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Subgroups and products of R-factorizable P-groups
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Abstract. We show that every subgroup of an R-factorizable abelian P-group is topo-
logically isomorphic to a closed subgroup of another R-factorizable abelian P-group.
This implies that closed subgroups of R-factorizable P-groups are not necessarily R-
factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is
a continuous image of a product X = [],c; X; of P-spaces and the space X is pseudo-
wi-compact, then nw(Y) < Rg. In particular, direct products of R-factorizable P-groups
are R-factorizable and w-stable.
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1. Introduction

The main subject of this article are P-groups, that is, topological groups in
which all Gs-sets are open. It is known that P-groups are peculiar in many re-
spects. For example, every P-group G has a local base at the identity of open
subgroups and if G is Ng-bounded, it has a local base at the identity of open
normal subgroups [15, Lemma 2.1]. Weak compactness type conditions substan-
tially improve the properties of P-groups. The following result proved in [15]
demonstrates this phenomenon and will be frequently used in the article.

Theorem 1.1 ([15, Theorem 4.16 and Corollary 4.14]). For a P-group G, the
following conditions are equivalent:

(1) G is R-factorizable;

(2) G is pseudo-wi-compact;

(3) G is w-stable;

(4) G is Ng-bounded and every continuous homomorphic image H of G with
W(H) <Ry is Lindeldf.

In addition, every R-factorizable P-group G satisfies ¢(G) < Nj.

All terms that appear in Theorem 1.1 are explained in the next subsection.

Subgroups of R-factorizable P-groups need not be R-factorizable (see [13, Ex-
ample 2.1] or [15, Example 3.28]). It is an open problem whether every Rg-
bounded P-group is topologically isomorphic to a subgroup of an R-factorizable
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P-group (see Problem 4.1). We show, however, that every subgroup of an R-
factorizable abelian P-group can be embedded as a closed subgroup into another
R-factorizable abelian P-group (see Theorem 2.5). Hence closed subgroups of
R-factorizable P-groups can fail to be R-factorizable. This is the main result of
Section 2.

By [15, Theorem 5.5], direct products of R-factorizable P-groups are R-factor-
izable. In Theorem 3.7, we present a purely topological result about a special
representation of continuous maps of products of P-spaces which generalizes The-
orem 5.5 of [15]. It implies, in particular, that for any product of P-spaces, the
properties of being w-stable and pseudo-wi-compact are equivalent.

1.1 Notation and terminology. All spaces and topological groups are assumed
to be Hausdorff unless a different axiom of separation is specified explicitly.

Let {X; : i € I} be a family of topological spaces. A subset B of the product
X =]I;er Xi is called a boz in X if it has the form B = [];c; B;, where B; C X;
for each 7 € I. Given a box B C X, we define the set coord B C I by

coordB={iel: B; # X;}.

The Ng-boz topology of the product X is the topology generated by all boxes
of the form U = [[;c; U;, where |coordU| < R and each U; is open in Xj;.
Clearly, the Tychonoff topology of the space X is generated by open boxes U
with | coordU| < No.

For every nonempty set J C I, we put X; = [[;c; X; and denote by m; the
projection of X onto X ;. Given a map f: X — Y, we say that f depends only on
aset JCIif f(x) = f(y) for all z,y € X satistying 7;(z) = 7s(y).

Pick a point a € X and, for every z € X, put

supp(z) ={i € I : x; # a;}.

Then the subset
o(a) = {z € X : supp(z) is finite }

of X is called the o-product of the family {X; : i € I'} with center at a.

Let G = [[;c; Gi be a direct product of groups. For every » € G, we set
suppz = {i € I : x; # ¢;}, where ¢; is the identity of G;. Then the o-product
o(e) C G is a subgroup of G, where e is the identity of G.

Suppose that Y is a space. We say that Y is a P-space if every countable
intersection of open sets is open in Y. Let 7 be an infinite cardinal. A subset
Z CY is said to be Gr-dense in Y if Z intersects every nonempty Gr-set in Y.

A space Y is called w-stable if every continuous image Z of Y which admits
a coarser second countable Tychonoff topology satisfies nw(Z) < Ng. In general,
let 7 > Ng. A space Y is called 7-stable if every continuous image Z of Y which
admits a coarser Tychonoff topology of weight< 7 satisfies nw(Z) < Rg. If YV
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is 7-stable for 7 > Ng, then Y is said to be stable. It is known that arbitrary
products and o-products of second countable spaces are w-stable [1, Corollary 13].

A space Y is said to be pseudo-wi -compact if every locally finite (equivalently,
discrete) family of open sets in Y is countable. Lindelof spaces as well as spaces
of countable cellularity are pseudo-wi-compact.

A topological group G is called Rg-bounded if it can be covered by countably
many translates of any neighborhood of the identity. We also say that G is R-
factorizable if every continuous real-valued function f on G can be represented
in the form f = h o ¢, where ¢: G — H is a continuous homomorphism onto a
second countable topological group H and h is a continuous real-valued function
on H. Every R-factorizable group is Rg-bounded, but not vice versa [13], [14].

The kernel of a homomorphism p: G — H is ker p. The minimal subgroup of a
group G containing a set A C G is denoted by (A).

As usual, w(Y), nw(Y), (YY), L(Y), and ¢(Y") are the weight, network weight,
pseudocharacter, Lindel6f number and cellularity of a space Y, respectively.

The set of all positive integers is denoted by N, while Z is the additive group
of integers.

2. Subgroups of R-factorizable P-groups

Here we show that an arbitrary subgroup of an R-factorizable abelian P-group
is topologically isomorphic to a closed subgroup of another R-factorizable abelian
P-group. This result enables us to conclude that closed subgroups of R-factor-
izable P-groups are not necessarily R-factorizable. Since, by Theorem 1.1, R-
factorizability and pseudo-wi-compactness coincide for P-groups, this makes R-
factorizable P-groups look like pseudocompact groups: every subgroup of a pseu-
docompact group is topologically isomorphic to a closed subgroup of another
pseudocompact group [4]. This analogy between R-factorizable P-groups and
pseudocompact groups will be extended in Section 3.

We start with several auxiliary facts.

Lemma 2.1. Suppose that G is an R-factorizable P-group, and let H be a G, -
dense subgroup of GG. Then H is R-factorizable.

PrOOF: By Theorem 1.1, G satisfies ¢(G) < X;. Therefore, the dense subgroup
H of G also satisfies ¢(H) < N;. Let f: H — R be a continuous function. By
Schepin’s theorem in [12], one can find a quotient homomorphism m: H — K onto
a topological group K with ¢(K) < N; and a continuous function g: K — R
such that f = gomw. Observe that H C G C oG = pH, where oG and oH
denote the Raikov completions of G and H, respectively. Now, consider the
continuous homomorphic extension 7: pH — pK of 7w, and take the restriction
7 =7lqg:G— oK of # to G. Since H is G, -dense in G, the image K = 7(H) is
Gy, -dense in 7(G). We claim that 7(G) = K.
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Indeed, ¥(K) < N; implies that there exists a family {U, : @ < w1} of open
sets in 77(G) such that {e} = K N(),c,, Ua, where e is the identity of oK. If
P = Nacw, Ua \ {e} # 0, then P is a nonempty Gy, -set in 7(G) that does
not intersect K, which is a contradiction. Thus, ¥(7(G)) < Nj. Since every
fiber of 7 is a G,;-set in G, the group H intersects all fibers of 7. Hence we have
7(G) = #(H) = K. So, f = go7 is a continuous extension of f to G. This implies
that H is C-embedded in G and, hence, H is R-factorizable by [7, Theorem 2.4].

(]

Pseudo-wi-compactness is not a productive property, not even in the class of P-
spaces (one can modify Novak’s construction in [11] to produce a counterexample).
The following lemma shows the difference between P-spaces and P-groups.

Lemma 2.2. A finite product of R-factorizable P-groups is pseudo-wi-compact
(equivalently, R-factorizable).

PrOOF: Let G = G1 X --- X Gy, where each G; is an R-factorizable P-group.
Then G is also a P-group. Hence we can assume that n = 2. Note that the
factors G1 and Gg are Ng-bounded, and so is the product group G. So, by
Theorem 1.1, it suffices to verify that every continuous homomorphic image H of
G with ¢(H) < ¥; is Lindelof. Let p: G — H be a corresponding homomorphism.
Then one can apply [14, Lemma 3.7] to find, for every ¢ = 1,2, a continuous
homomorphism f;: G; — K; onto a topological group K; with ¢ (K;) < Ry such
that ker f1 x ker fo C ker p. Refining topologies of the groups K;, we can assume
that the homomorphisms f; and fs are open. Then K; and K9 are P-groups
by [15, Lemma 2.1] and the product homomorphism f = f; x fo of G onto
K = K; x Ko is open. From our choice of the homomorphisms f; and fo it
follows that there exists a homomorphism ¢: K — H such that p = ¢ o f. Since f
is open, the homomorphism ¢ is continuous. By Theorem 1.1, the P-groups K
and Ky are Lindelof, and so is the product group K by Noble’s theorem in [10].
Hence the group H = ¢(K) is Lindel6f as well. This finishes the proof. O

The next result has several applications in this section and in Section 3.

Lemma 2.3. The following conditions are equivalent for a product space X =
[Lier Xi:
(a) X is pseudo-wi-compact;
(b) the product X j = [[;c; X; is pseudo-wi-compact for each finite set J C I;
(¢c) every o-product o(a) C X is pseudo-wi-compact;
(d) every o-product o(a) C X endowed with the relative Rg-box topology is
pseudo-wi-compact.

PROOF: It clear that (a)=-(b). Since, for each a € X, o(a) is dense in X when
X carries the usual product topology and the Ng-box topology is finer than the
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product topology of X, we have that (c) =-(a) and (d) =-(c) =>(b). Therefore, it
suffices to show that (b)=-(d).

Let {Uq : o < w1} be a collection of nonempty open sets in o(a). We shall show
that this family cannot be discrete. Without loss of generality, we may assume
that Uy = 0 N Vy for each o < wy, where Vi, has the form [];c; Vih;, the sets
Vi are open in X; and coord V,, < Rg. Take a point x4 € Uy. Since zq € o(a),
the point a(i) € X; is an element of V;, ; for all i € I'\ J, where Jo = supp(za)
is a finite subset of I. Now we apply the A-lemma in order to find a subset A
of wy of cardinality ¥; and a finite set J C I such that J, N Jg = J whenever
a,f € Aand Jy # Jg. Since the space X; = [[;c; X; is pseudo-w;-compact,
there exists a point y € X ; such that every neighborhood of y intersects infinitely
many elements of the family {[[;c; Vo : @ € A}. Define a point x € o(a) by

() e
x(l)_{a(i) it iel\J.

It is easy to see that 7 j(z) = y and every neighborhood of x intersects an infinite
number of elements of {Uy : a € A}. Hence the space o(a) is pseudo-w;-compact.
O

The equivalence of (a) and (b) in the above lemma should be a known result,
but the authors have not found a corresponding reference in the literature.

Corollary 2.4. LetIl = [];c; G; be a direct product of R-factorizable P-groups.
Then o(e) C II, endowed with the relative Rg-box topology, is an R-factorizable
P-group.

PROOF: It is clear that o(e) is a P-group. Therefore, o(e) is R-factorizable by
Theorem 1.1, Lemma 2.2 and Lemma 2.3. (|

We now have all necessary tools to deduce the main result of this section about
closed embeddings into R-factorizable P-groups.

Theorem 2.5. Suppose that G is an R-factorizable abelian P-group. If H is
an arbitrary subgroup of G, then H can be embedded as a closed subgroup into
another R-factorizable abelian P-group.

PrROOF: Let Z be the discrete group of integers. Clearly, G x Z is an R-factor-
izable abelian P-group that contains an isomorphic copy of G. Replacing G by
G X Z, if necessary, we may assume that G contains an element ¢ of infinite order,
9 # 0¢g.
Let A = |G| - Ny and put x = X if ) is a regular cardinal or K = A", otherwise.
Consider the group
o={z e G":|suppz| < No}

endowed with the relative Ng-box topology inherited from G*. Then o is an R-
factorizable abelian P-group by Corollary 2.4 and, clearly, |o| = k. Let 0\ {04} =
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{zq : @ < k}. To every element z,, we assign an element Z, € o recursively as
follows. Choose dg > max supp xg and define g € o by

N zo(v)  if v # do;
Zo(v) = { )
g if v=4dy.

Suppose that we have already defined #5 for each 3 < «, where a@ < k. Choose
da > sup(supp za U Ug<, supp Z5) and define a point Z4 € o by

~()_{$a(y) if v # da;
Pall) = g if v=4dq.

It is clear that do, = maxsupp Z,. This finishes our construction.

Observe that the sequence {0n : a < k} is strictly increasing (hence it is
cofinal in ) and Zg(da) = Og whenever 3 < o < k. Consider the subgroup
Go = (Hg U B) of o, where

Hy={x€o:2(0) € H and z(v) =0g for each v # 0}

and B = {Zq : a < k}. We claim that the group Gy is R-factorizable and contains
Hy ~ H as a closed subgroup. It is easy to see that Hy is closed in G because
it can be expressed as the intersection of the coordinate 0 axes with Gg. Indeed,
suppose that € Gg and z(v) = 0¢ for all v > 0. By the definition of Gy, = has
the form x = h+k1Za; + -+ knZa,, where h € Hp, a1 < g < -+ < app < Kk and
ki € Zfor i =1,...,n. Then Zy,;(dq, ) = 0¢ for each i < n and Zq,, (0a,) = 9-
Hence k, = 0. If we proceed in the same way for ¢ = n — 1,...,1, we obtain
kn =---=k1 =0, whence x = h, with h € Hy.

By Lemma 2.1, to prove that Gg is R-factorizable, it suffices to verify that Gg
is G, -dense in 0. To this end, it is enough to show that if x € o, C' C k and
|C| < Ry, then there exists a < & such that Z,(v) = z(v) for each v € C. Suppose
that x € o and choose 3 < k such that g > sup C. Then choose @ < r such that
B < aand z4(v) = x(v) for each v < dg. Then Z4(v) = z(v) for each v € C.
This implies that the group Gg is G, -dense in ¢ and, therefore, R-factorizable.

O

Corollary 2.6. Closed subgroups of R-factorizable P-groups need not be R-
factorizable.

PROOF: According to [13, Example 3.1], there exist an R-factorizable abelian
P-group G and a dense subgroup H of G such that H is not R-factorizable. By
Theorem 2.5, H is topologically isomorphic to a closed subgroup of another R-
factorizable P-group, so that closed subgroups of R-factorizable P-groups are not
necessarily R-factorizable. O

It is known that all subgroups of compact groups as well as all subgroups of
o-compact groups are R-factorizable [13], [14]. In the following definition, we
introduce the class of groups with this property.
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Definition 2.7. A topological group G is called hereditarily R-factorizable if all
subgroups of G are R-factorizable.

Theorem 2.8. Every hereditarily R-factorizable P-group is countable and, there-
fore, discrete.

PROOF: Suppose to the contrary that G is an uncountable hereditarily R-factor-
izable P-group and take a subset A of G of cardinality N{. It is clear that the
P-group H = (A) has cardinality N;. Since H is R-factorizable and L(H) <
Ny, from [15, Corollary 3.34] it follows that H is a Lindel6f group. In its turn,
this implies that w(H) < Nj (see [15, Corollary 4.11]). If w(H) = Nj, then
by [7, Theorem 3.1], H has a subgroup which fails to be R-factorizable, thus
contradicting the hereditary R-factorizability of G. Hence, w(H) = Rg. Since H is
a P-space, it is discrete and, consequently, |H| = w(H) = Rg. This contradiction
completes the proof. (I

One can reformulate Theorem 2.8 by saying that every uncountable P-group
G contains a subgroup of size N; which fails to be R-factorizable. Indeed, if G
is R-factorizable, this immediately follows from the above argument. Otherwise,
by Theorem 1.1, G contains a discrete family {U, : @ < w1} of nonempty open
sets. Choose a subgroup H of G of size Ny such that V,, = H N U, # 0 for each
a < wy. Then the family {V, : @ < w1} of nonempty open sets is discrete in H,
so that the group H is not R-factorizable by Theorem 1.1.

3. Continuous images

By [15, Theorem 5.5], an arbitrary direct product G of R-factorizable P-groups
is R-factorizable. Here we strengthen this result and show that every continuous
map f:G — X to a Hausdorff space X of countable pseudocharacter can be fac-
tored via a quotient homomorphism 7: G — K onto a second countable topological
group K. In fact, this follows from an even stronger result (see Theorem 3.7): if a
Hausdorff space Y of countable pseudocharacter is a continuous image of a prod-
uct X of P-spaces and X is pseudo-wi-compact, then nw(Y) < Xg. In particular,
the space X is w-stable. We precede this result by a series of lemmas. The first
of them is an analogue of Noble’s theorem on z-closed projections [9], [10].

Lemma 3.1. The Cartesian product X x Y of regular P-spaces X and Y is
pseudo-wi-compact if and only if X and Y are pseudo-wi-compact and the pro-
jection p: X x Y — X transforms clopen subsets of X XY to clopen subsets
of X.

PROOF: Suppose that X x Y is pseudo-wi-compact and let W C X X Y be a
clopen set. If there exists a point zg € p(W) \ p(W), take any point yg € Y and a
neighborhood Wy = U} x V of (0, yo), where Uy and Vj are clopen sets, such that
WiNW = 0. Pick apoint (z1,y1) € W with z; € Uj. Now we take neighborhoods
Wi =Up x Vi and W] =Uj x Vi of (z1,y1) and (zg, y1), respectively, where Uy,
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U{ and V7 are clopen sets such that W{ NW =0, Wi €W and U; U U{ - Ué.
Suppose that for some o < wy, we have already chosen points (a:g, yg) € W as
well as clopen sets W3 and Wé for each 8 < «, such that W3 = Ug x Vg is a
neighborhood of (23, yg) satisfying W3 C W and Wé = Ué x V3 is a neighborhood
of (zg,yg) with Wé NW =0, and where Ug U Ué C U ify < B < a. Choose
(o, Yo) € W in such a way that z4 € ﬂﬁ<a Ué. Then we can take neighborhoods
Wo = Uqy x Vo and W/, = U/, x Vi of (24,ya) and (z9,ya), respectively, such
that Wg, N W = () and Wo € W, and where Uq U Uy, € (3, Up. This finishes
our recursive construction.

Since X x Y is pseudo-wi-compact, the family F = {W,, : @ < w1} has an
accumulation point (z,y) € W. We claim that (z,y) is an accumulation point
of the family 7' = {W/, : a < wy}. Indeed, let ag < wy be arbitrary. Since
Ua WU, C Ug if 8 < a < wy and each U!, is clopen, we have x € ma<w1 Ul. Let
U x V be a neighborhood of (z,y) in X x Y. Since y is an accumulation point
of the family {V, : @ < w1}, there exists @ > ag such that V NV, # §. Clearly,
x € UNUL, so that (U x V) N (UL, x Vi) # 0. Our claim is proved.

Thus, (z,y) € JFNUF' # 0. However, | JF C W and |JF' C (X xY)\W =
W', whence JF N JF' € WNW' = (). This contradiction shows that the set
p(W) is clopen in X.

Conversely, suppose that both spaces X and Y are pseudo-wi-compact and
p: X xY — X transforms clopen subsets of X X Y to clopen subsets of X.
Suppose to the contrary that X x Y contains a discrete family {Og, : @ < w1} of
nonempty clopen sets. For every a < wy, put W, = B>a Og. Then we have a
decreasing sequence Wy D W1 D -+ D W, O ..., a < wi, of nonempty clopen
subsets of X x Y with empty intersection. Each set U, = p(W4,) is clopen in
X and, since X is pseudo-wi-compact, the set (), , Ua is nonempty. Let zg
be an element of (), Ua. The sets Vo = ({zo} x Y) N Wy are clopen in the
pseudo-w1-compact space {zo} x Y. Hence (., Va € y<y, Wa is nonempty.
This contradiction proves the lemma. (I

Lemma 3.2. Suppose that the product X x Y of P-spaces X and Y is pseudo-
wi-compact. If W is a clopen set in X x Y, then for every xg € p(W), there
exists a clopen neighborhood U of zp in X such that U x Vi, C W, where
Veo ={y €Y : (zg,y) € W}.

PROOF: Set O = (X x Vg,) \ W. Since Vg, is clopen in Y, the set O is clopen
in X xY. From Lemma 3.1 it follows that p(O) and U = X \ p(O) are clopen
sets in X, where p: X X Y — X is the projection. Note that g € U and if
(z,y) € U x Vi, then x ¢ p(O). So, (x,y) € W and, hence, U x V,, CW. O

The next result can be obtained by combining [8, Theorem 1.6] and the char-
acterization of the so-called approximation property for products of two spaces
given in [2]. We prefer, however, to supply the reader with a direct proof.
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Lemma 3.3. Suppose that the product X = Hle X,; of P-spaces is pseudo-w1-

compact. If W is a clopen set in X, then W = |, c,, Hi-g:l Up,i, where the sets
Uy, are clopen in X; for alln € w and i < k.

PRrROOF: By Lemma 3.1, it suffices to consider the case n = 2. Let W be a clopen
subset of X7 x Xo. Then W/ = X \ W is clopen as well. For every x € X1, put

Vo={y€Xo:(r,y) €W} and V] ={y € Xo: (2,y) € W'}.

Then both sets V, and V.. are clopen in X5 and V) = X5\ V. Consider the
equivalence relation ~ on Xj defined by x ~ y if and only if V; = V;. We claim
that for every z € X7, the equivalence class [z] of z is open in X;. Indeed, if
y € [z], then V; = V; = V. Apply Lemma 3.2 to choose a clopen neighborhood
U of y in X7 such that U x V C W and U x V/ C W/ where V/ = X5\ V. Then
V., =V for each z € U, so that y € U C [z]. This proves that the set [x] is open.

Since the space X7 is pseudo-wi-compact and the equivalence classes [z] with
x € X; form a disjoint open cover of X1, there exists a countable set {zy, : n €
w} € Xj such that X7 = U,c,[zn]. It is clear that every set Up1 = [z5] is
clopen in X7. Therefore, W = J,,c, Un,1 X Uy 2 is the required representation of
W, where Uy, 2 = V,, for each n € w. ([

It is well known (see [6]) that if a product space X = [[;c; X; has countable
cellularity, then every regular closed set in X depends on at most countably many
coordinates. In a sense, our next result is an analogue of this fact in the case when
the product space X is pseudo-wi-compact and the factors X; are P-spaces.

Lemma 3.4. Suppose that a product X = [[,c; X; of P-spaces is pseudo-wi-
compact. Let o(a) C X be a o-product endowed with the relative Rg-box topo-
logy (finer than the usual subspace topology). Then every clopen subset of o(a)
depends on at most countably many coordinates.

PRrROOF: It is clear that the space o(a) with the Xg-box topology is a P-space. Let
U be a clopen subset of o(a). Then V = o(a) \ U is also clopen in o(a). Suppose
that m;(U) Nwy(V) # 0 for every countable set J C I. Let us call aset A C o(a)
canonical if A has the form o(a) N P, where P is an Rg-box in X. First, we prove
the following auxiliary fact.

Claim. Let A C U and B CV be canonical open sets in o(a) such that U' =
U\NA# D and V' =V \B# 0. Then w;(U")N7; (V') # 0 for each countable set
JCI.

Indeed, there exists a nonempty countable set C' C I such that A = o(a) N

7T517Tc(A) and B =o(a)N 7T517T0(B). Let J be a countable subset of I. We can
assume that C C J. Since ANV =0 = BNU, we infer that

(1) 77(A)N7y(V)=0 and 7;(B)Nw;(U)=0.
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Note that the set U’ U A is dense in U and V' U B is dense in V. Since the
restriction of 77 to o(a) is an open map, from 7 7(U) Nw (V) # 0 it follows that

(2) WJ(U’UA)QTFJ(V’UB)#@.

Note that U’ C U and V' C V, so (1) implies that 7 ;(U’) N7y (B) =0, 7;(V') N
77(A) =0 and 7;(A) N7 ;(B) = (). Therefore, from (2) it follows that 7 ;(U’) N
77(V') # 0. This proves our claim.

We will construct by recursion three sequences {In : @ < w1}, {Ung : @ < wi}
and {V4, : @ < w1} satisfying the following conditions for all 5, v < wi:

(i) I € 1, [Ig] < Ro;

(ii) Iy C Igif v < B

(iii) Ug and V3 are nonempty canonical clopen sets in o(a);

(iv) Ug cU, Vﬁ CV and F[B(Uﬁ) = W]ﬁ(Vﬁ);

(v) Uy =0(a)n Wl_ﬁlﬁjﬁ(Ufy) and V, = o(a) N wl_ﬁlwlﬁ (V) if v < f3;
(vi) UyNUg =0 and V, NVg =0 if v < S.

To start, take a nonempty countable set Iy C I and choose canonical clopen
sets Up and Vp in o(a) such that Ug C U, Vo € V and 7y, (Ug) N 7y, (Vo) # 0.
Taking smaller clopen sets, one can assume that 77, (Up) = 71, (Vo).

Suppose that at some stage o < w1, we have defined sequences {Iz : § < a},
{Ug : B < a} and {V3 : B < a} satisfying conditions (i)-(vi). Since each Iy
is countable and the sets Ug, Vj depend on countably many coordinates, there
exists a countable set I, C I such that Iz C I, Ug = o(a) N wj_alwla (Ug) and
Vg = a(a)ﬂwl_alwla (V) for each 8 < . Let U}, = U\Gq and V,, = V\ Hq, where
Go = U6<a Ug and Hy = U,B<a V. Apply the above Claim to choose nonempty
canonical clopen sets Uy, C U), and V, C V/ such that 7;, (Us) = 77, (Va).
An easy verification shows that the sequences {I3 : 3 < a}, {Ug: 8 < a} and
{Vs : B < o} satisty conditions (i)—(vi) for all 3,7 < «, thus finishing our recursive
construction.

Let K = Uyp<w, la- By (iv), the set G = U, Ua is contained in U and
H= Ua<w1 Ve is contained in V, so that GNH = (). To obtain a contradiction, it
suffices to show that the sets G and H have a common cluster point in o(a). From
(v), (ii) and our definition of the sets G and H it follows that G = o(a)ﬂwl_(l 7k (G)
and H = o(a) N ﬁl_(le (H), so we can assume without loss of generality that
K=1

By Lemma 2.3, the P-space o(a) is pseudo-wi-compact. Hence the family
v ={Uq : @ < w1} has an accumulation point = € o(a) and every neighborhood
of x in o(a) intersects uncountably many elements of 4. Let O be a canonical
open neighborhood of z in X and let C' = coord O. Since |C| < Ry, (ii) implies
that there exists 3 < wy such that C' C Ig. There are uncountably many ordinals
a < wy such that 8 < o and O N U, # (). For every such an o < wq, let zo
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be an arbitrary point of the set 77 (O NUy) C w1, (0) N7y, (Us). From (iv)
it follows that w7 (Us) = 71, (Va), s0 za € 71, (0) N7y, (Vo). Choose a point
z € Vo such that 77, (2) = za. Since coordO = C C Ig C I, we conclude that
z € ONVy # 0. This immediately implies that = is an accumulation point of
the family {V, : @ < w1} and, hence, x € H. Thus, x € G N H # (), which is
a contradiction.

We have thus proved that 7;(U) N7 ;(V) = 0 for some nonempty countable
subset J of I, whence it follows that U = o(a) N 7T;17TL](U). In other words, U
depends only on the set J. (]

A simple modification of the argument in the proof of Lemma 3.4 (combined
with the A-lemma) implies the following corollary.

Corollary 3.5. Let {X; :i € I} be a family of P-spaces such that the product
X =[I;er X; is pseudo-wi-compact. If U and V are open sets in X and unv =0,
then there exists a nonempty countable set J C I such that 7;(U) Nwy(V) = 0.

It is not clear whether one can find a countable set J C I in Corollary 3.5
satisfying 77 (U) N w7 (V) = 0.

Lemma 3.6. Let X = [[;c; be a product space and (a) C X be the o-product
with center at a € X. Suppose that § = J C I and that a continuous map
f: X — Y to a Hausdorff space Y satisfies f(x) = f(y) whenever z,y € o(a) and
7w j(x) =7 5(y). Then f depends only on J.

ProOF: Let x,y € X satisfy mj(x) = ms(y). Suppose to the contrary that
f(z) # f(y) and choose in X disjoint open neighborhoods U and V' of z and y,
respectively, such that f(U)N f(V) = 0. We can assume without loss of generality
that the sets U and V' are canonical and coordU = C = coord V. Let us define
two points z*,y* € X by

x (i) if ieC;
(@) =a(i) if ieI\C

and, similarly,
. y(i) if 1ed;
yr@) =9 "L
y*(@) =a(i) if ieI\C.

Then z*,y* € o(a) and 7y(a*) = 77(y*), so that f(z*) = f(y*). On the other

hand, we have z* € U and y* € V, whence f(z*) € f(U) and f(y*) € f(V).

Since f(U)N f(V) = 0, this implies that f(z*) # f(y*), which is a contradiction.
(]

Let f: X — Y and g: X — Z be continuous maps, where Y = f(X). We say
that f s finer than g or, in symbols, f < g if there exists a continuous map
©:Y — Z such that ¢ = ¢ o f. The theorem below is the main result of this
section.
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Theorem 3.7. Let X = [];,c; X; be a product of P-spaces and f: X — Y be a
continuous map onto a space Y of countable pseudocharacter. If X is pseudo-wi-
compact, then f depends on at most countably many coordinates. In addition, one
can find a countable set C' C I and, for each i € C', a continuous map h;: X; — N
to the discrete space N such that (][;cc hi) o m¢ < f. Hence nw(Y') < Ng.

ProOOF: First, we show that f depends on countably many coordinates. Choose
any point ¢ € X and denote by o(a) the o-product of the spaces X; with center at
a. Let o(a) carry the relative Ro-box topology (which is finer than the subspace
topology of o(a) inherited from X). By Lemma 2.3, the P-space o(a) is pseudo-
wy-compact. Since (V) < R, the set Fy, = f~(y) No(a) is clopen in o(a)
for each y € Y. Clearly, {Fy : y € f(o(a))} is a partition of o(a) into disjoint
clopen sets. Hence, the pseudo-wi-compactness of o(a) implies that the image
Z = f(o(a)) is countable.

Given a nonempty set J C I, we denote by m; the projection of X onto
X7 =Il;cs Xi. By Lemma 3.4, every set F;, depends only on a countable number
coordinates, that is, there exists a countable set C(y) C I such that F}, = o(a) N

ngy)ﬂc(y) (Fy). Put C = Uyez C(y). Then C is a countable subset of I and

Fy =o(a)N Walﬂ'c(Fy) for each y € Z. Therefore, if z,y € o(a) and 7o (x) =
mco(y), then f(z) = f(y). Apply Lemma 3.6 to conclude that f depends only on
the set C'. In other words, there exists a map fo: Xg — Y such f = foome.
The map f¢ is continuous because the projection 7o is open. We can assume,
therefore, that C' = I (and fo = f). In addition, we can assume that [ = w, i.e.,
X = HnEw X,, and that each factor X, is infinite.

For every n € w, consider the subspace K, of X defined by

Ky, ={r € X :2(i) =a(i) for each i>n}.

Then K, = [[;<,, Xi, so that K, is a pseudo-wi-compact P-space. As above,
it is easy to see that the image f(K}) is countable for each n € w and the set
Fny = Ky, f71(y) is clopen in K, for each y € f(Ky). By Lemma 3.3, every
set I,y can be represented as a countable union of basic open sets of the form
Uy X -+ x Up, where U; is a clopen subset of X; for each i < n (we identify K,
and Xp % ... x X;). Since these representations of the sets Fj, , involve only
countably many clopen sets in each of the factors Xg,... , Xy, one can find, for
every ¢ < m, a continuous map g, ;: X; — N to the discrete space N such that the
direct product pn = [];<,, gn,; satisfies pn < fn, where fn, = f [k, . For every
i € w, let g; be the diagonal product of the family {gn,i : n > i}. Then the map
git X; — N@\? is continuous and, clearly, the product map ¢, = [[;<,, 9; satisfies
@n < Pn < fn for each n € w. Again, the image g;(X;) is countable and the fibers
gi_l(y), with y € ¢;(X;), form a partition of X; into clopen sets. Hence, for every
1 € w, there exists a continuous onto map h;: X; — N satisfying h; < ¢g;. Let
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h = [];c, hi: X — N¥ be the direct product of the family {h; : i € w}. Note that
each map h; is open and onto, and so is the map h.
Let us verify that h < f. Indeed, since h; < g; for each ¢ € w, we have

Hign h; < Hign gi = qn < fn and, hence,

(3) ¢n =hlg,= [ hi=<fa

i<n

for all n € w. First, we claim that h~1h(z) C f~1f(z) for every z € X. Suppose
to the contrary that there exist points z,y € X such that h(z) = h(y) but
f(x) # f(y). Choose in Y disjoint neighborhoods U, and Uy of f(x) and f(y),
respectively. By the continuity of f, there are canonical open sets V, > z and
Vy 2 y in the product space X such that f(V;) C U, and f(Vy,) C U,. We
can assume without loss of generality that V; = Vi x --- x V¥’ x P, and V, =
Voy X -+ x ViY x Py, where n € w, the sets Vim,Viy areopenin X; fori=20,... ,n
and P, = [];5, X;. For every n € w, denote by r, the retraction of X onto
Ky, defined by ry(z)(i) = x(i) if i < n and r(x) = a(i) if i > n. Then 2/ =
rn(z) € Va N Ky and y' = rp(y) € Vy N Ky,. Therefore, from f(z') € f(Vy) C Uy,
f) € f(Vy) € Uy and U NU, = 0 it follows that f(z) # f(y'). By (3),
however, we have h < ¢p orp < fnorn = fory, and, hence, the equality
h(z) = h(y) implies that f(rn(z)) = f(rn(y)) or, equivalently, f(z') = f(¥/).
This contradiction proves the claim. So, there exists a map i: N — Y satisfying
f =1ioh. Since the map h is open, i is continuous. Therefore, h < f.

Finally, the space N“ is second countable, so that the image Y = f(X) = ¢(N¥)
has a countable network. (]

It is shown in [15, Lemma 3.29] that every w-stable space is pseudo-wi-compact.
For P-spaces, w-stability and pseudo-wi-compactness are equivalent by [15, Propo-
sition 3.30]. It turns out that this equivalence holds for arbitrary products of
P-spaces.

Corollary 3.8. Suppose that the product X = Hie] X, of P-spaces is pseudo-
wi-compact. Then the space X is w-stable.

PROOF: Let f: X — Y be a continuous map onto a space Y which admits a coarser
second countable Tychonoff topology. Then Y is Hausdorff and ¥ (Y) < Rg, so
that nw(Y) < ¥y by Theorem 3.7. O

By [1, Theorem 10], every o-product of Lindel6f P-spaces is w-stable. The next
corollary extends this result to products of Lindel6f P-spaces.

Corollary 3.9. Every product of Lindelof P-spaces is w-stable.

PRrROOF: By Noble’s theorem in [10], finite products of Lindeléf P-spaces are Lin-
delof (hence, pseudo-wi-compact). Therefore, an arbitrary product X = [[,c; X;
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of Lindel6f P-spaces is pseudo-wi-compact by Lemma 2.3, and the required con-
clusion follows from Corollary 3.8. O

In general, the product of two pseudo-wi-compact P-spaces can fail to be
pseudo-wi-compact. In the class of P-groups, however, pseudo-wi-compactness
becomes productive by Lemmas 2.2 and 2.3. This explains, in part, the strong
factorization property of products of R-factorizable P-groups given in the next
theorem.

Theorem 3.10. Let G = [[;,c;G; be a direct product of R-factorizable P-
groups. If f:G — Y is a continuous map onto a space Y with ¥(Y) < N,
then there exists a quotient homomorphism m: G — H onto a second countable
topological group H such that m < f. In particular, nw(Y) < Ng.

PrOOF: By Lemmas 2.2 and 2.3, the group G is pseudo-wi-compact. Apply
Theorem 3.7 to find a countable set C' C I and, for each ¢ € C, a continuous map
h;:Gi — N such that ([[;cc hi) omc < f. Since the groups G; are R-factoriz-
able, for each ¢ € C' there exists a continuous homomorphism p;: G; — K; onto
a second countable group K; such that p; < h;. Note that the fibers pi_l(y) are
Gs-sets in GG, so they are open in G;. Clearly, the homomorphism p; remains
continuous if we endow the group K; with the discrete topology. The group G; is
pseudo-wi-compact by Theorem 1.1, so the cover of G; by the fibers pz._l(y), with
y € K, is countable. Hence the discrete group K; = p;(G;) is countable and the
homomorphism p; is open.

Let p be the direct product of the homomorphisms p;, i € C. Then the
homomorphism p: [[;cc Gi — [[;ec Ki is continuous, open and the group H =
[I;ec Ki is second countable. It is clear that the homomorphism ¢ = pongc of G
to H is continuous, open and satisfies ¢ < ([[;cc i) © ¢ < f. Therefore, there
exists a continuous map i: H — Y such that f = iop and, hence, Y = i(H). This
implies that Y has a countable network. ([l

The following corollary to Theorem 3.10 is immediate. It was proved (by a
different method) in [15].

Corollary 3.11. Let G be a direct product of R-factorizable P-groups. Then
the group G is R-factorizable and T-stable for 7 € {w, w1 }.

ProoF: The R-factorizability of G follows directly from Theorem 3.10. In addi-
tion, G is wi-stable by [15, Theorem 3.9]. To conclude that G is w-stable, apply
Corollary 3.8 and Lemmas 2.2 and 2.3. ]

By a theorem of Comfort and Ross [5], the class of pseudocompact groups is
productive. Therefore, Corollary 3.11 extends a certain similarity in the perma-
nence properties of R-factorizable P-groups and pseudocompact groups mentioned
in Section 2. In addition, the groups of both classes are w-stable. In fact, one
can apply Lemma 5.9 of [14] to prove the following analogue of Theorem 3.10 for
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pseudocompact groups: if a regular space Y of countable pseudocharacter is a
continuous image of (a Gg-subset of) a pseudocompact group, then nw(Y’) < V.

4. Open problems

Here we formulate two open problems concerning Theorem 2.5.

Problem 4.1. Is every Rg-bounded P-group topologically isomorphic to a sub-
group of an R-factorizable P-group?

Problem 4.2. Does Theorem 2.5 remain valid in the non-abelian case?
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