumption that A is maximal. Therefore cov; < a(w1,S).

The inequality a4 < a; can be easily proved by the same argument. Therefore
a; = a4 and by the same proof we obtain a; = a4. The other inequalities are
trivial.

(2) is an easy consequence of definitions.

(3-4) The implications from the right to the left are obvious. Let us assume
that a; < ¢ for some 7. Then a; < a;” <a; and a; < aj.

(5) By (1), for all 4, a; = ¢ and by (3), 6; = w;.

(6) If there is a maximal antichain A C S of size < ¢ such that the family By
is disjoint and the set X = “2\ |JBy4 has size < ¢, then the partition B =
By U{{z}: 2z € X} has size < c.

(7) Let ag = ¢. If ag = ¢, then, by (6), a; = az =c.

(8) a1 > as and d; > as. Let us assume that d3 < da;. For any s with
a3 < k < aj there is an antichain A € A; \ A3 of size < ¢ and > . Then the
partition By U{{z} : x € “2\|J B4} has size < ¢ and > k. Therefore ag > x and
SO a2 = aj. O

Clearly, a(w,S) = w. There are known several constructions of small uncount-
able antichains in S. J. Stern and independently K. Kunen (for the proof see [8])
under CH constructed a partition of “2 into w; compact sets. L. Newelski [9]
pointed out that under MA the same construction produces a partition into ¢ com-
pact sets which is preserved by forcing with measure algebras and he proved that
after adding w; dominating reals, the Baire space “w (and hence, by Lemma 2.2,
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also the Cantor space “2) can be partitioned into w; disjoint compact perfect sets.
A. Rostanowski and S. Shelah [10], by a finite support iteration of c.c.c. forcing
notions of length wy, constructed a maximal antichain A such that the family B4
is disjoint and every tree p € A has on each level at most one branching node.
Moreover, the set | J B4 does not contain any ground model reals and therefore
a3 = w1 holds in the extension.

We say that a set a C <“2 is saturated if for every s,t € <“2 whenever s C ¢
and t € a, then s € a. Easily, it can be observed that as is the minimal size of a
family A, maximal with respect to the inclusion, such that A is an uncountable
almost disjoint family of infinite saturated sets. Notice that such a family A
cannot be a maximal almost disjoint family of infinite subsets of <*'2. To see this,
let a € A be such that the set of all infinite branches in a is nowhere dense in “2
and let = € a be arbitrary. For every n choose s, € <“2 such that z|n C s,
and sp ¢ a. Then the set {sp : n € w} has a finite intersection with every
b € A. The similarity of this characterization of ag with maximal almost disjoint
families suggests the question whether there is some relation between az and a
(the minimal size of a maximal almost disjoint family of subsets of w).

3. Marczewski’s ideal and the collapse by Sacks forcing

A subset X of “2 is an s%-set if for every p € S there is ¢ < p such that
[¢ " X = 0. This notion is due to E. Marczewski [7]. It is known that w; <
add(s%) < cov(s?) < cf(c) < non(s?) = ¢ < cf(cof(s?)) (see [4]) and add(s") < b
(in fact sh(S) < b see [11]; this is not true for cov(s®) because in the iterated
Sacks forcing model cov(s?) = wo see [4] but b = cof(N) = w;). Notice that
add(I) < cf(non(I)) for each ideal I. If y € “2 is a new real, then the perfect
set Ay = {z € “2: (Vn)x(2n) = y(n)} does not contain old reals. This explains
why in iterations of length wy the set of old reals is an s%-set and cov(s?) = ws.
To see that there are s0-sets of size ¢ (see also [4]), take any maximal antichain
{pPa : & < ¢} of size ¢ in S so that the system of perfect sets B4 = {[pa] : a < ¢} is
disjoint and clearly, every selector of this system is an s%-set. By Theorem 2.4(2)
every s0-set has this form. If By is not disjoint, then its selectors need not be
s0-sets (observe that the system {A, : y € “2} has a perfect selector).

The next theorem refines Theorem 1.1 in [4].

Theorem 3.1. (1) shq,(S) < add(s®) < shg,(S)
(2) shy, (S) = shg, (S) = min{shaz( ), add(so)}
(3) shg,(S) < max{shg,(S),add(s?)} = shg, (S)

(4) sh, (S) < she o(S) < cfr(S) < sh(S).

(5) sher (S) < cfsh(S), and if sh(S) is singular, then shy(S) < sh(S) for k < «,

a1 = as = ¢, and c¢ is singular.

(6) If max{ay,az, a3} = c, then add(s?) = shq, (S) = shg, (S).

(7) If ay = «, then, for every r with w1 < & < ¢, add(s?) = shy(S) = cf(S).

< sh(S) < min{cf¢, b}.
< has( )-
— sh(S).
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(8) If ag = ¢, then add(s®) = shy,, (S).
(9) If ag = c, then add(s®) = sh(S).
(10) If a(cfe,S) = ¢, then sh(S) = cfr(S) = sher ((S).

In particular, if 0 = ¢, then the assumptions of (6)—(10) are satisfied, and if ¢ is
regular, then the assumption of (10) is satisfied.

Here is the picture of the inequalities between the cardinals:

shy, (S) = shq, (S) — sha, (S) —= add(s?) — shg, (S) ——= shg, (S) = sh(S)

. —

sher ¢ (S) cfr (S)

PROOF: (1) shg,(S) < sh(S) because az < ¢, sh(S) < cf¢ by Theorem 1.1(8). We
shall sketch a proof of the inequality sh(S) < b which a little simplifies the proof
presented in [11]. Let us recall some notation.

For p € S let fp € “w be such that for every n and every s € fr(M)2 there is a
splitting node t € <fp("*t1)9 above s in p. For p € S and a C w, pla] is a subtree
of p defined by induction: (i) @ € p[al; (ii) Let s € pla] and doms =n. If n € q,
then, for i =0, 1, s7i € pla] if and only if s™i € p. If n ¢ a, then, for i =0, 1,
s7i € pla] if and only if i =0 and sT0€pori=1and s0¢p.

If p,q € Sand a,b C w, then pla]Ng[b] = (pNg)and], and if [fp(n), fp(n + 1)) C
a for infinitely many n, then pla] € S.

We shall construct a base matrix on S of size b using the fact that h < b
where b is the minimal size of a base matrix on P(w)/fin (see [2]). Let F C “w
be an unbounded family of increasing functions and let {B, : a < h} be a
base matrix on P(w)/fin. If p € S, then there is an f € F such that the set
zp = {n : |[f(n), f(n+1)) Nrng fp| > 2} is infinite and so there is o < h and
a € By such that a C* x,. Now for f € F and a € Ua<hBa let Sy, be the
set of all p € S such that |[f(n), f(n+ 1)) Nrng fp| > 2 for all but finitely many
n € a. As Sy, has size < ¢, we can assign, in a one-to-one way, for each p € S¢
an infinite set by ,,, C a so that the system {gf,a,p :p € Sf,a} is almost disjoint.
Let cfqp = U{[f(n), f(n+1)) :n €bfqp}. Then {cfq,:a € By and p € Sy}
is an almost disjoint family and hence the system Ay, = {p[cf o] : @ € Bo and
p € Sy} is an antichain in S refining | J,c g Sy q. Therefore {Af, : f € F and
a < b} is a base matrix on S.

shqs(S) < add(s?): Let x < shgy(S) and let Xq, a < &, be s%-sets. We prove
that the set X = (J, ., Xao is an s%-set and hence x < add(s®). Let Aq, a < &,
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be maximal antichains in S such that X, N By, = 0. By Theorem 2.4(1) we can
assume that for every oo < k, B4, is a disjoint family. Let ¢ € S be arbitrary.
By (k, ¢, ag)-distributivity of r.0.(S) there is ¢’ < ¢ such that for every a the set
Al ={p € Aus : ¢ Np # 0} has size < a3. By the definition of a3 it follows that
every set Yo = [¢]\{J B4/, hassize < cand as & < cf ¢, the set XN[¢'] € Uqy<y, Ya
has size < ¢. Therefore there is r < ¢’ such that X N [r] = 0.

add(s?) < shg, (S): Let x < add(s?) and let {4, : @ < &} be a system of
maximal antichains in S. We prove that for every ¢ € S there is r < ¢ such
that for every a < k the set {p € Ay : r A p # 0} has size < ag and hence
t < shg,(S). By refining the antichains, if necessary, we can assume without
loss of generality that they all satisfy the conditions in Theorem 2.4(1). By the
additivity assumption, the set X = (J,..(“2\JB4,) is an s9-set. Let ¢ € S.
There is 7 < ¢ such that X N [r] = () and hence for every o, [r] C |JBa,. By
Theorem 2.4(1) then, for every o, Co = {p € Aq : [r] N [p] # 0} has size < ¢ and
by the definition of ag we have |Cq| < az.

(2) We prove only min{shg,(S),add(s?)} < shy, (S); all the remaining inequal-
ities of this part of the theorem hold due to the monotonicity of the invariants
shy(S) and part (1).

Let £ < min{shg, (S),add(s)} and let Ay, o < &, be maximal antichains in S.
We show that for every ¢ € S there is r < ¢ such that for every @ < « the set
{p € Ao : 7 A p # 0} is countable. Without loss of generality we can assume that
all the antichains A, satisfy conditions in Theorem 2.4(2). Given ¢ € S by the
r-additivity of s and (, ¢, ag)-distributivity of r.0.(S) there is ¢’ < ¢ such that
for each a < k, [¢']| €U B4, and the set {p € Ay : ¢’ A p # 0} has size < az. By
condition (c) in Theorem 2.4(2), as k < cf ¢, the set X = |, . U{[¢]IN[p] : p € Ao
and ¢’ A p = 0} has size < ¢. Let r < ¢’ be such that X N [r] = (). Then for each
a < K the set {p € Ay : [r] N [p] # 0} has size < az and therefore it is countable.

(3) It is clear that shg,(S) < sh(S) = shg, (S). Let 1 = shg, (S) and kg =
add(s?). We prove that max{s1,s2} = sh(S). We know that the inequality <
holds true. Let us assume that 1, k2 < sh(S) and we prove a contradiction. Let
{Al, : & < K1} be a system of maximal antichains in S witnessing the (x, ¢, ds)-
nowhere distributivity of r. 0.(S) and let {Xg : 3 < r2} be a system of s0-sets such
that for every ¢ € S, [g] N Up<,, X has size c. For each pair (o, 3) € k1 X K2 let
Aq g be a maximal antichain in S such that A, g refines A}, and XgN|J Ba, ,=0.
We can find A, g’s so that the conditions in Theorem 2.4(2) are satisfied. We
claim that the system {A, g : (o, ) € K1 X K2} is a witness for the (k1 - K2, ¢, ¢)-
nowhere distributivity of r.o.(S) which contradicts the inequality x1 - k2 < sh(S).
To see this let ¢ € S be arbitrary. As k1 - k2 < sh(S) there is 7 < ¢ such that for
every (a, ) € K1 X kg the set A;ﬂ ={pe€ Ayp: 7 Ap=0} hassize < c¢. As
[r] " Up<x, Xp has size ¢ and kg < cfc there is 3 < k2 such that [r] N X has
size c. As for every a the antichain A, g refines the antichain Al there is a < K1
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such that |A:x,6| > a3. Now [r] N Xp is disjoint from UBA;ﬁ and |A;75| <c It
follows that a3 > [AL ﬁ|+ while |A], 5| > a3. A contradiction.

(4) The inequalities hold true by Theorem 1.2(6) because shy,, (S) < sher ((S) <
sh(S) < cfc.

(5) The inequalities hold true by Theorem 1.2(8) by which sh(S) is regular for
# regular. Hence if sh(S) is singular, then ¢ is singular, and as add(s?) is regular,
by (3), shg, (S) = shg, (S) = sh(S). Therefore, a1 = ag = c.

(6)—(9) are easy consequences of the above proved inequalities using the fact
that a; = ¢ if and only if a; = wy.

(10) follows by (4) since under the assumption sh(S) = sh¢g ((S). O

By Theorem 3.1(10), if the continuum is regular, then it is collapsed to a
regular cardinal of the extension. MA(countable) does not imply the continuum
is regular. Anyway, by Theorem 3.1(7), under MA (countable) (even under d = )
Sacks forcing collapses the continuum to a regular cardinal in yro-() We think
that it is an open question whether Sacks forcing can collapse the continuum to
a singular cardinal.

Under some hypotheses (see Theorem 3.1), there is £ < ¢ such that add(s%) =
shy(S). We do not know whether the same is true in ZFC.
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