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Relative normality and product spaces

TAKAO HOSHINA, RYOKEN SOKEI

Abstract. Arhangel’skil defines in [Topology Appl. 70 (1996), 87-99], as one of various
notions on relative topological properties, strong normality of A in X for a subspace A
of a topological space X, and shows that this is equivalent to normality of X 4, where
X 4 denotes the space obtained from X by making each point of X \ A isolated. In
this paper we investigate for a space X, its subspace A and a space Y the normality
of the product X4 X Y in connection with the normality of (X X Y)(4xy). The cases
for paracompactness, more generally, for v-paracompactness will also be discussed for
Xa xXY. As an application, we prove that for a metric space X with A C X and a
countably paracompact normal space Y, X4 X Y is normal if and only if X4 X Y is
countably paracompact.
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1. Introduction

Throughout this paper all spaces are assumed to be Hausdorff. Let v denote
an infinite cardinal, and N the set of natural numbers.

Let X be a space and A a subspace of X.

As is known, A is said to be C*-embedded (respectively C-embedded) in X
if every bounded real-valued (respectively real-valued) continuous function on A
can be extended to a continuous function over X.

Next we recall some relative topological properties in Arhangel’skii [2]. We say
that A is strongly normal in X if for every pair E, F' of disjoint closed subsets of
A there exist disjoint open subsets U and V of X such that £ C U and F C V.
The subspace A is weakly C-embedded in X if for every real-valued continuous
function f on A there exists a real-valued function on X which is an extension of
f and continuous at each point of Y.

For a space X and a subspace A of X let X 4 denote the space obtained from
the space X, with the topology generated by { U | U is open in X or U C X \ A}.
Hence A is a closed subspace of X 4 and points in X \ A are isolated. As is seen in
[2], the space X 4 is often useful to describe several relative topological properties.
Indeed, the following are shown in [2]: (1) X 4 is normal if and only if A is strongly
normal in X if and only if A is normal itself, and is weakly C-embedded in X,
(2) A is weakly C-embedded in X if and only if A is C*-embedded in X 4.
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On the other hand, in a joint paper [9] of the first author with Yamazaki
the notion of weak C-embedding was characterized by extending disjoint cozero-
sets of a subspace to disjoint open sets of the whole space. And it was applied
there for a space X, a subspace A of X and a space Y to describe weak C-
embedding of A X Y in the product X4 X Y; actually, it was shown that if YV is
compact Hausdorff, A x Y is C*-embedded in X 4 x Y if and only if A x Y is C*-
embedded in (X XY) 4y, that is, AxY is weakly C-embedded in X x Y. Being
motivated by this result, our main concern in this paper is to study normality of
the product X4 x Y in relation to normality of (X X Y)( AXY) (or, equivalently,
strong normality of A x Y in X x Y'). Namely we prove

Theorem 1.1. For a space X, a subspace A of X and a space Y, the product
X4 x Y is normal if and only if (X X Y)4xy) is normal and the following

condition (*) holds:

() for every closed subset E of X, x Y disjoint from A x Y there exists an
open subset U of X4 x Y such that EC U and UN(AxY) = ().

As a corollary to this result we have that for a space X, a subspace A of X
and a compact Hausdorff space Y, X4 x Y is normal if and only if (X x Y) 4.y,
is normal. Moreover, using condition (*) above we prove analogous results for
~-collectionwise normality or y-paracompactness. In particular, the case v = w
is applied to obtain further the following theorem; putting A = X, we have the
well-known theorem due to Morita [14] (for the proof see [10]) and Rudin and
Starbird [16].

Theorem 1.2. Let X be a metric space, A a subspace of X and Y a normal and
countably paracompact space. Then X 4 X Y is normal if and only if X, x Y is
countably paracompact.

For undefined notation and terminology see Engelking’s book [6].

2. Preliminaries

The following theorem due to Arhangel’skii [2] mentioned in the introduction
is useful.

Theorem 2.1 ([2]). For a subspace A of a space X, the following statements are
equivalent:

(1) X4 is normal,
(2) A is strongly normal in X,
(3) A is normal and A is weakly C-embedded in X.

Weak C-embedding was characterized in [9] as follows.
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Theorem 2.2 ([9]). Let A be a subspace of a space X. Then A is weakly C-
embedded in X if and only if for every pair Gg, G1 of disjoint cozero-sets in A
there exist disjoint open subsets Hy, Hy of X such that G; C H; (i =0,1).

By this result we see that if either A is dense in X or A is z-embedded in X,
then A is weakly C-embedded in X ([5], [9]); a subspace A of a space X is said to
be z-embedded in X if every zero-set Z of A can be written as Z = Z/ N A with a
zero-set Z' of X. It is known that every cozero-set of a space or a Lindel6f subspace
of a Tychonoff space is z-embedded. Also, observe the following implications:

C*-embedding = z-embedding = weak C-embedding.

The next two results show when a subspace A x Y is weakly C-embedded in
X x Y for a space X, a subspace A of X and a metric space Y. The first one is
essentially due to Kodama [11].

Theorem 2.3 ([11]). Let X be a normal space, A a closed subspace of X and
Y a metric space. If A XY is normal and countably paracompact, then A X Y is
z-embedded in X x Y, hence, weakly C-embedded in X x Y.

In case A X Y is not assumed to be normal, we have the following.

Theorem 2.4. Let A be an arbitrary subspace of a hereditarily normal space X,
and Y a metric space. Then A x'Y is weakly C-embedded in X x Y.

PrOOF: We show that any two disjoint open sets of A X Y are separated by
disjoint open sets of X x Y, which implies weak C-embedding of A x Y in X xY
by Theorem 2.2. Let Go and G be disjoint open sets of Ax Y. Let B = J,,en Bn
be a o-locally finite open base for Y, where each B,, is locally finite. Let B, =
{Bu | A € Ay} Define for n € N and A € A,

H), = J{0O]0 isopenin A, Ox B, C Go}.

Then HrOLA and pA((A X Bn)\) N Gl) are disjoint open subsets of A. Since X is
hereditarily normal, there exists an open set WSA of X such that

1Y, < W2, WO npa((AxB,y)NGi) = 0.
For each n € N let us put U = [ J{ W, x B,,5 | A € An}. Then UY is an open set
of X x Y and we have G C U, ey US and UING1 = 0 for every n € N. Similarly,
we can find an open set U} of X x Y for each n € N so that Gy C Unen Ul and
U_rll N Gy = 0 for every n € N. Hence, as is well-known, Gy and G are separated
by open sets of X x Y. This completes the proof. (I

It was shown in [9] that every subspace of a space X is weakly C-embedded in
X if and only if X is hereditarily normal.

In connection with Theorems 2.3 and 2.4, let us observe the following two
examples.
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Example 2.5. (1) (Michael [12]) Let R, Q and P be the real line, the set of
rationals and the set of irrationals, respectively. Then Rg is known as the Michael
line, and it is hereditarily normal. Since Q x P is Lindelof, it is z-embedded in
Rg x IP, but is not C*-embedded as was shown by Morita [15].

(2) (Vaughan [17]) Let D(wjp) denote the set wy with the discrete topology.
Let ﬁ(wl) denote the space obtained from the space wj + 1 with the usual order
topology by letting all points except wy be isolated. That is, ﬁ(wl) = (w1+1) (e}

Let X = 0,D(w;) denote the box product of countably many copies of D (w1 ),
and Y = D(w1)¥ denote the usual product of countably many copies of D(w1).

Then X is hereditarily paracompact and Y is metrizable. Put

A=X\Y, A(Y)={(z,2)| z€Y}.

Then A x Y and A(Y") are disjoint closed sets of X x Y and cannot be separated
by open sets, which shows X X Y is not normal ([17]).

By Theorem 2.4 we see that A x Y is weakly C-embedded in X x Y. Since
A contains a closed subset homeomorphic to X, A x Y is not normal. Hence, in
view of Theorem 2.3, it may be of interest to see whether A x Y is z-embedded
in X x Y, but this is unknown to the authors. However, we can show further
that A x Y is not C*-embedded in X x Y. To prove this, first note that ¥ = (is
homeomorphic to) Y2. Hence, if we show the fact below, by the same argument
of Morita [15] we can conclude that A x Y is not C*-embedded in X x Y.

Fact. A(Y) is a zero-set of X x Y.

PROOF: Since the box topology is stronger than the usual topology, it suffices to
show that A(Y) is a zero-set of D(w1)* x D(wq)“.
For each point (x,y) € D(w1)* x D(w1)¥ \ A(Y), define

n(x,y) = min{k|:1:k # Yk }-

Put
Hp = {{z,y) € D(w1)* x D(w1)* \ A(Y)|n(z,y) =m}.

Then we have

D(w1)® x D(w1)* \ AY) = Upen Hm,
m#m' = Hpy N Hpyy =0.

Claim. H,y, is an open and closed subset of D(w1)® x D(w1)®.

PROOF OF CLAIM: Let (x,y) € Hy,. Since n(z,y) = m, we have 21 = y1, ...,
Tm—1 = Ym—1 < W1.
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Case (). =m > ym. Put

U={z1} < x{zm-1} x Um,w1] x D(wi) x -,
V={y1} x - x{ym-1} X {ym} x D(w1) x---

Then (z,y) € U x V C Hp,.
Case (ii). zm < ym. Put

U={x1} % X {Zm_1} X {zm} x D(w1) x
Vi=A{y1} < x{ym-1} x {ym} x D(w1) x
Then (z,y) €e U x V C Hp,.
Hence, in either case Hy, is open in D(w1)* x D(w1)%.

For each (y,y) € A(Y), put

U = {1} x - {um) x Dlen) x -+
V=A{uy}x - x{ym} x D(wy) x ---.

Then (U x V)N Hy, = (. Hence, A(Y) N Hy,, = 0, which shows that H,, is closed
in XxY.
It follows that Hy, is a cozero-set, therefore, |J,,cny Hm is a cozero-set of

~

D(w1)¥ x D(w1)¥. Hence A(Y) is a zero-set of X x Y. This completes the
proof. O

3. Proof of Theorem 1.1
First we prove

Lemma 3.1. Let X be a space, A a subspace of X andY a space. If X4 XY
is normal, then (X x Y) sy is normal.

PROOF: Let E and F' be disjoint closed subsets of A x Y. Then they are closed
also in X4 x Y and disjoint. Hence, there exist disjoint open subsets U and
V of X4 xY such that E C U and F C V. Define U’ = Int(yxy)U and
V= Int(xy)V, where IntzIW denotes the interior of W in the space Z. Then
U" and V' are disjoint open in X x V" and so in (X x Y)(4xy), and we have
E c U and F C V'. Hence, A x Y is strongly normal in X x Y. Hence by
Theorem 2.1 (X X Y)(4xy) is normal. This completes the proof. O
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Remark. (R x P)(qgyp) is normal, but Rg x P is not normal. The converse of
the lemma, therefore, need not hold.

PrOOF OF THEOREM 1.1: From Lemma 3.1 the “only if” part easily follows. To
prove the “if” part, assume that (X xY') 4y is normal and condition (+) holds.
Let E, F be a pair of disjoint closed subsets of X4 X Y. Since A x Y is strongly
normal in X x Y by Theorem 2.1, there exist disjoint open subsets U and V of
X xY such that EN(AxY) CUand FN(AxY) CV. Put D =(E\U)U(F\V).
Then D is a closed subset of X X Y and DN (A xY) = 0. Then by (x), there
exists an open subset W of X4 x Y such that AxY Cc W and W N D = 0.
Put Uy =UNW and V73 =V NW. Then we have

(AXxY)NECU, UUnF =0, and (AxY)NFcCcV, yNE=0.

Then E\U; and F'\V] are disjoint closed subsets of (X 4\ A4)xY. Since (X4\A4)xY
is normal, there exist disjoint open subsets Uz and V5 of (X4 \ A) x Y such that
E\U; C Uy and F\ Vi C Va. Therefore, Uy U (U2 \Vl) and V7 U (Vg \U_l)
are disjoint open subsets of X 4 x Y, which satisfy £ C Uy U (Ug \ 71) and
Fcwhu (V2 \U_l) Hence X4 x Y is normal. This completes the proof. [l

The following is proved in Burke and Pol [4].

Theorem 3.2 ([4]). Let A and X be subsets of R with A C X and let Y be a
metric space. Then X 4 x Y is normal if and only if condition (%) holds.

Since X x Y is a metric space, (X xY) 4y is normal. Therefore, this theorem
immediately follows from Theorem 1.1.
The following result was formulated in [9] without proof.

Theorem 3.3 ([9]). Let A be a subset of a space X and Y be a compact Hausdorff
space. Then X4 x Y is normal if and only if (X xY)(4xy) is normal.

PROOF: Since the projection px ,: X4 xY — X4 is a closed map, condition (x)
in Theorem 1.1 is easily satisfied. Hence the theorem follows. O

Recall that a space X is v-collectionwise normal if for every discrete collection
{Ea|a < 7} of closed subsets there exists a disjoint collection {Gq | < 7} of
open subsets such that F, C G, for each a < 7.

A subspace A of a space X is said to be strongly ~y-collectionwise normal in
X if for every discrete collection {Eq | < v} of closed subsets of A there is a
disjoint collection {Uy | < v} of open subsets of X such that E, C U, for each
o < ([9).

It was proved in [9] that X4 is ~y-collectionwise normal if and only if A is
strongly ~-collectionwise normal in X. With this result similarly to Theorem 1.1
we can prove the following.
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Theorem 3.4. For a space X, a subspace A of X and a space Y, X4 x Y is
7-collectionwise normal if and only if (X X Y)(4xy) is v-collectionwise normal
and condition (x) in Theorem 1.1 holds.

A space X is y-paracompact if every open cover of X of cardinality not greater
than « has a locally finite open refinement.

Theorem 3.5. If X4 x Y is y-paracompact, then (X x Y)(Axy) is y-para-
compact. Furthermore, if X 4 XY satisfies condition (x) in Theorem 1.1, then the
converse holds.

PROOF: Assume X4 x Y is y-paracompact. Let U be an open cover of (X X
Y)( Axy) of cardinality not greater than . Put

U={UeU|UNAxY)#0}.

Then U{Int(xxy)U|U € U'} D AxY. Hence {X4 x Y\ AxY}UU is an
open cover of X4 x Y of cardinality not greater than . Since X4 x Y is v-

paracompact, there exists a locally finite open cover V of X 4 x Y which refines
U Put V' ={VeV|VN(AxY)#0}. Then the collection

VU {{{a)} | () ¢ V')

is a locally finite open cover of (X X Y)( 4y and refines ¢. Hence (X X Y)(4xy)
is y-paracompact.

To prove the converse under (x), assume that (X X Y)( 4y is y-paracompact
and () holds. Let I be an open cover of X 4 XY of cardinality not greater than ~.
Then U is an open cover of (X X Y)4xy) as well. By assumption there exists a
locally finite open cover V of (X x Y') 4y refining . Put

G = {(z,y) € X x Y|V is locally finite at (z,y) in the product X x Y'}.

Then G is openin X x Y and G D Ax Y. Put V' = {GﬂInt(XXy) V‘V eV}
Then we have [JV' D A x Y, and V' refines U and is locally finite at each
(r,y) € UV in X x Y. By (x) there exist open subsets O1 and Oy in X4 X Y
such that

AxY cOrcO cO,cO V.

For every x € X \ A, let Py be a locally finite open cover of Y such that the
collection {{z} x P| P € P} refines U. Then the collection

{{z} x P)\O1 |z € X\Y, PP} U{VNO2|V eV}

is a locally finite open cover of X4 x Y which refines &/. Thus, X4 x Y is -
paracompact. This completes the proof.
O
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4. Proof of Theorem 1.2
First we prove

Theorem 4.1. Let A be a subset of a space X and Y a space. Suppose that
the product A x Y is y-paracompact. If X4 X Y is normal, then X4 X Y is
~y-paracompact.

PROOF: Assume that X4 x Y is normal. Then (X X Y)4xy) is normal by
Theorem 1.1. Hence A X Y is normal and weakly C-embedded in X x Y by
Theorem 2.1. Since A X Y is 7-paracompact, by [9, Lemma 4.6] (X x Y)4xy)
is y-paracompact. Since X4 X Y satisfies (x), X4 X Y is ~-paracompact by
Theorem 3.5. This completes the proof. (I

Corollary 4.2. Let A be a subset of a space X and Y a space. Suppose that the
product A X Y is countably paracompact. If X 4 X Y is normal, then X4 x Y is
countably paracompact.

PrOOF OF THEOREM 1.2: Let A be a subspace of a metric space X, and Y a
normal and countably paracompact space. To prove the “only if” part, assume
X4 xY isnormal. Since A x Y isclosedin X4 XY, AxY is also normal. Hence
by Morita, Rudin-Starbird’s theorem ([14], [16]), AXx Y is countably paracompact.
Hence X4 x Y is countably paracompact by Corollary 4.2.

To prove the converse, assume that X 4 x Y is countably paracompact. Then
similarly to above we have that A X Y is countably paracompact and normal.
Then by [11] A x Y is z-embedded in A x BY, where SY is the Cech-Stone
compactification of Y. Since X 4 x BY is paracompact, A X BY is C-embedded in
X x BY. It follows that A x Y is z-embedded in X 4 x Y, and hence it is weakly
C-embedded in X 4 x Y. This easily implies that A x Y is weakly C-embedded
in X x Y. Hence (X X Y) 4y is normal.

We next show that property () in Theorem 1.1 is satisfied. Let {B,} be
a sequence of locally finite open covers of X such that { St(z,By)|n € N} is
a neighborhood base at each point = in X. Let By, = {Bna |a € Qn} Let us put

W(a1,~-~,an):m{Bmi‘i:l,...,n}, for a; €Q;; i=1,...,n.
To prove (x), let E be a closed subset of X 4 x Y such that EN (A XxY) = (. Put
G(al,---,an):U{O’OisopeninY, (W(al,---,an)xO)ﬂE:(Z)}.

Then we have
G(Oé]_, e 7an) C G(Oé]_, e 7an704n+1)
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fora; €Q;, i=1,... ,n,n+1, and
{W(a, -, 0m) N A) xG(a1,~-~,o¢n)‘o¢i €Q,i=1,...,n;neN}

covers A x Y. Since A X Y is normal and countably paracompact, by Morita [13]
(see [8]) there exists a cozero-set U(ay, - -+, an) of Y such that

U(al,...7an) CG(al,"',an)
and
{(W(al,---,an)ﬂA) XU(al,---,an)‘aiEQi,i=1,... ,n;neN}
covers A x Y. Put
L:U{W(al,---,an) ><U(al,---,an)‘aiEQi,izl,... ,n;nEN}.

Then L is a cozero-set of X xY and we have L D AxY, LNE = (). Since X4 xY
is countably paracompact, by [7] there exists an open subset H of X x Y such
that AxY C H C HC L. Hence A x Y and E are separated by open sets of
X4 x Y. This completes the proof of the theorem. (]

The proof of the “if” part of Theorem 1.1 yields further the following result
which seems of interest in itself.

Theorem 4.3. Let A be a subset of a metric space X and Y a normal and ~y-
paracompact space. Then (X x Y)( AxY) Is y-paracompact if and only if AXY
is normal.

ProOOF: To prove the “if” part, assume that A x Y is normal. Since Y is
normal and 7-paracompact, so is A x Y. Hence (A x Y) x I7 is normal ~-
paracompact, that is, A x IY xY is normal, where I = [0,1]. Hence, as is
shown in the proof of Theorem 1.2, (X X (I" XY))(4x (17 xy)) is normal. Since
(XX (I XY)) (ax 1 xv)) = (X XY) xT) (axyyxr), (X xY) XT) (axy)x1m)
is normal. Thus, by Theorem 3.3 (X x Y)(Axy) x I7 is normal. Therefore, as is
well-known, (X X Y) 4y is 7-paracompact (see [6]). This completes the proof.

O

Example 4.4. The condition “X is metric” cannot be excluded from Theo-
rem 1.2. In fact, there exist compact spaces X and Y, and a subset A of X
such that A x Y is normal and countably paracompact and X 4 X Y is countably
paracompact, but not normal. We use Bing’s example G [3]. Let P(wy) be the
power set of wy and

X ={f|f:P) — {0,1}}.
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For every o € wq, let us define a function fo : P — {0,1} for P € P(w1) by

1 if aeP,

f‘“(P):{o if oa¢P.

Put A = {fa|a < w1}. Then Bing’s example G is precisely the space X 4. It
is well-known that X 4 is normal and countably paracompact, but it is not wi-
collectionwise normal. Let Y be the one-point compactification of the discrete
space of Card A. Since X 4 is countably paracompact, A x Y is countably para-
compact. Since A is w(Y)-paracompact, A X Y is normal. However, since X 4 is

not wi-collectionwise normal, by Alas [1] X4 x Y is not normal.
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