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Uniform approximation of continuous functions

on compact sets by biharmonic functions
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Abstract. We give a characterization of functions that are uniformly approximable on a
compact subset K of R

n by biharmonic functions in neighborhoods of K.
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1. Introduction

Debiard and Gaveau proved the following [3]:

Theorem. Let K be a compact subset of R
n and f a real function on K. Then

the following statements are equivalent:

1. There exists a sequence (fn) of harmonic functions on neighborhoods of
K which converges uniformly to f in K.

2. f is continuous on K and finely harmonic on K ′, the fine interior of K.

This result has been later extended to closed subsets of R
n by Gauthier and

Ladouceur [7].

If we denote by H(K) the space of real functions that are restrictions to K of
harmonic functions on neighborhoods of K, then the equivalence between con-

ditions 1 and 2 in the above theorem means that the closure H(K) of H(K) in
C(K) under the uniform norm is the space of continuous functions on K that are
finely harmonic in K ′.
Our main purpose in this work is to extend the above theorem to functions

that are uniformly approximable on a compact set K in R
n by restrictions to K of

biharmonic functions on neighborhoods of K. More precisely, let BH(K) be the
set of restrictions to K of biharmonic functions in neighborhoods of K endowed
with the norm

‖f‖ = sup
x∈K

|f(x)|+ sup
x∈K

|∆f(x)|.

We shall prove that the completion of BH(K) under the norm ‖ · ‖ is exactly the
space of continuous functions on K which are finely biharmonic in K ′ and whose
fine Laplacian in K ′ can be extended continuously to K.
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We recall here that the fine topology on R
n is the coarsest one, making all

superharmonic functions in R
n continuous. We will use the word fine (finely) to

distinguish between the notions related to the initial (euclidean) topology from
those related to the fine topology. The fine topology on R

n has been extensively
studied by Fuglede in many papers, where he shows in particular that it has nice
properties such as local connectedness which allowed him to develop a beautiful
(fine) potential theory on finely open sets (see [5]).

The word function always means, unless otherwise stated, a function with
values in R. The order on the set of pairs of functions on a set M is the usual
order:

(f, g) ≤ (h, k) ⇐⇒ f ≤ h and g ≤ k.

We also write (h, k) ≥ (f, g) instead of (f, g) ≤ (h, k). If (f, g) ≥ (0, 0), we simply
write (f, g) ≥ 0. If A is a subset of R

n, we denote by A the closure of A in the
Alexandroff compactification of R.

2. Biharmonic measures

For the definition of finely biharmonic functions we need to use the notion
of biharmonic measures on finely open subsets of R

n. The definition of these
measures is based on a result from the general theory of biharmonic spaces of
Smyrnelis ([11] and [12]).

Let (X,H) be a biharmonic space in the sense of Smyrnelis [11] and denote by
U+(X) the convex cone of H-hyperharmonic pairs ≥ 0 on X . For every pair Φ =

(f, g) of functions on X and every subset E of Ω, we denote by ΦE = (ΦE
1 ,ΦE

2 )
the reduced pair of Φ relative to E. We recall that this pair is defined by

ΦE = inf{(u, v) ∈ U+(X); (u, v) ≥ Φ on E},

where the infimum is taken in the sense of order product. This pair is sometimes

denoted by RE
Φ . The balayage of Φ on E is denoted by Φ̂E or R̂E

Φ and defined

by Φ̂E = (Φ̂E
1 , Φ̂E

2 ), where, for a function h on X , ĥ denotes the l.s.c. (lower
semicontinuous) regularization of h, that is, the greatest l.s.c. minorant of h in X .

We remark that we have ΦE = (Φ+)E , where Φ+ = max(Φ, 0).

As in the theory of harmonic spaces, it is the notion of balayage of a pair
of measures which allows us to define finely hyperharmonic, superharmonic or
biharmonic pairs of functions. That is why we recall the following result ([12,
Theorem 7.11 and Theorem 7.12]):

Theorem 2.1. For every pair (µ, λ) of positive Radon measures on X and every

subset E of X , there exist three positive Radon measures µE , νE and λE on X



Uniform approximation of continuous functions on compact sets by biharmonic functions 429

such that, for every H-potential P = (p, q), one has∫
P̂E
1 dµ =

∫
p dµE +

∫
q dνE ,

∫
P̂E
2 dλ =

∫
q dλE ,

where P̂E = (P̂E
1 , P̂E

2 ).

Remarks. 1. The above relations are true for any pair P = (p, q) ∈ U+(X).
This can be seen by realising that every pair P ∈ U+(X) is the supremum of an
increasing sequence (Pn) of H-potentials in X .

2. The measures µE and λE are just the balayages of the measures µ and λ

with respect to the harmonic spaces associated with the biharmonic space (X,H)
(see [11], [12] and the proof of Proposition 2.2 below). If these spaces are identical

as in the case that will be considered in the sequel, one has µE = λE when µ = λ.

When µ = λ = εx, where εx denotes the Dirac measure in x ∈ X , we denote the
corresponding measures µE , νE and λE in the above theorem by µE

x , νE
x and λE

x

respectively. These are the measures which allow us to define finely biharmonic
and finely hyperharmonic or superharmonic pairs of functions. Let us recall that
these notions have been introduced and studied in [4] where we refer for more
details.
Now let Ω be a domain in R

n, n ≥ 1. We shall deal with the biharmonic sheaf
H∆ on Ω defined by the Laplacian:

H∆(ω) = {(u, v) ∈ [C2(ω)]2 : ∆u = −v,∆v = 0},

for any open subset ω of Ω. The pair (Ω,H∆) is a biharmonic space whose har-
monic spaces associated are identical to the classical one defined by the Laplacian
on Ω. AnH∆-biharmonic (superharmonic) pair will be simply called a biharmonic
(superharmonic) pair.
We say that Ω is strong if there exists a pair (p, q) of Green potentials on Ω such

that q > 0 and ∆p ≤ −q on Ω in the sense of distributions. We recall, following
[3], that the biharmonic space (Rn,H∆) is strong if and only if n ≥ 5. However,
if Ω is bounded, the biharmonic space (Ω,H∆) is strong for every n ≥ 1. In the
following we assume that Ω is strong. Then Ω possesses a Green kernel that will
be denoted by G(x, y) = GΩ(x, y).

Proposition 2.2. For any relatively compact finely open set ω, ω̄ ⊂ Ω, and any
x ∈ ω, one has µCω

x = λCω
x = εCω

x , where εCω
x is the balayage of the measure εx

on Cω in the classical harmonic space associated with the Laplace operator.

Proof: By applying Theorem 2.1 to the pairs P = (p, 0), where p is an arbitrary

potential on Ω, we see that µCω
x = εCω

x . To establish the relation λCω
x = εCω

x , it
suffices to use the above lemma and observe that for any H-potential P = (p, q),

the function PE
2 is just the reduced function of q relative to E. �
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Lemma 2.3. For any finely open set ω of Ω and any x ∈ ω, we have
∫

dνCω
x > 0.

Proof: It follows easily from [4, Theorem 9.1], that the pair (
∫

dνCω
. , 1) is non-

negative finely superharmonic, not identically 0 in each finely connected compo-
nent of ω, hence

∫
dνCω

x > 0 for any x ∈ ω.
�

For every finely open V we denote by ∂fV the fine boundary of V and by Ṽ

its fine closure. It is well known that if a finely open set ω is regular, then the
measure εCω

x is supported by ∂fω (see [5]). According to [4, Theorem 9.4], the

measure νCω
x is also supported by ∂fω.

3. Finely biharmonic functions

Let U be a finely open subset of R
n. We recall that a function f : U −→ R is

said to be finely harmonic in U if

1. f is finely continuous in U ,
2. for every x ∈ U , there exists a relatively compact finely open fine neighborhood

ω of x such that ω ⊂ U , f is bounded on ω and

f(x) =

∫
f dεCω

x .

Now let us consider the family D(U) of finely continuous functions f on U such
that the limit

Lf(x) = lim
ω↓x

f(x)−
∫

f dεCω
x∫

dνCω
x

exists and is finite for every x ∈ U (the fraction
f(x)−

R
f dεCω

xR
dνCω

x
is well defined by

Lemma 2.3).

Definition 3.1. A finely continuous function on U is said to be finely biharmonic
on U if f ∈ D(U) and Lf is finely harmonic on U .

We also recall the definition of finely biharmonic pairs in a finely open subset
of R

n. This notion has been introduced and studied in [4].

Definition 3.2. A pair (u, v) of functions on U is said to be finely biharmonic
in U if u and v are finely continuous with values in R and if for every relatively
compact, finely open neighborhood ω ⊂ ω̄ ⊂ U , such that u and v are bounded
on ω,

u(y) =

∫
u dεCω

y +

∫
v dνCω

y and v(y) =

∫
v dεCω

y

for every y ∈ ω.

The following propositions underline the link between the notion of finely bihar-
monic functions in the sense of Definition 3.1 and the notion of finely biharmonic
pairs in the sense of [4]:
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Proposition 3.3. If a pair (u, v) is finely biharmonic in a finely open set U , then
u ∈ D(U) and Lu = v.

Proof: Let x ∈ U and ε > 0. Since v is finely continuous, there exists a finely
open ω0 ⊂ U such that x ∈ ω0 and |v(x) − v(y)| < ε for any y ∈ ω0. Then, for
any finely open ω ⊂ ω̃ ⊂ ω0, x ∈ ω, we have

|u(x)−

∫
u dεCω

x − v(x)

∫
dνω

x | < ε

∫
dνω

x

and therefore u ∈ D(U) and Lu = v. �

Conversely, we have:

Proposition 3.4. A function f ∈ D(U) is finely biharmonic in U if and only if

the pair (f, Lf) is finely biharmonic on U .

Proof: The “if” part is immediate from the definitions of biharmonic pairs and
biharmonic functions and the above proposition. Conversely, let us suppose that
the function f is finely biharmonic in U . Then the function Lf is finely harmonic
in U . Let x ∈ U and let V be a relatively compact fine domain in Ω such that
x ∈ V ⊂ V ⊂ U . Denote by V the potential kernel defined on V by

Vg =

∫
GV (., y)g(y) dy,

where GV is the Green kernel of V . By Proposition 7.11 and Theorem 7.13 of [4],
the pair (V(Lf), Lf) is finely biharmonic in V . Hence, if ω is a relatively compact
finely open subset of Ω such that x ∈ ω ⊂ ω ⊂ V , we have

∫
(f − V(Lf)) dεCω

x =

∫
f dεCω

x − V(Lf)(x) +

∫
Lf dνCω

x .

Hence L(f − V(Lf))(x) = 0. As x is arbitrary, we deduce from the next lemma
that f − Vf is finely harmonic in U ; this shows that the pair (f, Lf) is finely
biharmonic and the functions f and Lf are finely continuous in U . �

Lemma 3.5. Let f ∈ D(U) be finite and such that Lf = 0. Then f is finely

harmonic in U .

Proof: We have L(f + εV1) = ε > 0. Then for every x ∈ U and every finely
open neighborhood ω of x, there exists an open fine neighborhood ω′ of x such
that

f(x) + εV1(x) ≥

∫
(f + εV1) dεCω′

x .

Since x is arbitrary, we deduce from the definition of finely hyperharmonic func-
tions (see [5]) that the function f + εV1 is finely superharmonic in U . Letting
ε → 0, we get that f is finely superharmonic in U . Replacing f by −f we obtain
the desired conclusion. �
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4. Approximation of continuous functions by biharmonic functions

For any bounded open subset V of R
n, we denote by GV the Green kernel of

V normalized in such a way that for every y ∈ V , we have ∆GV (., y) = −εy. Let
VV be the potential kernel on V defined for a bounded Borel function f on V by

VV (f)(x) =

∫
GW (x, y)f(y) dy

for any connected component W of V and any x ∈ W . Then, for any bounded
harmonic function k on V , the function VV (k) is biharmonic in V .

Lemma 4.1. For every function g continuous on K and finely harmonic in K ′,

the function x 7→
∫

g dνCK ′

x can be extended to a continuous function on K.

Proof: Assume first that g ≥ 0. By Debiard-Gaveau’s theorem, there exists a
sequence (gn) of harmonic functions on neighborhoods Vn such that V n+1 ⊂ Vn

for every n and
⋂

n Vn = K, which converges uniformly on K to g. Fix an integer
n and let m ≥ n. Then the pair (Vmgn, gn) is biharmonic in Vm. Hence we have

nRCK
(Vmgn,gn)

= sup
p≥m

nR
CUp

(Vmgn,gn)
,

and therefore ∫
gn dνCK

x = sup
p≥n

gndν
CUp
x

for every x ∈ K ′, where Vn = VVn
. Here we have denoted by nRf the reduced

function of f relative to Vn. But the left hand side of the last equality is l.s.c.
at x in K. This shows that the function

∫
gn dνCK

. is l.s.c. in K. On the other
hand, for p ≥ n we have:

Vn1 =

∫
Vn1 dεCUp

. +

∫
dνCUp

. ,

because the pair (Vn1, 1) is biharmonic in a neighborhood of V p. Letting p → +∞,
we obtain

Vn1 =

∫
Vn1 dεCK

. +

∫
dνCK

. .

The functions
∫
Vn1 dµCK

. and
∫

dνCK
. are l.s.c. in K, and Vn1 is continuous

in K, hence
∫

dνCK
. is continuous in K. The function gn is continuous in V n+1.

Thus it is bounded in Vn+1, and by multiplying it by a positive constant we can
assume that gn ≤ 1 in Vn+1. By applying the above result concerning gn to

1 − gn, we deduce that
∫
1 dνCK

. −
∫

gn dνCK
. is l.s.c. and therefore

∫
gn dνCK

.

is continuous in K. Since (gn) converges uniformly to g in K and the measures
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νCK
. are of total mass bounded by supx∈K V11(x) < +∞ and supported by K,

we conclude that the sequence (
∫

gn dνCK
. ) converges uniformly to a continuous

function on K which equals
∫

g dνCK ′

. in K ′. The general case can be obtained
by adding to g a constant c > 0 such that g+ c ≥ 0 in K, and applying the above
case to g + c. �

Now we can prove the main theorem of this work:

Theorem 4.2. Let f be a real function on a compact set K. Then the following

statements are equivalent:

1. There exists a sequence (hn) of biharmonic functions, each defined on an open
neighborhood of K, such that (hn) converges uniformly on K to f and (∆hn)
converges uniformly on K to a continuous function g.

2. f is continuous on K and finely biharmonic on K ′, and Lf can be extended

continuously to K.

Proof: 1. =⇒ 2: Since the pairs (hn,−∆hn) are finely biharmonic in K ′ and
converge uniformly in K, it results from the definition of biharmonic pairs ([4])
that the pair (f, g) is finely biharmonic in K ′, and clearly continuous on K.
2. =⇒ 1: Let g be a continuous extension of −Lf to K and let (Vn) and (gn) be

as in the proof of the above lemma. The function f +
∫

g dνK ′

x is finely harmonic
in K ′. On the other hand it follows from the above lemma that the function
f −

∫
g dνK ′

. is the restriction to K ′ of a continuous function h in K. Then, by
Debiard-Gaveau’s theorem there exists a sequence (kn) of functions such that, for
every n, kn is harmonic on an open neighborhood Un ⊂ Un ⊂ Vn of K, and (kn)

converges uniformly in K to h. The functions kn −
∫

gn dνCUn
. are biharmonic

on Un and converge uniformly in K to f , and we have seen that the harmonic
functions ∆(kn −

∫
gn dνCUn

. ) = gn converge uniformly on K to g. �

The space H(K) is identical with the space of finely harmonic functions on K ′

with a continuous extension to K. The above theorem can be stated as follows:

Theorem 4.2′. Let f be a real function on a compact set K. Then the following

statements are equivalent:

1. There exists a sequence (hn) of biharmonic functions, each defined on an open
neighborhood of K, such that (hn) converges uniformly on K to f and (∆hn)
converges uniformly on K to a continuous function g.

2. f is continuous on K, finely biharmonic on K ′, and Lf ∈ H(K).

Corollary 1. A function f on U is finely biharmonic if and only if, for every point

x ∈ U , there exist a compact finely open neighborhood K ⊂ U and a sequence

(hn) of biharmonic functions in neighborhoods of K such that (hn) converges
uniformly on K to f and the sequence (∆hn) converges uniformly on K to a

continuous function g.



434 M.Chadli, M.El Kadiri

Corollary 2. A pair of functions (f, g) on U is finely biharmonic if and only if,

for every point x ∈ U , there exist a compact finely open neighborhood K ⊂ U

and a sequence (hn, kn) of biharmonic pairs of functions in neighborhoods of K

such that (hn) and (kn) converge uniformly on K to f and g, respectively.

5. Concluding remarks

Let Ω be a regular relatively compact open subset of Rn. If (hn) is a sequence
of biharmonic functions in neighborhoods of Ω which converges uniformly on Ω to
a function h, then h is obviously continuous in Ω. On the other hand, it follows
from the mean value property of biharmonic functions that

hn(x) =
1

|B|

∫

B

h(y) dy −
r2

2(n+ 1)
∆hn(x)

for all balls B ⊂ B ⊂ Ω of center x and radius r > 0, where |B| denotes the
volume of B, that the sequence of harmonic functions (∆hn) converges locally
uniformly in Ω to a harmonic function k and we have ∆h = k in Ω so that h is
biharmonic in Ω.
This result leads to the following question: Let (hn) be a sequence of bihar-

monic functions in neighborhoods of a compact set K of R
n which converges

uniformly to a function h on K. Is h finely biharmonic in K ′?
The answer to this question is not always positive. Indeed, let Ω be the

Lebesgue spine at 0 in R
3 (see [8, p. 175]) and U = (Ω ∪ {0}) ∩ B, where B

is the unit ball of R3, and let (hn) be the sequence of finely biharmonic functions
defined in U by

hn(x) = 1− ‖x − (
1

n
, 0, 0)‖

for all n ∈ N
∗. Then the sequence (hn) converges locally uniformly to the function

h defined in U by h(x) = 1−‖x‖. However the function h is not finely biharmonic

in U because we have ∆h(x) = 2
‖x‖
for all x ∈ U \ {0} and the function h is not

bounded in fine neighborhoods of 0. This example shows that if we do not assume
that the sequence (∆hn) converges locally finely uniformly then the sequence
(hn) need not converge to a finely biharmonic function, hence the assumption of
Theorem 4.2 that ∆hn converges to a continuous function g in K is necessary.
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