Miroslav Repický

Abstract. Under Martin's axiom, collapsing of the continuum by Sacks forcing S is characterized by the additivity of Marczewski's ideal (see [4]). We show that the same characterization holds true if $\mathfrak{d} = \mathfrak{c}$ proving that under this hypothesis there are no small uncountable maximal antichains in S. We also construct a partition of $^{\omega}2$ into \mathfrak{c} perfect sets which is a maximal antichain in S and show that s^0 -sets are exactly (subsets of) selectors of maximal antichains of perfect sets.

Keywords: Sacks forcing, Marczewski's ideal, cardinal invariants Classification: Primary 03E40; Secondary 03E17

1. General remarks

Let (\mathbb{P}, \leq) be a partial order. We say that elements (conditions) $p, q \in \mathbb{P}$ are compatible and write $p \land q \neq 0$ if there is $r \in \mathbb{P}$ such that $r \leq p$ and $r \leq q$. Otherwise p and q are incompatible and we write $p \land q = 0$. A family of pairwise incompatible elements is called an antichain. For $p \in \mathbb{P}$, $\mathbb{P} \upharpoonright p = \{q \in \mathbb{P} : q \leq p\}$. Let us recall some cardinal invariants for \mathbb{P} :

 $\begin{aligned} \pi(\mathbb{P}) &= \min\{|X| : X \text{ is a dense subset of } \mathbb{P}\},\\ \operatorname{sat}(\mathbb{P}) &= \min\{\kappa : \text{every antichain has size} < \kappa\},\\ \mathfrak{a}(\kappa,\mathbb{P}) &= \min(\{\pi(\mathbb{P})\} \cup \{|A| : A \subseteq \mathbb{P} \text{ is a maximal antichain with } |A| \ge \kappa\}),\\ \operatorname{cf}_{\pi}(\mathbb{P}) &= \min\{\kappa : \Vdash_{\mathbb{P}} \operatorname{cf}(\pi^{V}(\mathbb{P})) \le \kappa\}. \end{aligned}$

The hereditary version of a cardinal invariant $\kappa(\cdot)$ for partial orders is defined by $h\kappa(\mathbb{P}) = \min\{\kappa(\mathbb{P} | p) : p \in \mathbb{P}\}$. The symbols $h\pi(\mathbb{P})$, $hsat(\mathbb{P})$, $h\mathfrak{a}(\kappa,\mathbb{P})$ denote the hereditary versions of the cardinals $\pi(\mathbb{P})$, $sat(\mathbb{P})$, $\mathfrak{a}(\kappa,\mathbb{P})$, respectively.

A matrix on \mathbb{P} is a sequence of antichains in \mathbb{P} (the antichains may be maximal). Let \mathcal{A} be a matrix on \mathbb{P} . A matrix \mathcal{A} is shattering if for every $p \in \mathbb{P}$ there exists an antichain $A \in \mathcal{A}$ such that $|\{q \in A : p \land q \neq 0\}| \ge \pi(\mathbb{P})$. A matrix \mathcal{A} is weakly shattering if $\sum_{A \in \mathcal{A}} |\{q \in A : p \land q \neq 0\}| \ge \pi(\mathbb{P})$ for every $p \in \mathbb{P}$. A matrix is a base matrix if $\bigcup \mathcal{A}$ is a dense subset of \mathbb{P} . The following two theorems contain some well known basic facts about all these notions.

The work has been supported by grant of Slovak Grant Agency VEGA 2/7555/20.

Theorem 1.1. (1) A shattering matrix is weakly shattering.

- (2) There exists a base matrix on \mathbb{P} of size $\pi(\mathbb{P})$.
- (3) If $h\pi(\mathbb{P}) = \pi(\mathbb{P})$, then every base matrix on \mathbb{P} is weakly shattering.
- (4) There exists a shattering matrix on \mathbb{P} if and only if $hsat(\mathbb{P}) = \pi(\mathbb{P})^+$.
- (5) If there is a weakly shattering matrix on \mathbb{P} of size $< \pi(\mathbb{P})$, then $hsat(\mathbb{P}) = \pi(\mathbb{P})^+$.
- (6) For every weakly shattering matrix there exists a weakly shattering base matrix of the same size.
- (7) If $hsat(\mathbb{P}) = \pi(\mathbb{P})^+$, then for every base matrix on \mathbb{P} there exists a shattering base matrix on \mathbb{P} of the same size.
- (8) If $hsat(\mathbb{P}) = \pi(\mathbb{P})^+$, then there exists a shattering matrix on \mathbb{P} of size $cf(\pi(\mathbb{P}))$.

PROOF: The assertions (1)–(5) are easy to see. For the rest of the proof let us fix a dense set $D \subseteq \mathbb{P}$ with $|D| = \pi(\mathbb{P})$.

(6) Let $\mathcal{A} = \{A_{\alpha} : \alpha < \kappa\}$ be a weakly shattering matrix on \mathbb{P} . There exists a one-to-one mapping $\varphi : D \to \bigcup_{\alpha < \kappa} \{\alpha\} \times A_{\alpha}, \varphi = (\varphi_1, \varphi_2)$, such that $p \wedge \varphi_2(p) \neq 0$ for every $p \in D$. For every $p \in D$ let us fix an element $r(p) \in P$ below p and $\varphi_2(p)$ and let $A'_{\alpha} = \{r(p) : \varphi_1(p) = \alpha\}$. The matrix $\mathcal{A} = \{A'_{\alpha} : \alpha < \kappa\}$ is a weakly shattering base matrix on \mathbb{P} .

(7) For $p \in \mathbb{P}$ let B_p be an antichain below p of size $\pi(\mathbb{P})$. If \mathcal{A} is a base matrix on \mathbb{P} , then the matrix $\mathcal{A}' = \{\bigcup_{p \in \mathcal{A}} B_p : A \in \mathcal{A}\}$ is a shattering base matrix on \mathbb{P} .

(8) Let $D = \bigcup \{D_{\alpha} : \alpha < \operatorname{cf}(\pi(\mathbb{P}))\}$ with $|D_{\alpha}| < \pi(\mathbb{P})$. By the Balcar-Vojtáš's Theorem (see [1] or [6]) for each α there is a disjoint refinement A_{α} of D_{α} . Therefore $\{A_{\alpha} : \alpha < \operatorname{cf}(\pi(\mathbb{P}))\}$ is a base matrix on \mathbb{P} and by assertion (7) there exists a shattering matrix on \mathbb{P} of the same size.

From now on we assume that $h\pi(\mathbb{P}) = \pi(\mathbb{P})$ and we define:

 $\operatorname{sh}(\mathbb{P}) = \min\{|\mathcal{A}| : \mathcal{A} \text{ is a weakly shattering matrix on } \mathbb{P}\},$

 $\operatorname{sh}_{\lambda}(\mathbb{P}) = \min(\{\pi(\mathbb{P})\} \cup \{\kappa : \mathrm{r.o.}(\mathbb{P}) \text{ is } (\kappa, \pi(\mathbb{P}), \lambda) \text{-nowhere distributive}\}).$

We use the definition of the three-parameter distributivity from [2]. Clearly, $\operatorname{sh}(\mathbb{P}) = \min\{|\mathcal{A}| : \mathcal{A} \text{ is a base matrix on } \mathbb{P}\} = \min(\{\pi(\mathbb{P})\} \cup \{|\mathcal{A}| : \mathcal{A} \text{ is a shattering matrix on } \mathbb{P}\}) = \operatorname{sh}_{\pi(\mathbb{P})}(\mathbb{P})$. Again, $\operatorname{hsh}(\mathbb{P})$ denotes the hereditary version of the cardinal $\operatorname{sh}(\mathbb{P})$.

Theorem 1.2. Let us assume that $h\pi(\mathbb{P}) = \pi(\mathbb{P})$.

- If r. o.(P) is (κ, λ, λ)-nowhere distributive, then r. o.(P) is (κ, cf λ, cf λ)nowhere distributive.
- (2) If r. o.(\mathbb{P}) is $(\kappa, \operatorname{cf} \lambda, \operatorname{cf} \lambda)$ -nowhere distributive, then r. o.(\mathbb{P}) is $(\kappa, \lambda, \operatorname{cf} \lambda)$ -nowhere distributive.
- (3) If κ < cf λ, then r. o.(P) is (κ, cf λ, cf λ)-nowhere distributive if and only if ⊩_P cf λ ≤ κ.

- (4) If $hsh(\mathbb{P}) = sh(\mathbb{P})$, then $\Vdash_{\mathbb{P}} |\pi^V(\mathbb{P})| = sh^V(\mathbb{P})$.
- (5) $\Vdash_{\mathbb{P}} \pi(\mathbb{P}) = |\pi^V(\mathbb{P})|.$
- (6) $\min\{\operatorname{sh}_{\operatorname{cf}\pi(\mathbb{P})}(\mathbb{P}), \operatorname{cf}(\pi(\mathbb{P}))\} \leq \operatorname{cf}_{\pi}(\mathbb{P}) \leq \min\{\operatorname{sh}(\mathbb{P}), \operatorname{cf}(\pi(\mathbb{P}))\}\)$ and there are two possibilities: Either $\operatorname{hsat}(\mathbb{P}) = \pi(\mathbb{P})^+$ and $\operatorname{sh}_{\operatorname{cf}\pi(\mathbb{P})}(\mathbb{P}) \leq \operatorname{cf}_{\pi}(\mathbb{P}) \leq \operatorname{sh}(\mathbb{P}) \leq \operatorname{cf}(\pi(\mathbb{P})),\)$ or $\operatorname{hsat}(\mathbb{P}) \leq \pi(\mathbb{P})\)$ and $\operatorname{sh}(\mathbb{P}) = \pi(\mathbb{P}).$
- (7) If $\operatorname{sh}_{\operatorname{cf} \pi(\mathbb{P})}(\mathbb{P}) = \operatorname{sh}(\mathbb{P})$ (e.g., if $\pi(\mathbb{P})$ is regular, or if $\mathfrak{a}(\operatorname{cf}(\pi(\mathbb{P})), \mathbb{P}) = \pi(\mathbb{P})$), then $\operatorname{cf}_{\pi}(\mathbb{P}) = \min\{\operatorname{sh}(\mathbb{P}), \operatorname{cf}(\pi(\mathbb{P}))\}$.
- (8) If $\operatorname{hsat}(\mathbb{P}) \geq \lambda^+$, then $\operatorname{sh}_{\lambda}(\mathbb{P}) \leq (\operatorname{cf} \lambda) \cdot \sup_{\kappa < \lambda} \operatorname{sh}_{\kappa}(\mathbb{P})$ and $\operatorname{sh}_{\operatorname{cf} \lambda}(\mathbb{P}) \leq \operatorname{cf} \operatorname{sh}_{\lambda}(\mathbb{P})$.

PROOF: The assertions (1) and (2) are easy.

(3) Let $\{\lambda_{\xi} : \xi < \operatorname{cf} \lambda\}$ be an increasing cofinal sequence in λ and let $\kappa < \operatorname{cf} \lambda$. Let \dot{f} be a \mathbb{P} -name of an unbounded function from κ to λ . For $\alpha < \kappa$ let $A_{\alpha} = \{\|\dot{f}(\alpha) \in [\lambda_{\xi}, \lambda_{\xi+1})\| : \xi < \operatorname{cf} \lambda\} \setminus \{0\}$. The matrix $\{A_{\alpha} : \alpha < \kappa\}$ witnesses the $(\kappa, \operatorname{cf} \lambda, \operatorname{cf} \lambda)$ -nowhere distributivity of r.o.(\mathbb{P}). Conversely, if $\{A_{\alpha} : \alpha < \kappa\}$ is a matrix on r.o.(\mathbb{P}) with $A_{\alpha} = \{a_{\alpha,\xi} : \xi < \operatorname{cf} \lambda\}$ witnessing the $(\kappa, \operatorname{cf} \lambda, \operatorname{cf} \lambda)$ -nowhere distributivity of r.o.(\mathbb{P}). The matrix $\|\dot{f}(\alpha) = \lambda_{\xi}\| = a_{\alpha,\xi}$ defines a \mathbb{P} -name of an unbounded function from κ to λ .

(4) Let us assume that p and μ are such that $p \Vdash_{\mathbb{P}} |\pi^V(\mathbb{P})| = \mu$. Let \dot{f} be a $\mathbb{P} \upharpoonright p$ name of a function from μ onto $\pi(\mathbb{P})$ and for $\alpha < \mu$ let A_α be a maximal antichain in $\mathbb{P} \upharpoonright p$ consisting of $q \in \mathbb{P} \upharpoonright p$ deciding $\dot{f}(\alpha)$. Since every $q \in \mathbb{P} \upharpoonright p$ forces that \dot{f} is onto $\pi(\mathbb{P}) = \pi(\mathbb{P} \upharpoonright p)$, easily, it can be verified that $\{A_\alpha : \alpha < \mu\}$ is a weakly shattering matrix on $\mathbb{P} \upharpoonright p$. Therefore $\operatorname{sh}(\mathbb{P}) = \operatorname{sh}(\mathbb{P} \upharpoonright p) \leq \mu$ and $p \Vdash_{\mathbb{P}} \operatorname{sh}^V(\mathbb{P}) \leq |\pi^V(\mathbb{P})|$.

Let $\operatorname{sh}(\mathbb{P}) = \kappa$. If $\operatorname{sh}(\mathbb{P}) = \pi(\mathbb{P})$, then clearly, $\Vdash_{\mathbb{P}} |\pi^V(\mathbb{P})| \leq \operatorname{sh}^V(\mathbb{P})$. Let us assume that $\operatorname{sh}(\mathbb{P}) < \pi(\mathbb{P})$. Then by Theorem 1.1(5), $\operatorname{hsat}(\mathbb{P}) = \pi(\mathbb{P})^+$. For every $q \in \mathbb{P}$ let us fix a maximal antichain $\{(q)_{\xi} : \xi < \pi(\mathbb{P})\}$ below q. As $\operatorname{sh}(\mathbb{P}) = \kappa$, there is a base matrix $\mathcal{A} = \{A_{\alpha} : \alpha < \kappa\}$ (with all antichains maximal). We define a \mathbb{P} -name \dot{f} of a function from κ onto $\pi^V(\mathbb{P})$ by $||\dot{f}(\alpha) = \xi|| = \bigvee\{(q)_{\xi} : q \in A_{\alpha}\}$. Therefore $\Vdash_{\mathbb{P}} |\pi^V(\mathbb{P})| \leq \operatorname{sh}^V(\mathbb{P})$.

(5) Clearly, $\Vdash_{\mathbb{P}} \pi(\mathbb{P}) \leq |\pi^{V}(\mathbb{P})|$. Let p and κ be such that $p \Vdash_{\mathbb{P}} \pi(\mathbb{P}) = \kappa$ and hsh $(\mathbb{P}\restriction p) = \operatorname{sh}(\mathbb{P}\restriction p)$. Let \dot{f} be a \mathbb{P} -name of a function from κ into \mathbb{P} such that $p \Vdash_{\mathbb{P}} (\forall q \in \mathbb{P})(\exists \alpha < \kappa) \dot{f}(\alpha) \leq q$. Let $A_{\alpha}, \alpha < \kappa$, be a maximal antichain of conditions below p deciding $\dot{f}(\alpha)$. For $q \leq p$ let $B_{\alpha,q} = \{r \in A_{\alpha} : q \wedge r \neq 0\}$ and $B'_{\alpha,q} = \{s \in \mathbb{P} : (\exists r \in B_{\alpha,q}) r \Vdash_{\mathbb{P}} \dot{f}(\alpha) = s\}$. The set $\bigcup_{\alpha < \kappa} B'_{\alpha,q}$ is a dense subset of \mathbb{P} for every $q \leq p$ and $|B_{\alpha,q}| \geq |B'_{\alpha,q}|$. Therefore $\sum_{\alpha < \kappa} |B_{\alpha,q}| \geq \pi(\mathbb{P}) = \pi(\mathbb{P}\restriction p)$ and hence the matrix $\{A_{\alpha} : \alpha < \kappa\}$ is weakly shattering on $\mathbb{P}\restriction p$. Hence sh $(\mathbb{P}\restriction p) \leq \kappa$ and by (4) we have $p \Vdash_{\mathbb{P}} |\pi^{V}(\mathbb{P})| \leq \pi(\mathbb{P})$. A density argument proves that $\Vdash_{\mathbb{P}} |\pi^{V}(\mathbb{P})| \leq \pi(\mathbb{P})$.

(6) By (1)–(3) we easily obtain the inequalities $\min\{\operatorname{sh}_{\operatorname{cf} \pi(\mathbb{P})}(\mathbb{P}), \operatorname{cf}(\pi(\mathbb{P}))\} \leq \operatorname{cf}_{\pi}(\mathbb{P}) \leq \min\{\operatorname{sh}(\mathbb{P}), \operatorname{cf}(\pi(\mathbb{P}))\}$. If $\operatorname{hsat}(\mathbb{P}) = \pi(\mathbb{P})^+$, then, by Theorem 1.1(8), $\operatorname{sh}(\mathbb{P}) \leq \operatorname{cf}(\pi(\mathbb{P}))$. Since $\operatorname{sh}_{\operatorname{cf} \pi(\mathbb{P})}(\mathbb{P}) \leq \operatorname{sh}(\mathbb{P})$, by (5), $\operatorname{sh}_{\operatorname{cf} \pi(\mathbb{P})}(\mathbb{P}) \leq \operatorname{cf}_{\pi}(\mathbb{P})$. If

M. Repický

 $hsat(\mathbb{P}) \leq \pi(\mathbb{P})$, then $sh(\mathbb{P}) = \pi(\mathbb{P})$ by Theorem T1.1(5)

(7) immediately follows by (6), and (8) can be obtained by an easy computation. \Box

In the case $\operatorname{hsat}(\mathbb{P}) = \pi(\mathbb{P})^+$, in some special cases (e.g., if $\pi(\mathbb{P})$ is regular, or $\mathfrak{a}(\operatorname{cf}(\pi(\mathbb{P})), \mathbb{P}) = \pi(\mathbb{P})$, etc., see Theorem 1.2(7) or (8)), $\operatorname{sh}(\mathbb{P})$ is regular (even in $V^{\operatorname{r.o.}(\mathbb{P})}$). But in general it is not clear whether $\operatorname{sh}(\mathbb{P})$ is a regular cardinal.

We use the standard terminology. By \mathcal{M} and \mathcal{N} we denote the ideal of meager sets and the ideal of null sets, respectively, \mathfrak{b} is the least cardinality of an unbounded family and \mathfrak{d} is the least cardinality of a dominating family of functions in the ordering \leq^* on ω_{ω} defined for $f, g \in \omega_{\omega}$ by $f \leq^* g$ if and only if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. add(I) is the additivity of an ideal I, $\operatorname{cov}(I)$ is the least size of a set $I_0 \subset I$ such that $\bigcup I_0 = \bigcup I$, $\operatorname{non}(I)$ is the least size of a subset of $\bigcup I$ not belonging to I, and $\operatorname{cof}(I)$ is the least size of a set $I_0 \subset I$ which is cofinal in (I, \subseteq) . Sacks forcing \mathbb{S} is the set of perfect trees $p \subseteq {}^{<\omega_2}$ where p is stronger than $q, p \leq q$, if $p \subseteq q$. For $p \in \mathbb{S}$ and $s \in {}^{<\omega_2}$ we denote $p_s = \{t \in p : s \subseteq t \text{ or } t \subseteq s\}, [p] = \{x \in \omega_2 : \forall n \ x \upharpoonright n \in p\}, [s] = \{x \in \omega_2 : s \subseteq x\}.$ Every perfect set in ω_2 is of the form [p] for some $p \in \mathbb{S}$.

2. Maximal antichains in \mathbb{S}

Important is the question what the possible sizes of small maximal antichains in Sacks forcing are. By the next well-known theorem, $\mathfrak{a}(\omega_1, \mathbb{S}) \geq \operatorname{cov}(\mathcal{M})$ and we prove in Theorem 2.5 below that $\mathfrak{a}(\omega_1, \mathbb{S}) \geq \mathfrak{d}$.

Theorem 2.1. For a cardinal κ the following conditions are equivalent:

- (1) $\kappa < \operatorname{cov}(\mathcal{M});$
- (2) for every family B of perfect sets such that $|B| \leq \kappa$ and $\omega_2 \setminus \bigcup C$ is uncountable for every $C \in [B]^{\leq \omega}, \ \omega_2 \setminus \bigcup B \neq \emptyset$;
- (3) for every family B of perfect sets such that $|B| \leq \kappa$ and $\omega_2 \setminus \bigcup C$ is uncountable for every $C \in [B]^{\leq \omega}$, $\omega_2 \setminus \bigcup B$ contains a perfect set.

PROOF: The implications $(3) \rightarrow (2) \rightarrow (1)$ are obvious. We prove $(1) \rightarrow (3)$.

Let $\kappa < \operatorname{cov}(\mathcal{M})$ and let B be a family of perfect sets such that $|B| \leq \kappa$ and ${}^{\omega}2 \setminus \bigcup C$ is uncountable for every $C \in [B]^{\leq \omega}$. Let q be the set of all $s \in {}^{<\omega}2$ such that $[s] \setminus \bigcup C$ is uncountable for every $C \in [B]^{\leq \omega}$. By the assumption, $\emptyset \in q$ and it follows that q is a perfect tree and for every perfect set $[p] \in B$, $[p] \cap [q]$ is nowhere dense in [q]. As $\kappa < \operatorname{cov}(\mathcal{M})$, MA_{κ}(countable) implies the existence of a perfect tree $r \leq q$ such that $[r] \cap [p] = \emptyset$ for all $[p] \in B$ (using a countable forcing for adding a perfect set of Cohen reals).

We need the following special case of Exercise 7.13 in [5]:

Lemma 2.2. If G is a dense G_{δ} subset of ${}^{\omega}2$ such that ${}^{\omega}2 \setminus G$ is dense in ${}^{\omega}2$, then there exists a homeomorphism f from G onto ${}^{\omega}\omega$.

PROOF: By the assumptions no relatively clopen subset of G is compact. Let U_n , $n \in \omega$, be open sets in ω^2 such that $G = \bigcap_{n \in \omega} U_n$ and $U_{n+1} \subseteq U_n$ for all n. For $s \in {}^{<\omega}\omega$ let us define $t_s \in {}^{<\omega}2$ by induction on |s| so that $s \subseteq s'$ if and only if $t_s \subseteq t_{s'}, t_{\emptyset} = \emptyset$, and $[t_s] \cap U_{n+1} = \bigcup_{i \in \omega} [t_s \frown_{\langle i \rangle}]$ for |s| = n. Then for $x \in G$ we let f(x) be the unique element $y \in {}^{\omega}\omega$ such that $t_{u|n} \subseteq x$ for all $n \in \omega$.

Theorem 2.3. If B is a family of perfect sets in ${}^{\omega}2$ and $|B| < \mathfrak{d}$, then the set ${}^{\omega}2 \setminus \bigcup B$ is either at most countable or contains a perfect set.

PROOF: Let us assume that $|B| < \mathfrak{d}$ and the set $X = {}^{\omega}2 \setminus \bigcup B$ is uncountable. Let Y be a countable subset of X without isolated points. Let $q \in \mathbb{S}$ be such that $[q] = \overline{Y}$. By Lemma 2.2 there is a homeomorphism f from $G = [q] \setminus Y$ onto ${}^{\omega}\omega$. For $F \in B$, $F \cap Y = \emptyset$ and hence $F \cap G = F \cap [q]$. It follows that $f^{*}(F \cap G)$ is compact and hence bounded in ${}^{\omega}\omega$. As $|B| < \mathfrak{d}$, there is an $y \in {}^{\omega}\omega$ not dominated by any member of the set $\bigcup_{F \in B} f^{*}(F \cap G)$. Then the set $E = f^{-1}(\{x \in {}^{\omega}\omega : \forall n x(n) \ge y(n)\})$ is an uncountable relatively closed subset of G disjoint from $\bigcup B$.

If $\mathfrak{d} = \mathfrak{c}$, then using Theorem 2.3 one can construct a partition of ω_2 into \mathfrak{c} perfect sets. In the next theorem we prove that partitions of ω_2 into \mathfrak{c} perfect sets exist in ZFC. We shall use the following notation:

Let $p \in \mathbb{S}$ and $x \in [p]$. Let $\{k_n : n \in \omega\}$ be the increasing enumeration of the set $\{k \in \omega : (x \upharpoonright k) \frown \langle 0 \rangle \in p$ and $(x \upharpoonright k) \frown \langle 1 \rangle \in p\}$ and let $\bar{x} \in \omega_2$ be such that $\bar{x}(n) \neq x(n)$ for all $n \in \omega$. Let us define $\tau(p, x, n) = p_{(x \upharpoonright k_n) \frown \langle \bar{x}(k_n) \rangle} = \{s \in$ $p : s \subseteq (x \upharpoonright k_n) \frown \langle \bar{x}(k_n) \rangle$ or $(x \upharpoonright k_n) \frown \langle \bar{x}(k_n) \rangle \subseteq s\}$. Then the system $[\tau(p, x, n)],$ $n \in \omega$, is a partition of $[p] \setminus \{x\}$. In particular, $[\tau(\leq \omega_2, x, n)], n \in \omega$, is a partition of $\omega_2 \setminus \{x\}$ into clopen sets.

For $A \subseteq \mathbb{S}$ let $B_A = \{[p] : p \in A\}$ and let $\bigvee A$ denote the Boolean sum of A in r.o.(S). In the Boolean sums we will consider only those $A \subseteq S$ for which $\bigvee A \in S$. Notice that $\bigvee_n \tau(p, x, n) = \bigcup_n \tau(p, x, n) = p$.

Theorem 2.4. Let D be a dense subset of S.

- (1) There exists a maximal antichain $A \subseteq D$ such that the family B_A is disjoint and for every $p \in \mathbb{S}$ with $[p] \subseteq \bigcup B_A$ there exists $C \in [B_A]^{<\mathfrak{c}}$ such that $[p] \subseteq \bigcup C$.
- (2) There exist maximal antichains $A \subseteq D$ and $\overline{A} \subseteq S$, both of size \mathfrak{c} , such that B_A is a disjoint family, $B_{\overline{A}}$ is a partition of ω_2 , and the following conditions are satisfied:
 - (a) for every $q \in \overline{A} \setminus A$ the set $A_q = \{p \in A : p \leq q\}$ is countable, $q = \bigvee A_q$, and $|[q] \setminus \bigcup B_{A_q}| = 1$;

(b) For every q ∈ S, if |[q] \ ∪ B_A| < c, then |{p ∈ A : [q] ∩ [p] ≠ ∅}| < c;
(c) for every q ∈ S, |{p ∈ A : q ∧ p ≠ 0}| < c if and only if |{p ∈ A : [q] ∩ [p] ≠ ∅}| < c.

In particular, by (b), $|^{\omega}2 \setminus \bigcup B_A| = \mathfrak{c}$.

PROOF: The assertion (1) is Lemma 1.1 in [4] and it clearly follows from (2). The following proof of (2) is a modification of the proof in [4].

Let $\{q_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of \mathbb{S} such that for each $q \in \mathbb{S}$, $q = q_{\alpha}$ for \mathfrak{c} many α 's, and let $\{y_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of $^{\omega}2$ without repetitions.

Let A' be a maximal antichain in \mathbb{S} such that the set $\{[p] \cap [s] : p \in A'\}$ has size \mathfrak{c} for every $s \in {}^{<\omega}2$ (for example, find pairwise disjoint perfect sets $[p_s] \subseteq [s]$, $s \in {}^{<\omega}2$ and split each $[p_s]$ into \mathfrak{c} many disjoint perfect sets). Without loss of generality we can assume that $D \subseteq \{p : \exists q \in A' \ p \leq q\}$. By induction on $\alpha < \mathfrak{c}$ we construct $p_\alpha \in D$, countable $A'_\alpha \subseteq D$, and $x_\alpha \in {}^{\omega}2$. Let us assume that p_β , A'_β , x_β for $\beta < \alpha$ have been constructed and that the set $A''_\alpha = \bigcup_{\beta < \alpha} A'_\beta \cup \{p_\beta\}$ is an antichain.

If the set $[q_{\alpha}] \setminus (\{x_{\beta} : \beta < \alpha\} \cup \bigcup B_{A_{\alpha}'})$ is nonempty, then let x_{α} be its element; otherwise let $x_{\alpha} = x_0$.

If q_{α} is compatible with some $p \in A''_{\alpha}$, then we set $p_{\alpha} = p_0$. Otherwise the set

$$\begin{aligned} X_{\alpha} &= \{ x_{\beta} : \beta \leq \alpha \} \cup \{ y_{\beta} : \beta < \alpha \} \cup ([q_{\alpha}] \cap \bigcup B_{A_{\alpha}''}) \\ & \cup \bigcup \{ [q_{\beta}] \cap [q_{\alpha}] : \beta < \alpha \text{ and } q_{\beta} \wedge q_{\alpha} = 0 \} \end{aligned}$$

has size $< \mathfrak{c}$ and let $p_{\alpha} \in D$, $p_{\alpha} \leq q_{\alpha}$, be such that $[p_{\alpha}] \cap X_{\alpha} = \emptyset$. Notice that if $p_{\alpha} \neq p_0$, then $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

If $y_{\alpha} \in \bigcup B_{A''_{\alpha} \cup \{p_{\alpha}\}}$, then we set $A'_{\alpha} = \{p_0\}$. Assume that $y_{\alpha} \notin \bigcup B_{A''_{\alpha} \cup \{p_{\alpha}\}}$. By the assumption put on D the antichain $A''_{\alpha} \cup \{p_{\alpha}\}$ is nowhere locally maximal and for every $n \in \omega$ there is $r'_{\alpha,n}$ such that $p \wedge r'_{\alpha,n} = 0$ for $p \in A''_{\alpha} \cup \{p_{\alpha}\}$. The set

$$\begin{aligned} X_{\alpha,n} &= \{ x_{\beta} : \beta \leq \alpha \} \cup \{ y_{\beta} : \beta \leq \alpha \} \cup ([r'_{\alpha,n}] \cap \bigcup B_{A''_{\alpha} \cup \{ p_{\alpha} \}}) \\ & \cup \bigcup \{ [q_{\beta}] \cap [r'_{\alpha,n}] : \beta < \alpha \text{ and } q_{\beta} \wedge r'_{\alpha,n} = 0 \} \end{aligned}$$

has size $< \mathfrak{c}$. Let $r_{\alpha,n} \in D$, $r_{\alpha,n} \leq r'_{\alpha,n}$ be such that $[r_{\alpha,n}] \cap X_{\alpha,n} = \emptyset$ and let $A'_{\alpha} = \{r_{\alpha,n} : n \in \omega\}$. Then $r_{\alpha,n} = \tau(\bigvee A'_{\alpha}, y_{\alpha}, n)$ and $[\bigvee A'_{\alpha}] = \{y_{\alpha}\} \cup \bigcup_{n \in \omega} [r_{\alpha,n}]$.

By the construction it is clear that $A = \bigcup \mathcal{A}$ is a maximal antichain in S refining the antichain A'. It follows that its size is \mathfrak{c} . Let $\{A_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of the family \mathcal{A} without repetitions and let $\overline{A} = \{\bigvee A_{\alpha} : \alpha < \mathfrak{c}\}$. Then \overline{A} is a maximal antichain in S. B_A is a disjoint family and as $A'_{\alpha} \neq \{p_0\}$ if and only if $y_{\alpha} \notin \bigcup B_A$, $[\bigvee A'_{\alpha}] = \{y_{\alpha}\} \cup \bigcup B_{A'_{\alpha}}$ whenever $A'_{\alpha} \neq \{p_0\}$. Therefore $B_{\overline{A}}$ is a partition of ω_2 and condition (a) is satisfied. We prove conditions (b) and (c). Let $q \in \mathbb{S}$ be arbitrary. (b) If the set $\{p \in A : [p] \cap [q] \neq \emptyset\}$ has size \mathfrak{c} , then, for every α such that $q_{\alpha} = q$, the set $[q_{\alpha}] \setminus \bigcup B_{A_{\alpha}'}$ has size \mathfrak{c} and hence $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$. Therefore the set $\{x_{\alpha} : q_{\alpha} = q\}$ has size \mathfrak{c} and is a subset of $[q] \setminus \bigcup B_A$.

(c) There is $\beta < \mathfrak{c}$ such that $q = q_{\beta}$. Let us assume that the set $B = \{p \in A : q \land p \neq 0\}$ has size $< \mathfrak{c}$. Let $\gamma > \beta$ be such that $B \subseteq A''_{\gamma}$. We prove that the set $\{p \in A : [q] \cap [p] \neq \emptyset\}$ is a subset of A''_{γ} and hence it has size $< \mathfrak{c}$.

For every $\alpha \geq \gamma$, if $p_{\alpha} \notin A_{\gamma}''$, then $p_{\alpha} \neq p_0$ and $q_{\beta} \wedge q_{\alpha} = 0$. Therefore $p_{\alpha} \leq q_{\alpha}$ is such that $[q_{\beta}] \cap [p_{\alpha}] = \emptyset$.

For every $\alpha \geq \gamma$, if $A'_{\alpha} \setminus A''_{\gamma} \neq \emptyset$, then $A'_{\alpha} \neq \{p_0\}$ and $A'_{\alpha} = \{r_{\alpha,n} : n \in \omega\}$ where $r_{\alpha,n} \leq r'_{\alpha,n}$ and $p \wedge r'_{\alpha,n} = 0$ for all $p \in A''_{\alpha} \supseteq A''_{\gamma}$, $n \in \omega$. It follows that $q_{\beta} \wedge r'_{\alpha,n} = 0$ and hence $r_{\alpha,n} \leq r'_{\alpha,n}$ is such that $[r_{\alpha,n}]$ is disjoint from $[q_{\beta}]$. So, if $A'_{\alpha} \neq \{p_0\}$, then $[q_{\beta}] \cap [p] = \emptyset$ for all $p \in A'_{\alpha}$.

Let us consider the following families:

- $\mathcal{A}_1 = \{A : A \text{ is a maximal antichain in } \mathbb{S} \text{ and } B_A \text{ is a disjoint family}\},\$
- $\mathcal{A}_2 = \{ B : B \text{ is a partition of } ^{\omega}2 \text{ into closed sets} \},\$
- $\mathcal{A}_3 = \{A : A \text{ is a maximal antichain in } \mathbb{S}, B_A \text{ is a disjoint family, and the set } ^{\omega}2 \setminus \bigcup B_A \text{ has size } \mathfrak{c}\},$
- $\mathcal{A}_4 = \{A : A \text{ is a maximal antichain in } \mathbb{S}, B_A \text{ is a disjoint family, and the set } ^{\omega}2 \setminus \bigcup B_A \text{ is uncountable} \}.$

By Theorem 2.4 all these families are nonempty and by Theorem 2.3 the families A_3 and A_4 do not contain countable antichains. Let us define the cardinals:

$$\begin{aligned} \mathfrak{a}_{i} &= \min\{|A| : X \in \mathcal{A}_{i} \text{ and } |A| \geq \omega_{1}\}, \\ \tilde{\mathfrak{a}}_{i} &= \sup\{|A|^{+} : A \in \mathcal{A}_{i} \text{ and } |A| < \mathfrak{c}\} \cup \{\omega_{1}\}, \\ i &= 1, 2, 3, 4. \end{aligned}$$

 $\operatorname{cov}_1 = \min\{|B| : B \text{ is a family of perfect sets such that the set } {}^{\omega}2 \setminus \bigcup B$ is uncountable and does not contain a perfect set},

 $\operatorname{cov}_2 = \min\{|B| : B \text{ is a family of perfect sets such that the set } {}^{\omega}2 \setminus \bigcup B$ has size \mathfrak{c} and does not contain a perfect set $\}.$

Theorem 2.5. (1) $\mathfrak{d} = \operatorname{cov}_1 \leq \mathfrak{a}(\omega_1, \mathbb{S}) \leq \mathfrak{a}_1 = \mathfrak{a}_4 \leq \min\{\mathfrak{a}_2, \mathfrak{a}_3\}; \ \tilde{\mathfrak{a}}_1 = \tilde{\mathfrak{a}}_4.$

- (2) $\operatorname{cov}_1 \leq \operatorname{cov}_2 \leq \mathfrak{a}_3$.
- (3) For every i, $\tilde{\mathfrak{a}}_i \leq \mathfrak{a}_i$ if and only if $\tilde{\mathfrak{a}}_i = \omega_1$ if and only if $\mathfrak{a}_i = \mathfrak{c}$.
- (4) For every i, $\tilde{\mathfrak{a}}_1 \leq \mathfrak{a}_i$ if and only if $\mathfrak{a}_i = \mathfrak{c}$.
- (5) If $\mathfrak{a}_1 = \mathfrak{c}$, then, for all i, $\mathfrak{a}_i = \mathfrak{c}$ and $\tilde{\mathfrak{a}}_i = \omega_1$.
- (6) If $\mathfrak{a}_2 = \mathfrak{c}$, then $\mathfrak{a}_1 = \mathfrak{a}_3$ and $\tilde{\mathfrak{a}}_1 = \tilde{\mathfrak{a}}_3$.
- (7) If $\mathfrak{a}_3 = \mathfrak{c}$, then $\mathfrak{a}_1 = \mathfrak{c}$ if and only if $\mathfrak{a}_2 = \mathfrak{c}$.
- (8) $\tilde{\mathfrak{a}}_1 = \max\{\tilde{\mathfrak{a}}_2, \tilde{\mathfrak{a}}_3\}.$

PROOF: (1) The inequality $\mathfrak{d} \leq \operatorname{cov}_1$ is Theorem 2.3. To prove $\operatorname{cov}_1 \leq \mathfrak{d}$, without loss of generality let us assume that $\mathfrak{c} > \mathfrak{d}$. Let $X = \{x_\alpha, y_\alpha : \alpha < \omega_1\} \subseteq {}^{\omega}2$ be a Hausdorff gap (see [3]), i.e., $x_\alpha \leq^* x_\beta \leq^* y_\beta \leq^* y_\alpha$ for $\alpha \leq \beta < \omega_1$, and for every $x \in {}^{\omega}2$ there is $\alpha < \omega_1$ such that $x_\alpha \not\leq^* x$ or $x \not\leq^* y_\alpha$. Let $K_\alpha = \{x \in {}^{\omega}2 : x_\alpha \not\leq^* x \text{ or } x \not\leq^* y_\alpha\}$ for $\alpha < \omega_1$. Then $K_\alpha \subseteq K_\beta$ for $\alpha \leq \beta$, $K_\alpha \cap X$ is countable, and consequently, the sets $K_\alpha \setminus X$, $\alpha < \omega_1$, are G_δ sets covering ${}^{\omega}2 \setminus X$. The Baire space ${}^{\omega}\omega$ is a union of \mathfrak{d} many compact sets and as every Polish space is a continuous image of ${}^{\omega}\omega$, every Polish space is a union of $\leq \mathfrak{d}$ compact sets. It follows that every set $K_\alpha \setminus X$ a union of $\leq \mathfrak{d}$ compact sets and hence ${}^{\omega}2 \setminus X$ is a union of $\leq \mathfrak{d}$ compact sets. Considering the perfect kernels of these compacts (obtained by removing countable sets) we obtain a family of $\leq \mathfrak{d}$ perfect subsets of ${}^{\omega}2$ whose union has uncountable complement of size $< \mathfrak{c}$ and hence $\operatorname{cov}_1 \leq \mathfrak{d}$.

Let us assume that $\mathfrak{a}(\omega_1, \mathbb{S}) < \operatorname{cov}_1$ and we prove a contradiction. Let $A \subseteq \mathbb{S}$ be a maximal antichain of size $\mathfrak{a}(\omega_1, \mathbb{S})$. The set $X = \bigcup \{[p] \cap [q] : p, q \in A, p \neq q\}$ has size $< \mathfrak{c}$. For every $p \in A$ let $x_p \in [p] \setminus X$ be arbitrary. The family $A' = \{\tau(p, x_p, n) : p \in A \text{ and } n \in \omega\}$ is a maximal antichain in \mathbb{S} because if $[p] \cap [q]$ is uncountable for some $p \in A$, then $[\tau(p, x_p, n)] \cap [q]$ is uncountable for some n. The set $Y = {}^{\omega}2 \setminus \bigcup B_{A'}$ is uncountable as it contains the set $\{x_p : p \in A\}$ and as $\mathfrak{a}(\omega_1, \mathbb{S}) < \operatorname{cov}_1$, there is a perfect set $[q] \subseteq Y$. But $[p] \cap [q] \subseteq \{x_p\}$ for all $p \in A$ which contradicts the assumption that A is maximal. Therefore $\operatorname{cov}_1 \leq \mathfrak{a}(\omega_1, \mathbb{S})$.

The inequality $\mathfrak{a}_4 \leq \mathfrak{a}_1$ can be easily proved by the same argument. Therefore $\mathfrak{a}_1 = \mathfrak{a}_4$ and by the same proof we obtain $\tilde{\mathfrak{a}}_1 = \tilde{\mathfrak{a}}_4$. The other inequalities are trivial.

(2) is an easy consequence of definitions.

(3-4) The implications from the right to the left are obvious. Let us assume that $\mathfrak{a}_i < \mathfrak{c}$ for some *i*. Then $\mathfrak{a}_i < \mathfrak{a}_i^+ \leq \tilde{\mathfrak{a}}_i$ and $\tilde{\mathfrak{a}}_i \leq \tilde{\mathfrak{a}}_1$.

(5) By (1), for all i, $\mathfrak{a}_i = \mathfrak{c}$ and by (3), $\tilde{\mathfrak{a}}_i = \omega_1$.

(6) If there is a maximal antichain $A \subseteq \mathbb{S}$ of size $< \mathfrak{c}$ such that the family B_A is disjoint and the set $X = {}^{\omega}2 \setminus \bigcup B_A$ has size $< \mathfrak{c}$, then the partition $B = B_A \cup \{\{x\} : x \in X\}$ has size $< \mathfrak{c}$.

(7) Let $\mathfrak{a}_3 = \mathfrak{c}$. If $\mathfrak{a}_2 = \mathfrak{c}$, then, by (6), $\mathfrak{a}_1 = \mathfrak{a}_3 = \mathfrak{c}$.

(8) $\tilde{\mathfrak{a}}_1 \geq \tilde{\mathfrak{a}}_2$ and $\tilde{\mathfrak{a}}_1 \geq \tilde{\mathfrak{a}}_3$. Let us assume that $\tilde{\mathfrak{a}}_3 < \tilde{\mathfrak{a}}_1$. For any κ with $\tilde{\mathfrak{a}}_3 \leq \kappa < \tilde{\mathfrak{a}}_1$ there is an antichain $A \in \mathcal{A}_1 \setminus \mathcal{A}_3$ of size $< \mathfrak{c}$ and $\geq \kappa$. Then the partition $B_A \cup \{\{x\} : x \in {}^{\omega}2 \setminus \bigcup B_A\}$ has size $< \mathfrak{c}$ and $\geq \kappa$. Therefore $\tilde{\mathfrak{a}}_2 > \kappa$ and so $\tilde{\mathfrak{a}}_2 = \tilde{\mathfrak{a}}_1$.

Clearly, $\mathfrak{a}(\omega, \mathbb{S}) = \omega$. There are known several constructions of small uncountable antichains in S. J. Stern and independently K. Kunen (for the proof see [8]) under CH constructed a partition of ω_2 into ω_1 compact sets. L. Newelski [9] pointed out that under MA the same construction produces a partition into \mathfrak{c} compact sets which is preserved by forcing with measure algebras and he proved that after adding ω_1 dominating reals, the Baire space ω_ω (and hence, by Lemma 2.2, also the Cantor space ω_2) can be partitioned into ω_1 disjoint compact perfect sets. A. Rosłanowski and S. Shelah [10], by a finite support iteration of c.c.c. forcing notions of length ω_1 , constructed a maximal antichain A such that the family B_A is disjoint and every tree $p \in A$ has on each level at most one branching node. Moreover, the set $\bigcup B_A$ does not contain any ground model reals and therefore $\mathfrak{a}_3 = \omega_1$ holds in the extension.

We say that a set $a \subseteq {}^{<\omega}2$ is saturated if for every $s, t \in {}^{<\omega}2$ whenever $s \subseteq t$ and $t \in a$, then $s \in a$. Easily, it can be observed that \mathfrak{a}_2 is the minimal size of a family A, maximal with respect to the inclusion, such that A is an uncountable almost disjoint family of infinite saturated sets. Notice that such a family Acannot be a maximal almost disjoint family of infinite subsets of ${}^{<\omega}2$. To see this, let $a \in A$ be such that the set of all infinite branches in a is nowhere dense in ${}^{\omega}2$ and let $x \in a$ be arbitrary. For every n choose $s_n \in {}^{<\omega}2$ such that $x \restriction n \subseteq s_n$ and $s_n \notin a$. Then the set $\{s_n : n \in \omega\}$ has a finite intersection with every $b \in A$. The similarity of this characterization of \mathfrak{a}_2 with maximal almost disjoint families suggests the question whether there is some relation between \mathfrak{a}_2 and \mathfrak{a} (the minimal size of a maximal almost disjoint family of subsets of ω).

3. Marczewski's ideal and the collapse by Sacks forcing

A subset X of ${}^{\omega}2$ is an s^0 -set if for every $p \in \mathbb{S}$ there is $q \leq p$ such that $[q] \cap X = \emptyset$. This notion is due to E. Marczewski [7]. It is known that $\omega_1 \leq \operatorname{add}(s^0) \leq \operatorname{cov}(s^0) \leq \operatorname{cf}(\mathfrak{c}) \leq \operatorname{non}(s^0) = \mathfrak{c} < \operatorname{cf}(\operatorname{cof}(s^0))$ (see [4]) and $\operatorname{add}(s^0) \leq \mathfrak{b}$ (in fact $\operatorname{sh}(\mathbb{S}) \leq \mathfrak{b}$ see [11]; this is not true for $\operatorname{cov}(s^0)$ because in the iterated Sacks forcing model $\operatorname{cov}(s^0) = \omega_2$ see [4] but $\mathfrak{b} = \operatorname{cof}(\mathcal{N}) = \omega_1$). Notice that $\operatorname{add}(I) \leq \operatorname{cf}(\operatorname{non}(I))$ for each ideal I. If $y \in {}^{\omega}2$ is a new real, then the perfect set $A_y = \{x \in {}^{\omega}2 : (\forall n) x(2n) = y(n)\}$ does not contain old reals. This explains why in iterations of length ω_1 the set of old reals is an s^0 -set and $\operatorname{cov}(s^0) = \omega_1$. To see that there are s^0 -sets of size \mathfrak{c} (see also [4]), take any maximal antichain $\{p_{\alpha} : \alpha < \mathfrak{c}\}$ of size \mathfrak{c} in \mathbb{S} so that the system of perfect sets $B_A = \{[p_{\alpha}] : \alpha < \mathfrak{c}\}$ is disjoint and clearly, every selector of this system is an s^0 -set. By Theorem 2.4(2) every s^0 -set has this form. If B_A is not disjoint, then its selectors need not be s^0 -sets (observe that the system $\{A_y : y \in {}^{\omega}2\}$ has a perfect selector).

The next theorem refines Theorem 1.1 in [4].

Theorem 3.1. (1) $\operatorname{sh}_{\mathfrak{a}_3}(\mathbb{S}) \leq \operatorname{add}(s^0) \leq \operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S}) \leq \operatorname{sh}(\mathbb{S}) \leq \min\{\operatorname{cf} \mathfrak{c}, \mathfrak{b}\}.$

- (2) $\operatorname{sh}_{\omega_1}(\mathbb{S}) = \operatorname{sh}_{\mathfrak{a}_1}(\mathbb{S}) = \min\{\operatorname{sh}_{\mathfrak{a}_2}(\mathbb{S}), \operatorname{add}(s^0)\} \le \operatorname{sh}_{\mathfrak{a}_3}(\mathbb{S}).$
- (3) $\operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S}) \leq \max\{\operatorname{sh}_{\tilde{\mathfrak{a}}_3}(\mathbb{S}), \operatorname{add}(s^0)\} = \operatorname{sh}_{\tilde{\mathfrak{a}}_1}(\mathbb{S}) = \operatorname{sh}(\mathbb{S}).$
- (4) $\operatorname{sh}_{\omega_1}(\mathbb{S}) \leq \operatorname{sh}_{\operatorname{cf}}(\mathbb{S}) \leq \operatorname{cf}_{\pi}(\mathbb{S}) \leq \operatorname{sh}(\mathbb{S}).$
- (5) $\operatorname{sh}_{\operatorname{cf} \mathfrak{c}}(\mathbb{S}) \leq \operatorname{cf} \operatorname{sh}(\mathbb{S})$, and if $\operatorname{sh}(\mathbb{S})$ is singular, then $\operatorname{sh}_{\kappa}(\mathbb{S}) < \operatorname{sh}(\mathbb{S})$ for $\kappa < \mathfrak{c}$, $\tilde{\mathfrak{a}}_1 = \tilde{\mathfrak{a}}_3 = \mathfrak{c}$, and \mathfrak{c} is singular.
- (6) If $\max{\{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3\}} = \mathfrak{c}$, then $\operatorname{add}(s^0) = \operatorname{sh}_{\mathfrak{a}_3}(\mathbb{S}) = \operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S})$.
- (7) If $\mathfrak{a}_1 = \mathfrak{c}$, then, for every κ with $\omega_1 \leq \kappa \leq \mathfrak{c}$, $\operatorname{add}(s^0) = \operatorname{sh}_{\kappa}(\mathbb{S}) = \operatorname{cf}_{\pi}(\mathbb{S})$.

- (8) If $\mathfrak{a}_2 = \mathfrak{c}$, then $\operatorname{add}(s^0) = \operatorname{sh}_{\omega_1}(\mathbb{S})$.
- (9) If $\mathfrak{a}_3 = \mathfrak{c}$, then $\operatorname{add}(s^0) = \operatorname{sh}(\mathbb{S})$.
- (10) If $\mathfrak{a}(\mathrm{cf}\,\mathfrak{c},\mathbb{S}) = \mathfrak{c}$, then $\mathrm{sh}(\mathbb{S}) = \mathrm{cf}_{\pi}(\mathbb{S}) = \mathrm{sh}_{\mathrm{cf}\,\mathfrak{c}}(\mathbb{S})$.

In particular, if $\mathfrak{d} = \mathfrak{c}$, then the assumptions of (6)–(10) are satisfied, and if \mathfrak{c} is regular, then the assumption of (10) is satisfied.

Here is the picture of the inequalities between the cardinals:

PROOF: (1) $\operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S}) \leq \operatorname{sh}(\mathbb{S})$ because $\tilde{\mathfrak{a}}_2 \leq \mathfrak{c}$, $\operatorname{sh}(\mathbb{S}) \leq \operatorname{cf} \mathfrak{c}$ by Theorem 1.1(8). We shall sketch a proof of the inequality $\operatorname{sh}(\mathbb{S}) \leq \mathfrak{b}$ which a little simplifies the proof presented in [11]. Let us recall some notation.

For $p \in \mathbb{S}$ let $f_p \in {}^{\omega}\omega$ be such that for every n and every $s \in {}^{f_p(n)}2$ there is a splitting node $t \in {}^{<f_p(n+1)}2$ above s in p. For $p \in \mathbb{S}$ and $a \subseteq \omega$, p[a] is a subtree of p defined by induction: (i) $\emptyset \in p[a]$; (ii) Let $s \in p[a]$ and dom s = n. If $n \in a$, then, for $i = 0, 1, s \frown i \in p[a]$ if and only if $s \frown i \in p$. If $n \notin a$, then, for $i = 0, 1, s \frown i \in p[a]$ if and only if $s \frown i \in p$. If $n \notin a$, then, for i = 0, 1, $s \frown i \in p[a]$ if and only if $s \frown i \in p$ or i = 1 and $s \frown 0 \notin p$.

If $p, q \in \mathbb{S}$ and $a, b \subseteq \omega$, then $p[a] \cap q[b] = (p \cap q)[a \cap b]$, and if $[f_p(n), f_p(n+1)) \subseteq a$ for infinitely many n, then $p[a] \in \mathbb{S}$.

We shall construct a base matrix on \mathbb{S} of size \mathfrak{b} using the fact that $\mathfrak{h} \leq \mathfrak{b}$ where \mathfrak{h} is the minimal size of a base matrix on $\mathcal{P}(\omega)/fin$ (see [2]). Let $\mathcal{F} \subseteq {}^{\omega}\omega$ be an unbounded family of increasing functions and let $\{B_{\alpha} : \alpha < \mathfrak{h}\}$ be a base matrix on $\mathcal{P}(\omega)/fin$. If $p \in \mathbb{S}$, then there is an $f \in \mathcal{F}$ such that the set $x_p = \{n : |[f(n), f(n+1)) \cap \operatorname{rng} f_p| \geq 2\}$ is infinite and so there is $\alpha < \mathfrak{h}$ and $a \in B_{\alpha}$ such that $a \subseteq^* x_p$. Now for $f \in \mathcal{F}$ and $a \in \bigcup_{\alpha < \mathfrak{h}} B_{\alpha}$ let $\mathbb{S}_{f,a}$ be the set of all $p \in \mathbb{S}$ such that $|[f(n), f(n+1)) \cap \operatorname{rng} f_p| \geq 2$ for all but finitely many $n \in a$. As $\mathbb{S}_{f,a}$ has size $\leq c$, we can assign, in a one-to-one way, for each $p \in \mathbb{S}_{f,a}$ an infinite set $b_{f,a,p} \subseteq a$ so that the system $\{g_{f,a,p} : p \in \mathbb{S}_{f,a}\}$ is almost disjoint. Let $c_{f,a,p} = \bigcup \{[f(n), f(n+1)) : n \in b_{f,a,p}\}$. Then $\{c_{f,a,p} : a \in B_{\alpha} \text{ and } p \in \mathbb{S}_{f,a}\}$ is an almost disjoint family and hence the system $A_{f,\alpha} = \{p[c_{f,a,p}] : a \in B_{\alpha} \text{ and}$ $p \in \mathbb{S}_{f,a}\}$ is an antichain in \mathbb{S} refining $\bigcup_{a \in B_{\alpha}} \mathbb{S}_{f,a}$. Therefore $\{A_{f,\alpha} : f \in \mathcal{F} \text{ and}$ $\alpha < \mathfrak{h}\}$ is a base matrix on \mathbb{S} .

 $\operatorname{sh}_{\mathfrak{a}_3}(\mathbb{S}) \leq \operatorname{add}(s^0)$: Let $\kappa < \operatorname{sh}_{\mathfrak{a}_3}(\mathbb{S})$ and let X_α , $\alpha < \kappa$, be s^0 -sets. We prove that the set $X = \bigcup_{\alpha < \kappa} X_\alpha$ is an s^0 -set and hence $\kappa < \operatorname{add}(s^0)$. Let A_α , $\alpha < \kappa$,

be maximal antichains in S such that $X_{\alpha} \cap B_{A_{\alpha}} = \emptyset$. By Theorem 2.4(1) we can assume that for every $\alpha < \kappa$, $B_{A_{\alpha}}$ is a disjoint family. Let $q \in S$ be arbitrary. By $(\kappa, \mathfrak{c}, \mathfrak{a}_3)$ -distributivity of r.o.(S) there is $q' \leq q$ such that for every α the set $A'_{\alpha} = \{p \in A_{\alpha} : q' \land p \neq 0\}$ has size $< \mathfrak{a}_3$. By the definition of \mathfrak{a}_3 it follows that every set $Y_{\alpha} = [q'] \setminus \bigcup B_{A'_{\alpha}}$ has size $< \mathfrak{c}$ and as $\kappa < \mathfrak{cf} \mathfrak{c}$, the set $X \cap [q'] \subseteq \bigcup_{\alpha < \kappa} Y_{\alpha}$ has size $< \mathfrak{c}$. Therefore there is $r \leq q'$ such that $X \cap [r] = \emptyset$.

 $\operatorname{add}(s^0) \leq \operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S})$: Let $\kappa < \operatorname{add}(s^0)$ and let $\{A_\alpha : \alpha < \kappa\}$ be a system of maximal antichains in \mathbb{S} . We prove that for every $q \in \mathbb{S}$ there is $r \leq q$ such that for every $\alpha < \kappa$ the set $\{p \in A_\alpha : r \land p \neq 0\}$ has size $< \mathfrak{a}_2$ and hence $\kappa < \operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S})$. By refining the antichains, if necessary, we can assume without loss of generality that they all satisfy the conditions in Theorem 2.4(1). By the additivity assumption, the set $X = \bigcup_{\alpha < \kappa} ({}^{\omega}2 \setminus \bigcup B_{A_\alpha})$ is an s^0 -set. Let $q \in S$. There is $r \leq q$ such that $X \cap [r] = \emptyset$ and hence for every α , $[r] \subseteq \bigcup B_{A_\alpha}$. By Theorem 2.4(1) then, for every α , $C_\alpha = \{p \in A_\alpha : [r] \cap [p] \neq \emptyset\}$ has size $< \mathfrak{c}$ and by the definition of $\tilde{\mathfrak{a}}_2$ we have $|C_\alpha| < \tilde{\mathfrak{a}}_2$.

(2) We prove only $\min\{\operatorname{sh}_{\mathfrak{a}_2}(\mathbb{S}), \operatorname{add}(s^0)\} \leq \operatorname{sh}_{\omega_1}(\mathbb{S})$; all the remaining inequalities of this part of the theorem hold due to the monotonicity of the invariants $\operatorname{sh}_{\kappa}(\mathbb{S})$ and part (1).

Let $\kappa < \min\{\operatorname{sh}_{\mathfrak{a}_2}(\mathbb{S}), \operatorname{add}(s^0)\}\)$ and let $A_\alpha, \alpha < \kappa$, be maximal antichains in S. We show that for every $q \in \mathbb{S}$ there is $r \leq q$ such that for every $\alpha < \kappa$ the set $\{p \in A_\alpha : r \land p \neq 0\}\)$ is countable. Without loss of generality we can assume that all the antichains A_α satisfy conditions in Theorem 2.4(2). Given $q \in \mathbb{S}$ by the κ -additivity of s^0 and $(\kappa, \mathfrak{c}, \mathfrak{a}_2)$ -distributivity of $r. o.(\mathbb{S})\)$ there is $q' \leq q$ such that for each $\alpha < \kappa$, $[q'] \subseteq \bigcup B_{A_\alpha}$ and the set $\{p \in A_\alpha : q' \land p \neq 0\}\)$ has size $<\mathfrak{a}_2$. By condition (c) in Theorem 2.4(2), as $\kappa < \operatorname{cf} \mathfrak{c}$, the set $X = \bigcup_{\alpha < \kappa} \bigcup\{[q'] \cap [p] : p \in A_\alpha\)$ and $q' \land p = 0\}\)$ has size $<\mathfrak{c}$. Let $r \leq q'$ be such that $X \cap [r] = \emptyset$. Then for each $\alpha < \kappa$ the set $\{p \in A_\alpha : [r] \cap [p] \neq \emptyset\}\)$ has size $<\mathfrak{a}_2$ and therefore it is countable.

(3) It is clear that $\operatorname{sh}_{\tilde{\mathfrak{a}}_2}(\mathbb{S}) \leq \operatorname{sh}(\mathbb{S}) = \operatorname{sh}_{\tilde{\mathfrak{a}}_1}(\mathbb{S})$. Let $\kappa_1 = \operatorname{sh}_{\tilde{\mathfrak{a}}_3}(\mathbb{S})$ and $\kappa_2 = \operatorname{add}(s^0)$. We prove that $\max\{\kappa_1, \kappa_2\} = \operatorname{sh}(\mathbb{S})$. We know that the inequality \leq holds true. Let us assume that $\kappa_1, \kappa_2 < \operatorname{sh}(\mathbb{S})$ and we prove a contradiction. Let $\{A'_{\alpha} : \alpha < \kappa_1\}$ be a system of maximal antichains in \mathbb{S} witnessing the $(\kappa, \mathfrak{c}, \tilde{\mathfrak{a}}_3)$ -nowhere distributivity of r. o.(\mathbb{S}) and let $\{X_\beta : \beta < \kappa_2\}$ be a system of s^0 -sets such that for every $q \in \mathbb{S}$, $[q] \cap \bigcup_{\beta < \kappa} X_\beta$ has size \mathfrak{c} . For each pair $(\alpha, \beta) \in \kappa_1 \times \kappa_2$ let $A_{\alpha,\beta}$ be a maximal antichain in \mathbb{S} such that $A_{\alpha,\beta}$ refines A'_{α} and $X_{\beta} \cap \bigcup B_{A_{\alpha,\beta}} = \emptyset$. We can find $A_{\alpha,\beta}$'s so that the conditions in Theorem 2.4(2) are satisfied. We claim that the system $\{A_{\alpha,\beta} : (\alpha,\beta) \in \kappa_1 \times \kappa_2\}$ is a witness for the $(\kappa_1 \cdot \kappa_2, \mathfrak{c}, \mathfrak{c})$ -nowhere distributivity of r. o.(\mathbb{S}) which contradicts the inequality $\kappa_1 \cdot \kappa_2 < \operatorname{sh}(\mathbb{S})$. To see this let $q \in \mathbb{S}$ be arbitrary. As $\kappa_1 \cdot \kappa_2 < \operatorname{sh}(\mathbb{S})$ there is $r \leq q$ such that for every $(\alpha, \beta) \in \kappa_1 \times \kappa_2$ the set $A'_{\alpha,\beta} = \{p \in A_{\alpha,\beta} : r \wedge p = 0\}$ has size $< \mathfrak{c}$. As $[r] \cap \bigcup_{\beta < \kappa_2} X_\beta$ has size \mathfrak{c} and $\kappa_2 < \mathfrak{cf} \mathfrak{c}$ there is $\beta < \kappa_2$ such that $[r] \cap X_\beta$ has size \mathfrak{c} . As for every α the antichain $A_{\alpha,\beta}$ refines the antichain A'_{α} , there is $\alpha < \kappa_1$

such that $|A'_{\alpha,\beta}| \geq \tilde{\mathfrak{a}}_3$. Now $[r] \cap X_\beta$ is disjoint from $\bigcup B_{A'_{\alpha,\beta}}$ and $|A'_{\alpha,\beta}| < \mathfrak{c}$. It follows that $\tilde{\mathfrak{a}}_3 \geq |A'_{\alpha,\beta}|^+$ while $|A'_{\alpha,\beta}| \geq \tilde{\mathfrak{a}}_3$. A contradiction.

(4) The inequalities hold true by Theorem 1.2(6) because $\operatorname{sh}_{\omega_1}(\mathbb{S}) \leq \operatorname{sh}_{\operatorname{cf}} \mathfrak{c}(\mathbb{S}) \leq \operatorname{sh}(\mathbb{S}) \leq \operatorname{cf} \mathfrak{c}$.

(5) The inequalities hold true by Theorem 1.2(8) by which $\mathrm{sh}_{\kappa}(\mathbb{S})$ is regular for κ regular. Hence if $\mathrm{sh}(\mathbb{S})$ is singular, then \mathfrak{c} is singular, and as $\mathrm{add}(s^0)$ is regular, by (3), $\mathrm{sh}_{\tilde{\mathfrak{a}}_3}(\mathbb{S}) = \mathrm{sh}_{\tilde{\mathfrak{a}}_1}(\mathbb{S}) = \mathrm{sh}(\mathbb{S})$. Therefore, $\tilde{\mathfrak{a}}_1 = \tilde{\mathfrak{a}}_3 = \mathfrak{c}$.

(6)-(9) are easy consequences of the above proved inequalities using the fact that $\mathfrak{a}_i = \mathfrak{c}$ if and only if $\tilde{\mathfrak{a}}_i = \omega_1$.

(10) follows by (4) since under the assumption $\operatorname{sh}(\mathbb{S}) = \operatorname{sh}_{\operatorname{cf}}(\mathbb{S})$.

By Theorem 3.1(10), if the continuum is regular, then it is collapsed to a regular cardinal of the extension. MA(countable) does not imply the continuum is regular. Anyway, by Theorem 3.1(7), under MA(countable) (even under $\mathfrak{d} = \mathfrak{c}$) Sacks forcing collapses the continuum to a regular cardinal in $V^{\text{r.o.}(\mathbb{S})}$. We think that it is an open question whether Sacks forcing can collapse the continuum to a singular cardinal.

Under some hypotheses (see Theorem 3.1), there is $\kappa \leq \mathfrak{c}$ such that $\operatorname{add}(s^0) = \operatorname{sh}_{\kappa}(\mathbb{S})$. We do not know whether the same is true in ZFC.

References

- Balcar B., Vojtáš P., Refining systems on Boolean algebras, in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp. 45–58; MR 58 #16445.
- [2] Balcar B., Simon P., Disjoint refinement, in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp. 333–388.
- [3] Hausdorff F., Summen von ℵ₁ Mengen, Fund. Math. **26** (1936), 241–255; Zbl. 014.05402.
- [4] Judah H., Miller A.W., Shelah S., Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic 31 (1992), no. 3, 145–161; MR 93e:03074.
- [5] Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057.
- [6] Koppelberg S., Handbook of Boolean Algebras, Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003.
- [7] Marczewski (Szpilrajn) E., Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34; Zbl. 0010.19901.
- [8] Miller A.W., Covering 2^ω with ω₁ disjoint closed sets, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp. 415–421; MR 82k:03083.
- [9] Newelski L., On partitions of the real line into compact sets, J. Symbolic Logic 52 (1997), no. 2, 353–359; MR 88k:03107.
- [10] Rosłanowski A., Shelah S., More forcing notions imply diamond, Arch. Math. Logic 35 (1996), no. 5–6, 299–313; MR 97j:03098.

- [11] Simon P., Sacks forcing collapses c to b, Comment. Math. Univ. Carolinae 34 (1993), no. 4, 707–710; MR 94m:03084.
- [12] Vaughan J.E., Small uncountable cardinals and topology, in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp. 195–218.

Mathematical Institute of Slovak Academy of Sciences, Jesenná 5, 04154 Košice, Slovakia

E-mail: repicky@kosice.upjs.sk

(Received September 14, 2002, revised December 3, 2002)