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Lyapunov measures on effect algebras
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Abstract. We prove a Lyapunov type theorem for modular measures on lattice ordered
effect algebras.
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1. Introduction

The celebrated Lyapunov’s theorem says that the range of a non-atomic finite
dimensional measure p on a o-algebra is convex. In general, this is not true if p is
infinite dimensional. On the other hand, Knowles showed that when p is properly
non-injective with values in a locally convex linear space, then its range is still
convex. In [11], De Lucia and Wright, after introducing a notion of a convex set,
generalize Knowles’ result to the case when p is group-valued.

In noncommutative measure theory it is known (see [5, Example 3.7]) that
there are examples of nonatomic R™-valued measures on effect algebras which
do not have a convex range. Nevertheless, in [5] it is proved (see 3.12) that a
Lyapunov type theorem holds for R™-valued modular measures on lattice ordered
effect algebras. Moreover, in [2], the result of [11] has been extended to modular
functions on complemented lattices. Then a natural question arises:

Is it possible to extend the result of [11] to modular measures on effect algebras?

In this paper we give an affirmative answer to this question, introducing the
notion of a pseudo non-injective measure (see Definition 4.1) in an effect algebra
which is equivalent to the notion of properly non-injective measures in the Boolean
case.

We recall that effect algebras have been introduced by D.J. Foulis and
M.K. Bennett in 1994 (see [7]) for modelling unsharp measurement in a quan-
tum mechanical system. They are a generalization of many structures which arise
in quantum physics (see [6]) and in Mathematical Economics (see [14] and [9]), in
particular of orthomodular lattices in noncommutative measure theory (e.g. see
[12]) and MV-algebras in fuzzy measure theory.
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2. Preliminaries

We will fix some notations. First we will give the definition of a D-poset.
Examples of D-posets can be found in [10] and [13].

Definition 2.1. Let (L, <) be a partial ordered set (a poset for short). A partial
binary operation & on L such that b © a is defined iff ¢ < b is called a difference
on (L, <) if the following conditions are satisfied for all a, b, ¢ € L:

(1) ifa<bthenboa<band bo (bSa)=a,
(2) ifa<b<cthencob<cSaand (c6a)O(cSb) =bSa.

Definition 2.2. Let (L, <,8) be a poset with difference and let 0 and 1 be the
least and greatest elements in L, respectively. The structure (L, <, ) is called a
difference poset (D-poset for short), or a difference lattice (D-lattice for short) if
L is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by
Foulis and Bennett in [7]. These two structures, D-posets and effect algebras, are
equivalent as shown in [13, Theorem 1.3.4].

We recall that a D-lattice is complete (o-complete) if every set (countable set)
has a supremum and an infimum.

If a € L, we set at =16 a.
We say that a and b are orthogonal if a < b+ and we write a L b. If a L b,

we set a ®b= (a0 b) . If ay,...,an € L we define inductively a1 @ - ® ay, =
(a1®- - P anp—1)Day if the right-hand side exists. The sum is independent of any
permutation of the elements. We say that {a1, ..., an} is orthogonal if a1 ®- - -®ay,

exists. We say that a family {aq}aca is orthogonal if every finite subfamily is
orthogonal. If {an}qea is orthogonal, we define P, c 4 o = sup{P cF ta :
F C A finite} if the left-hand side exists.

If (G,+) is an abelian group, a function p : L — G is called modular if, for
every a, b € L, pu(aVb)+ p(and) = p(a)+ u(b); w is called a measure if, for every
a,be L, witha Lb, ula®b) = p(a)+ (). It is easy to see that u is a measure
iff for every a, b € L with b < a, u(a © b) = u(a) — p(b).

A measure p is said to be o-additive if, for every orthogonal sequence in L
such that a = @, cyan exists, u(a) = > cnplan). A measure p is said to
be completely additive if for every orthogonal family {an}aeca in L such that
a = @Ppeata exists, the family {u(aa)}aca is summable in G and u(a) =
Yaea iaa).

Recall that by 3.1 of [17] every modular function p : L — G on any lattice gen-
erates a lattice uniformity, U (u), i.e. a uniformity which makes A and V uniformly
continuous.

We say that U(u) is ezhaustive if every monotone sequence {ay} is a Cauchy
sequence. We say that U(u) is o-order (order) continuous if every sequence (net)
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{an} which is order converging to a is converging to a. We say that a modular
measure is exhaustive, o-order (order) continuous iff U(u) is so. By 2.2 of [4],
a measure is o-additive iff it is o-order continuous.

Throughout this article, (G,+) is an abelian topological Hausdorff group which
has not Zo as a subgroup, L is a o-complete D-lattice and u : L — G is a
o-additive modular measure.

3. Semi-convexity

We shall call x € G infinitely divisible if for every n € N there exists y € G
such that 2"y = x. Since Zs is not a subgroup of G it is clear that when 2™y = x,
y is uniquely determined. In what follows we shall denote such a y by %x If
d = 5 is a dyadic rational number of the real interval [0, 1] and = € G is infinitely
divisible, we define dx to be sy, where y = %x By [11] the definition of dz does
not depend on the representation of d. Let D be the set of dyadic rationals in
[0,1]. For every infinite divisible x € G, let g : D — G be defined by gz(d) = dx
for de D. If t € [0,1] and limy_,; gz(d) exists in G, we define tx = limy_,; g, (d).
If M C G, M is said to be convez if for every x, y € M and t € [0,1], tz, (1 —1t)y
exist and tz + (1 —t)y € M.

Definition 3.1. A measure p is said to be semiconvez if, for each b € L, there
exists ¢ € L such that ¢ < b and u(b) = 2u(c).

Lemma 3.2. If p is semiconvex, then every element of 1(L) is infinitely divisible.

PRrROOF: For every a € L and n € N, there exists b < a such that u(a) = 2"u(b).

Lemma 3.3. Suppose that p is semiconvex. Then for every a € L and
d € D, there exists ag < a such that u(aq) = du(a). Moreover, if di < dg, then
ag, < ag,-

PRrROOF: Let a € L.

(i) Claim 1: For every n € N there exists an orthogonal family II, =
{an1,...,an2n} in L such that @?Zl an; = a and, for every i € {1,...,2"}
we have:

(a) 2"u(an,i) = p(a),

(b) an2i—1®an2 = an_1;-

This is trivial for n = 1: Since p is semiconvex, we can choose a1 < a
such that 2u(a1,1) = p(a). Let ar2 := a©ar1. Then a; @ ar2 = a and
2p(a1,2) = 2p(a) — 2p(a1,1) = p(a).

By induction, suppose that Claim 1 holds for n € N. Since p is semiconvex, for
every i € {1,...,2"} we can find a1 9;—1, @p41,2; in L such that a, 19,1 @
Un41,2i = Apg and 2p(ap41,2i-1) = 21(an4+1,2i) = w(an;)-
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Set 41 = {an+1,1,0n+1,2; - - .,an+1,2n+1}. Then II,,4+1 is orthogonal since

n n n+1

a= @22:1 ani = @22:1((1”_,_1,2@-_1 ® ant1,2i) = @22 1 Gn+1, and for every i €
{1,271} we have 2" L u(an 1.1) = 2*(an 5) = p(0).
(ii) Now we obtain a family {by s : n € N} with s € {0,1,...2"} such that:

(1) bpo =0 and by 20 = a,

(2) bn,i—l < bn,ia

(3) 2%u(by,i) = ip(a),

(4) if 57 = 5%, then by = bps.

It is sufficient to set b, o = 0 and, for i € {1,...2"}, by, ; = @jgi an,j-
(iii) If d = o, set ag = bm,r. Then by (ii), ag < a and 2™u(ag) = ru(a), from
which p(aq) = dp(a). Moreover, by (ii), if di < do then ag, < agq,. O

Lemma 3.4. Suppose that p is semiconvex. Then for every a € L and for every
0-neighborhood W in G there exists m € N such that for every p € D with

p < 5, pu(a) € W.

PrOOF: Let a € L and W be a 0-neighborhood in G. Since p is semiconvex, we
can construct a decreasing sequence {ay} in L such that a, < a and 2"u(ay) =
u(a) for every n € N. Let by := a © a1 and for every n > 2, let by, := an—1 © ap.
By 3.3 of [1], {by} is orthogonal and for every n € N, 2"u(b,) = 2"u(an—1) —
2"u(an) = 2p(a) — p(a) = p(a). Suppose that for every m € N there exists ¢
such that p(bm Acm) ¢ W. Since {by, } is orthogonal, {¢;, Abp, } is orthogonal, too.
Moreover, by 8.1.2 of [16], u is exhaustive. By 2.4 of [3], i is exhaustive if and
only if p(an) — 0 for every orthogonal sequence {an} in L. Therefore, we obtain
that limy, u(bm A ¢m) = 0, a contradiction. Hence we can choose m € N such
that pu(bm A b) € W for every b € L. Set p = g, with p < 2 . By 3.3, we can
find ¢ < b, such that pu(c) = 57 p(bm). Then pu(a) = grp(a) = grm p(bm) =
w(e) = plcANbm) € W. O

Lemma 3.5. Suppose that . is semiconvex. Then for every a € L and every t €
[0, 1] there exists a; < a such that tu(a) is defined and tu(a) = p(at). Moreover,
the map t — ay is increasing.

PROOF: We repeat the same argument as in [2]. It follows from 3.3 that there
exists a family of elements of L {a4}qecp such that u(ag) = du(a) for each d € D
and, also, for di < da, aq, < ag, < a. Let t € [0,1] \ D. We define oy, 5
by at = V{ag:d € D and d < t} and Bt = N{ag: d € D and d > t}. By
using the o-order continuity of y we find that u(ar) = limg ~ p(ag) p(Br) =
limg\ ¢ p(aq). Let V be any symmetric 0-neighbourhood in G. It follows from
the construction and from 3.4 that we can find n € N and r € {0,1,...,2"}
such that d = o <t < 55l = d', u(Be) — plag) € V, p(ar) — plag) € V, and
Fopi(a) € V. Then (u(B) — plew)) € plag) — plag) + 2V = Frpu(a) +2V C 3V.
Since the symmetric neighbourhoods form a base for 0-neighbourhoods, and since
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the topology is Hausdorfl, p1(6:) = p(a¢). Hence we can define a¢, for ¢ € [0,1]\ D
to be ay. Then it is clear that u(a;) = tu(a) for each t € [0, 1]. O

Lemma 3.6. Lett € [0,1] and vy : L — G be defined as v¢(a) = tu(a). Then vy
is a modular measure.

PRrROOF: Let a, b € L.

First suppose t = % € D. By 3.3 we can find a¢, by € L with a; < a, by < b,
2"n(ar) = su(a) and 2™p(by) = su(b). Then we have 2"u(ar V by) + 2" u(ar A
by) = 2"u(ar) + 2" u(be) = sp(a) + su(d) = sp(a Ab) + sp(a V b), from which
vi(aVb) +vi(a Ab) = vi(a) + v (b).

Now let ¢t ¢ D and choose an increasing sequence {dp} in D which converges
to t. Then tp(aVb)+tu(aAb) = limy, dpp(aVb)+limy, dyp(aAb) = tu(a) +tu(d),
from which v¢(a V b) + ¢(a A b) = vi(a) + v4(b).

In a similar way we prove that v¢ is a measure. (I

4. Lyapunov measures

In this section we set
I(p) ={a € L: p([0,a]) = {0}}

N(p) ={(a,b) € L x L: p is constant on [a Ab,a V b]}.

and

By 3.1 of [17] and 4.3 of [4] N () is a congruence relation and the quotient L =
L/N(p) is a D-lattice. Moreover, the function /i : L — G defined as ji(d) = p(a)
foracaelis trivially a modular measure.

We say that u is closed if Lis complete with respect to the uniformity U(ji)
generated by /i.

Definition 4.1. We say that p is pseudo non-injective if for every a € L\ I(p)
there exist b, c € L\ I(u), b L ¢, b® ¢ < a and p(b) = p(c).

Lemma 4.2. (1) p is exhaustive.
(2) p is closed iff i is order continuous and (L, <) is complete.
(3) If G is metrizable, then i is closed.
(4) If p is order continuous, then p is completely additive.

PrOOF: (1) By 8.1.2 of [16], every o-order continuous lattice uniformity on a
o-complete lattice is exhaustive.

(2) By (1) and 1.2.6 of [16], the Hausdorff uniformity /(i) generated by fi
on L is exhaustive. Then, by 6.3 of [16], (L,U(j)) is complete iff ¢(fi) is order
continuous and (L, <) is complete. Therefore, if 11 is closed, we have that (L, <)
is complete and [ is order continuous, too.

Conversely, if (I:, <) is complete and p is order continuous, then [ is order
continuous by 7.1.9 of [16], and therefore p is closed.
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(3) Since G is metrizable, U(u) is metrizable and, by (1), it is exhaustive. By
8.1.4 of [16] (see also 3.5 and 3.6 of [17]), we get that (L, <) is complete and x
is order continuous. By 7.1.9 of [16], (L, <) is complete, too. Hence y is closed
by (2).

(4) Let {aa}aca be an orthogonal family in L such that a = sup{@ cr aa :
F C A finite} exists in L. For every finite F' C A, let ap = @, cp da- Then
{ap : F C A, F finite} is an increasing net in L, with a = supp ap. Since p is
order continuous, u(a) = limg p(ap). On the other hand u(ar) = Y- e i(aa).
Thus p(a) = > e t(aa). O

Theorem 4.3. Let L be complete and let yu be completely additive with I(u) =
{0}. Then p is semiconvex if and only if u is pseudo non-injective.

PROOF: =: Let a € L\ I(p).

First, suppose p(a) # 0. Then there exists b < a such that 2u(b) = p(a). Put
c:=aSb. Thend L ¢, b®dc = aand u(b) = p(c), as 2u(c) = 2u(a) —2u(b) = p(a).
Moreover, b, ¢ ¢ I(1), since u(b) = u(c) # 0.

Now let p(a) = 0. As a ¢ I(u), there exists d < a such that u(d) # 0. From
above, there exist b, c € L\ I(u), b L ¢, b® ¢ < d and u(b) = u(c). Obviously,
bec<a.

<: Let a # 0. We can suppose u(a) # 0.

(i) We will show that 3h, 0 < h < a such that u(h) = u(a) and p(k) # 0 for
each 0 <k <h.

We can suppose that there exists b < a, b # 0 and p(b) = 0, since otherwise
(i) is satisfied with h = a.

Recall that in a complete D-lattice, if {b~}cr is an orthogonal family then, for
every 7 € I, the set {y € I : by = b5} is finite (see [DP] p.17). Then by Zorn’s
lemma we can find an orthogonal family {aq}oca with the following properties:

(1) For every a € A, aq # 0 and p(aq) = 0.

(2) For every finite ' C A, P cp o < a.

(3) If {by}yer is an orthogonal family in L with (1) and (2), then for each
yeT theset {a € Atag =05} #Dand {y €T : by =bs} C{a € A:an =b5}.

Since L is complete, e = P, ¢ 4 o is well-defined. By (2) we get e < a. Since
p is completely additive we have p(e) = >, c 4 p(aa) = 0. Put h:=a Se. Then
h < a and p(h) = u(a).

We will show that, if 0 < b < h, u(b) #0.

By way of contradiction, assume b € L, 0 < b < h and p(b) = 0. Since
b<h<et< (Bacr o)t for each finite F C A, we have, by 4.2 of [7] that
every finite subfamily of {an}aeca U {b} is orthogonal. Moreover, if F' C A is
finite, we have b@P(Dacraa) < h®e = (a6e) @ e = a. Then {an}taca U {b}
gives a contradiction with (3).

Let h be as in (i).
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We claim that, if 0 < k < h, then there exist ¢, d € L such that 0 <c<d <k
and 2u(c) = p(d).

If 0 < k < h, u(k) # 0 by (i) and, by pseudo non-injectivity, there exist
b1, ba € L, by L by, by @by < k, by # 0, by # 0 and pu(b1) = u(b2). Then for
c:=by and d := by ® by we have 0 < ¢ < d < k as by and by are not zero and
pu(d) = p(br) + p(b2) = 2u(c).

(ii) Zorn’s lemma ensures the existence of an orthogonal family {dq}aca with
the following properties:

(1) for every o € A, do # 0 and there exists ¢, such that 0 < ¢o < do and
2p(ca) = p(da);

(2) for every finite F' C A, @ cpda < h;

(3) if {¢y : v € T'} is an orthogonal family in L with properties (1) and (2),
then for every 7 € I'the set {a € A:dy =cy} #Dand {y €T : ¢y =
ey} C{a€A:dy =c5}.

It is easy to see that the set {co : @ € A} is orthogonal. Put d = @ ¢ 4 da
and ¢ = P cqca. We get ¢ # 0, since co # 0 for every o € A. By (2) d < h.
Moreover, as pu(d) = Y e a i(da) = 2> e a 1(ca) = 2u(c) and ¢ < d, we obtain
c<d.

(iii) We will show that d = h.

Suppose d < h. Then h &d # 0. From above, there exist c¢i, cg € L with
0<ec1 <ecg<hodand p(cr) =2u(er).

We will check that {dq}aca U {ca} has the same properties as {do}acAa-

Since ¢y < hed < d+ < (Bacr da)J- for every finite ' C A, from 4.2 of
[7] it follows that every finite subfamily of {dy}neca U {c2} is orthogonal and so,
the family is orthogonal. Moreover, if F' C A is finite, then co © (P, cp da) <
(hed) @ d = h. Obviously, cg verifies (1). Then {dy}aca U {ca} contradicts
property (3). Hence d = h.

It follows that u(a) = p(h) = u(d) = 2p(c). Therefore p is semiconvex. O

Theorem 4.4. Let u be closed and pseudo non-injective. Then (L) is convex.

PROOF: It is clear that we can replace L by L/N(u) and u by fi. Then by 4.2 we
can suppose L complete, u completely additive and I(u) = {0}. Hence by 4.3
is semiconvex.

Let b,c€ L and ¢ € [0,1].

First, suppose b A ¢ = 0.

By 3.3 there exist d, e € L such that d < b, e < ¢, pu(d) = tu(b) and p(e) =
(1 —t)u(c). Since bAc =0, we have dAe = 0. It follows that tu(b) + (1 —t)u(c) =
u(d) + ple) = p(dVe) +p(dAe) = p(d Ve).

Now let b, c€ L. Put by :=bS (bAc) and ¢; = ¢S (bAc). By 1.8.5 of [13] we
have by A ¢y = 0. Then, from above, there exist bo, co € L with by < by, co < 1
and tu(by) + (1 = t)u(cr) = pu(b2 V c2).
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Since b = (bAc)®by and ¢ = (bAc)Deq, by 3.6 we obtain tu(b) = tu(by)+tu(bAc)
and (1—t)u(c) = (1 —t)ubAc)+ (1 —t)u(cr). It follows that ¢u(b) + (1 —t)u(c) =
p(b Ac) +tu(br) + (1 = t)u(er) = u(b Ac) + (b2 V c2).

We claim that bAc¢ L by Vea. By 1.8.4 of [13] applied with ¢ = a A b, we obtain
bivee=0bobAce)V(cobAac)=((BVe)o(bAc), hence by Veg <bp Ve <
1o(Ac)= BN

It follows that p(b A c) 4+ u(b2 V c2) = u((b Ac) ® (ba V ¢2)) and, therefore,
() + (1 - p(e) € p(L). 0

Corollary 4.5. Let u be closed. Then p is pseudo non-injective iff for every
a € L, u([0, a]) is convex.

PrOOF: <«: From the assumptions we get that p is semiconvex. Hence, i is
semiconvex, too. Moreover, since p is closed, by 4.2 we have that L/N(u) is
complete and /i is completely additive. Since I(j1) = {0}, by 4.3 we have that
i1 is pseudo non-injective. We see that p is pseudo non-injective, too. Let a €
L\ I(p) and choose b < a such that x(b) # 0. Since i is pseudo non-injective,
there exist ¢, d; é,d #0, ¢ L d, é®d < b and (¢) = i(d). Then there exist
¢, de L\I(u), cLld, c@dﬁbgaandu(b)—u(c).

=: As in 4.4 we can suppose L = L/N(u). Let a € L and denote by pg the
restriction of p to [0,a]. Observe that [0,a] is a complete D-lattice and p, is a

o-order continuous pseudo non-injective modular measure, since U(f1,) coincides
with the restriction of U(u) to [0, a] and N(uq) = N(p) N ([0, a] % [0, a]). Hence
by 4.4 we have that u([0,a]) is convex. O
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