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Mappings on the dyadic solenoid

Jan M. Aarts, Robbert J. Fokkink

Abstract. Answering an open problem in [3] we show that for an even number k, there
exist no k to 1 mappings on the dyadic solenoid.
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Suppose that P = (p1, p2, . . . ) is a sequence of prime numbers. The P -adic
solenoid SP is the inverse limit sequence (S, fn) where S ≈ R/Z, the circle, and
the bonding maps are homomorphisms fn(z) = pn ·z mod 1. The P -adic solenoid
is a compact abelian group. In case P is a constant sequence of 2’s, the inverse
limit is called the dyadic solenoid , denoted by S2. We shall prove the following
result.

Theorem 1. Suppose that f :S2 → S2 is a k to 1 map of the dyadic solenoid.
Then k is odd.

This answers a question in [3] and shows that the result in [7] is correct. The
main ingredient in our proof is Scheffer’s theorem [6] (see [5] for a recent applica-
tion of Scheffer’s theorem).

Theorem 2. Suppose that G, H are compact and connected groups and that H
is abelian. Suppose that f : (G, e)→ (H, e) is a continuous map that preserves the
unit element. Then f is homotopic to a unique homomorphism. The homotopy
preserves the unit element.

Solenoids have a local product structure of a Cantor set and an arc, [2]. The
arc component Γe of the unit element e is a dense subgroup that is a 1 − 1
homomorphic image of R. The other arc components are translates of Γ.

Proposition 3. Suppose that f :S2 → S2 is a non-trivial homomorphism. Then
f bijectively maps arc-components onto arc-components.

Proof: Since f is a homomorphism, it suffices to verify that the restriction to
the unit component Γe is a bijection. Now Γe is an image of R. A non-trivial
homomorphism onR is of the form x → rx for r 6= 0. In particular, it is a bijection.
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Proposition 4. Suppose that f :S2 → S2 is not homotopic to a constant func-
tion. Then f maps arc-components onto arc-components.

Proof: By composing f with a translation, if necessary, we may assume that f
preserves the unit element. By Scheffer’s theorem, f is homotopic to a non-trivial
homomorphism h. The difference map h− f :S2 → S2 has a compact image that
is contained in Γe. So f(x) = h(x)+ t(x) for some t(x) in a compact subset of Γe.
Since h maps arc-components onto arc-components so does f . �

Under Pontryagin duality, the category of compact abelian groups is contravari-
antly equivalent to the category of discrete groups. The Pontryagin dual of the
dyadic solenoid S2 is isomorphic to the additive group Q2 = { k

2n : k ∈ Z, n ≥ 0},

see [4]. Each non-zero element of Q2 has a unique representation
k

2n for an odd
number k and a non-negative integer n.

Lemma 5. Suppose that f :S2 → S2 is not homotopic to a constant map and
that Γ is an arc-component. Then f−1(Γ) consists of an odd number of arc-
components.

Proof: As S2 is homogeneous, we may assume that Γ is the component of e. By
the corollary, f−1(Γ) is a collection of arc-components that is necessarily the same
for all mappings in the homotopy class of f . By Scheffer’s theorem, we may assume
that f is a homomorphism and we see that the number of components in f−1(Γ)
is the same for every possible choice of Γ. Consider the dual homomorphism

f̂ :Q2 → Q2. It is determined by the value f̂(1) = k

2n , for some odd number k.

The image of f̂ is a subgroup of odd index k. By the contravariance of Pontryagin
duality, the kernel of f is a subgroup of odd order k. The number of elements in
the kernel is equal to the number of arc components by Proposition 3. �

Recall that f :R → R has a proper local maximum in c if there is an open
interval I such that c ∈ I and f(x) < f(c) for all c 6= x ∈ I. A proper local
minimum is defined likewise. A proper local extreme is either a maximum or a
minimum. The value f(c) is called a proper extreme value.

Proposition 6. Suppose f :R → R is a continuous map with finite fibers. Then

the set of proper extreme values of f is countable.

Proof: It suffices to show that the set of proper local maxima is countable. As
the fibers of f are finite, f has a proper local maximum in x whenever it has a
local maximum in x. For each proper local maximum x, select an interval I(x)
with rational endpoints as in the definition of proper local maximum. Note that
I(x) 6= I(y) whenever x 6= y. The claim now follows as there are only countably
many intervals with rational end points. �
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Lemma 7. Suppose that f :R → R is a continuous surjection with finite fibers.

Then the parity of f−1(z) is odd for each z that is not a proper extreme value.

Proof: Suppose z is not a proper extreme value of f . The graph of y = f(x)
intersects the horizontal line y = z transversally, in finitely many points. As f is
a surjection, we have limx→∞ f(x) =∞ and limx→−∞ f(x) = −∞, or the other
way around. �

Proof of Theorem 1: Suppose that f :S2 → S2 is a continuous k to 1 map. In
particular, f is a surjection so it is not homotopic to a constant map. Without
loss of generality we may assume that f(e) = e. By Lemma 5, f−1(Γe) consists
of an odd number of arc-components. Each of these components is an image of
the real line and is mapped surjectively onto Γe. As each of these maps can be
lifted to R, see [1], this results in an odd number of maps from the real line onto
itself. By Lemma 7, outside a countable set of extreme values, each of these maps
has fibers of odd parity. Now the sum of an odd number of odd numbers is odd,
so k has to be odd. �
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