# Subgroups and products of $\mathbb{R}$ -factorizable P-groups

CONSTANCIO HERNÁNDEZ, MICHAEL TKACHENKO

Abstract. We show that every subgroup of an  $\mathbb{R}$ -factorizable abelian P-group is topologically isomorphic to a closed subgroup of another  $\mathbb{R}$ -factorizable abelian P-group. This implies that closed subgroups of  $\mathbb{R}$ -factorizable P-groups are not necessarily  $\mathbb{R}$ -factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product  $X = \prod_{i \in I} X_i$  of P-spaces and the space X is pseudo- $\omega_1$ -compact, then  $nw(Y) \leq \aleph_0$ . In particular, direct products of  $\mathbb{R}$ -factorizable P-groups are  $\mathbb{R}$ -factorizable and  $\omega$ -stable.

Keywords: P-space, P-group, pseudo- $ω_1$ -compact, ω-stable,  $\mathbb{R}$ -factorizable,  $\aleph_0$ -bounded, pseudocharacter, cellularity,  $\aleph_0$ -box topology,  $\sigma$ -product

Classification: Primary 54H11, 22A05, 54G10; Secondary 54A25, 54C10, 54C25

### 1. Introduction

The main subject of this article are P-groups, that is, topological groups in which all  $G_{\delta}$ -sets are open. It is known that P-groups are peculiar in many respects. For example, every P-group G has a local base at the identity of open subgroups and if G is  $\aleph_0$ -bounded, it has a local base at the identity of open normal subgroups [15, Lemma 2.1]. Weak compactness type conditions substantially improve the properties of P-groups. The following result proved in [15] demonstrates this phenomenon and will be frequently used in the article.

**Theorem 1.1** ([15, Theorem 4.16 and Corollary 4.14]). For a P-group G, the following conditions are equivalent:

- (1) G is  $\mathbb{R}$ -factorizable:
- (2) G is pseudo- $\omega_1$ -compact;
- (3) G is  $\omega$ -stable;
- (4) G is  $\aleph_0$ -bounded and every continuous homomorphic image H of G with  $\psi(H) \leq \aleph_1$  is Lindelöf.

In addition, every  $\mathbb{R}$ -factorizable P-group G satisfies  $c(G) \leq \aleph_1$ .

All terms that appear in Theorem 1.1 are explained in the next subsection.

Subgroups of  $\mathbb{R}$ -factorizable P-groups need not be  $\mathbb{R}$ -factorizable (see [13, Example 2.1] or [15, Example 3.28]). It is an open problem whether every  $\aleph_0$ -bounded P-group is topologically isomorphic to a subgroup of an  $\mathbb{R}$ -factorizable

P-group (see Problem 4.1). We show, however, that every subgroup of an  $\mathbb{R}$ -factorizable abelian P-group can be embedded as a closed subgroup into another  $\mathbb{R}$ -factorizable abelian P-group (see Theorem 2.5). Hence closed subgroups of  $\mathbb{R}$ -factorizable P-groups can fail to be  $\mathbb{R}$ -factorizable. This is the main result of Section 2.

By [15, Theorem 5.5], direct products of  $\mathbb{R}$ -factorizable P-groups are  $\mathbb{R}$ -factorizable. In Theorem 3.7, we present a purely topological result about a special representation of continuous maps of products of P-spaces which generalizes Theorem 5.5 of [15]. It implies, in particular, that for any product of P-spaces, the properties of being  $\omega$ -stable and pseudo- $\omega_1$ -compact are equivalent.

**1.1 Notation and terminology.** All spaces and topological groups are assumed to be Hausdorff unless a different axiom of separation is specified explicitly.

Let  $\{X_i : i \in I\}$  be a family of topological spaces. A subset B of the product  $X = \prod_{i \in I} X_i$  is called a *box* in X if it has the form  $B = \prod_{i \in I} B_i$ , where  $B_i \subseteq X_i$  for each  $i \in I$ . Given a box  $B \subseteq X$ , we define the set coord  $B \subseteq I$  by

$$\operatorname{coord} B = \{ i \in I : B_i \neq X_i \}.$$

The  $\aleph_0$ -box topology of the product X is the topology generated by all boxes of the form  $U = \prod_{i \in I} U_i$ , where  $|\operatorname{coord} U| \leq \aleph_0$  and each  $U_i$  is open in  $X_i$ . Clearly, the Tychonoff topology of the space X is generated by open boxes U with  $|\operatorname{coord} U| < \aleph_0$ .

For every nonempty set  $J \subseteq I$ , we put  $X_J = \prod_{i \in I} X_i$  and denote by  $\pi_J$  the projection of X onto  $X_J$ . Given a map  $f: X \to Y$ , we say that f depends only on a set  $J \subseteq I$  if f(x) = f(y) for all  $x, y \in X$  satisfying  $\pi_J(x) = \pi_J(y)$ .

Pick a point  $a \in X$  and, for every  $x \in X$ , put

$$supp(x) = \{i \in I : x_i \neq a_i\}.$$

Then the subset

$$\sigma(a) = \{x \in X : \text{supp}(x) \text{ is finite } \}$$

of X is called the  $\sigma$ -product of the family  $\{X_i : i \in I\}$  with center at a.

Let  $G = \prod_{i \in I} G_i$  be a direct product of groups. For every  $x \in G$ , we set  $\text{supp } x = \{i \in I : x_i \neq e_i\}$ , where  $e_i$  is the identity of  $G_i$ . Then the  $\sigma$ -product  $\sigma(e) \subseteq G$  is a subgroup of G, where e is the identity of G.

Suppose that Y is a space. We say that Y is a P-space if every countable intersection of open sets is open in Y. Let  $\tau$  be an infinite cardinal. A subset  $Z \subseteq Y$  is said to be  $G_{\tau}$ -dense in Y if Z intersects every nonempty  $G_{\tau}$ -set in Y.

A space Y is called  $\omega$ -stable if every continuous image Z of Y which admits a coarser second countable Tychonoff topology satisfies  $nw(Z) \leq \aleph_0$ . In general, let  $\tau \geq \aleph_0$ . A space Y is called  $\tau$ -stable if every continuous image Z of Y which admits a coarser Tychonoff topology of weight  $\leq \tau$  satisfies  $nw(Z) \leq \aleph_0$ . If Y

is  $\tau$ -stable for  $\tau \geq \aleph_0$ , then Y is said to be stable. It is known that arbitrary products and  $\sigma$ -products of second countable spaces are  $\omega$ -stable [1, Corollary 13].

A space Y is said to be  $pseudo-\omega_1$ -compact if every locally finite (equivalently, discrete) family of open sets in Y is countable. Lindelöf spaces as well as spaces of countable cellularity are pseudo- $\omega_1$ -compact.

A topological group G is called  $\aleph_0$ -bounded if it can be covered by countably many translates of any neighborhood of the identity. We also say that G is  $\mathbb{R}$ -factorizable if every continuous real-valued function f on G can be represented in the form  $f = h \circ \varphi$ , where  $\varphi \colon G \to H$  is a continuous homomorphism onto a second countable topological group H and h is a continuous real-valued function on H. Every  $\mathbb{R}$ -factorizable group is  $\aleph_0$ -bounded, but not vice versa [13], [14].

The kernel of a homomorphism  $p: G \to H$  is ker p. The minimal subgroup of a group G containing a set  $A \subseteq G$  is denoted by  $\langle A \rangle$ .

As usual, w(Y), nw(Y),  $\psi(Y)$ , L(Y), and c(Y) are the weight, network weight, pseudocharacter, Lindelöf number and cellularity of a space Y, respectively.

The set of all positive integers is denoted by  $\mathbb{N}$ , while  $\mathbb{Z}$  is the additive group of integers.

## 2. Subgroups of $\mathbb{R}$ -factorizable P-groups

Here we show that an arbitrary subgroup of an  $\mathbb{R}$ -factorizable abelian P-group is topologically isomorphic to a closed subgroup of another  $\mathbb{R}$ -factorizable abelian P-group. This result enables us to conclude that closed subgroups of  $\mathbb{R}$ -factorizable P-groups are not necessarily  $\mathbb{R}$ -factorizable. Since, by Theorem 1.1,  $\mathbb{R}$ -factorizablity and pseudo- $\omega_1$ -compactness coincide for P-groups, this makes  $\mathbb{R}$ -factorizable P-groups look like pseudocompact groups: every subgroup of a pseudocompact group is topologically isomorphic to a closed subgroup of another pseudocompact group [4]. This analogy between  $\mathbb{R}$ -factorizable P-groups and pseudocompact groups will be extended in Section 3.

We start with several auxiliary facts.

**Lemma 2.1.** Suppose that G is an  $\mathbb{R}$ -factorizable P-group, and let H be a  $G_{\omega_1}$ -dense subgroup of G. Then H is  $\mathbb{R}$ -factorizable.

PROOF: By Theorem 1.1, G satisfies  $c(G) \leq \aleph_1$ . Therefore, the dense subgroup H of G also satisfies  $c(H) \leq \aleph_1$ . Let  $f: H \to \mathbb{R}$  be a continuous function. By Schepin's theorem in [12], one can find a quotient homomorphism  $\pi: H \to K$  onto a topological group K with  $\psi(K) \leq \aleph_1$  and a continuous function  $g: K \to \mathbb{R}$  such that  $f = g \circ \pi$ . Observe that  $H \subseteq G \subseteq \varrho G = \varrho H$ , where  $\varrho G$  and  $\varrho H$  denote the Raĭkov completions of G and G, respectively. Now, consider the continuous homomorphic extension  $\hat{\pi}: \varrho H \to \varrho K$  of  $\pi$ , and take the restriction  $\hat{\pi} = \hat{\pi}|_{G}: G \to \varrho K$  of  $\hat{\pi}$  to G. Since H is  $G_{\omega_1}$ -dense in G, the image  $K = \tilde{\pi}(H)$  is  $G_{\omega_1}$ -dense in  $\tilde{\pi}(G)$ . We claim that  $\tilde{\pi}(G) = K$ .

Indeed,  $\psi(K) \leq \aleph_1$  implies that there exists a family  $\{U_\alpha : \alpha < \omega_1\}$  of open sets in  $\tilde{\pi}(G)$  such that  $\{e\} = K \cap \bigcap_{\alpha \in \omega_1} U_\alpha$ , where e is the identity of  $\varrho K$ . If  $P = \bigcap_{\alpha \in \omega_1} U_\alpha \setminus \{e\} \neq \emptyset$ , then P is a nonempty  $G_{\omega_1}$ -set in  $\tilde{\pi}(G)$  that does not intersect K, which is a contradiction. Thus,  $\psi(\tilde{\pi}(G)) \leq \aleph_1$ . Since every fiber of  $\tilde{\pi}$  is a  $G_{\omega_1}$ -set in G, the group H intersects all fibers of  $\tilde{\pi}$ . Hence we have  $\tilde{\pi}(G) = \tilde{\pi}(H) = K$ . So,  $\tilde{f} = g \circ \tilde{\pi}$  is a continuous extension of f to G. This implies that H is C-embedded in G and, hence, H is  $\mathbb{R}$ -factorizable by [7, Theorem 2.4].

Pseudo- $\omega_1$ -compactness is not a productive property, not even in the class of P-spaces (one can modify Novak's construction in [11] to produce a counterexample). The following lemma shows the difference between P-spaces and P-groups.

**Lemma 2.2.** A finite product of  $\mathbb{R}$ -factorizable P-groups is pseudo- $\omega_1$ -compact (equivalently,  $\mathbb{R}$ -factorizable).

PROOF: Let  $G = G_1 \times \cdots \times G_n$ , where each  $G_i$  is an  $\mathbb{R}$ -factorizable P-group. Then G is also a P-group. Hence we can assume that n=2. Note that the factors  $G_1$  and  $G_2$  are  $\aleph_0$ -bounded, and so is the product group G. So, by Theorem 1.1, it suffices to verify that every continuous homomorphic image H of G with  $\psi(H) \leq \aleph_1$  is Lindelöf. Let  $p: G \to H$  be a corresponding homomorphism. Then one can apply [14, Lemma 3.7] to find, for every i=1,2, a continuous homomorphism  $f_i: G_i \to K_i$  onto a topological group  $K_i$  with  $\psi(K_i) \leq \aleph_1$  such that  $\ker f_1 \times \ker f_2 \subseteq \ker p$ . Refining topologies of the groups  $K_i$ , we can assume that the homomorphisms  $f_1$  and  $f_2$  are open. Then  $K_1$  and  $K_2$  are P-groups by [15, Lemma 2.1] and the product homomorphism  $f_1 = f_1 \times f_2$  of  $f_1 = f_1 \times f_2$  of  $f_2 = f_1 \times f_2$  is open. From our choice of the homomorphisms  $f_1 = f_1 \times f_2$  is open, the homomorphism  $f_1 = f_1 \times f_2$  is continuous. By Theorem 1.1, the  $f_2 = f_1 \times f_2$  and  $f_2 = f_2 \times f_3 = f_1$  and  $f_2 = f_1 \times f_3 = f_2$  is open, the homomorphism  $f_2 = f_1 \times f_3 = f_3 = f_3$ . Since  $f_2 = f_1 \times f_3 = f_3$ 

The next result has several applications in this section and in Section 3.

**Lemma 2.3.** The following conditions are equivalent for a product space  $X = \prod_{i \in I} X_i$ :

- (a) X is pseudo- $\omega_1$ -compact;
- (b) the product  $X_J = \prod_{i \in J} X_i$  is pseudo- $\omega_1$ -compact for each finite set  $J \subseteq I$ ;
- (c) every  $\sigma$ -product  $\sigma(a) \subseteq X$  is pseudo- $\omega_1$ -compact;
- (d) every  $\sigma$ -product  $\sigma(a) \subseteq X$  endowed with the relative  $\aleph_0$ -box topology is pseudo- $\omega_1$ -compact.

PROOF: It clear that (a)  $\Rightarrow$  (b). Since, for each  $a \in X$ ,  $\sigma(a)$  is dense in X when X carries the usual product topology and the  $\aleph_0$ -box topology is finer than the

product topology of X, we have that  $(c) \Rightarrow (a)$  and  $(d) \Rightarrow (c) \Rightarrow (b)$ . Therefore, it suffices to show that  $(b) \Rightarrow (d)$ .

Let  $\{U_{\alpha}: \alpha < \omega_1\}$  be a collection of nonempty open sets in  $\sigma(a)$ . We shall show that this family cannot be discrete. Without loss of generality, we may assume that  $U_{\alpha} = \sigma \cap V_{\alpha}$  for each  $\alpha < \omega_1$ , where  $V_{\alpha}$  has the form  $\prod_{i \in I} V_{\alpha,i}$ , the sets  $V_{\alpha,i}$  are open in  $X_i$  and coord  $V_{\alpha} \leq \aleph_0$ . Take a point  $x_{\alpha} \in U_{\alpha}$ . Since  $x_{\alpha} \in \sigma(a)$ , the point  $a(i) \in X_i$  is an element of  $V_{\alpha,i}$  for all  $i \in I \setminus J_{\alpha}$ , where  $J_{\alpha} = \operatorname{supp}(x_{\alpha})$  is a finite subset of I. Now we apply the  $\Delta$ -lemma in order to find a subset A of  $\omega_1$  of cardinality  $\aleph_1$  and a finite set  $J \subseteq I$  such that  $J_{\alpha} \cap J_{\beta} = J$  whenever  $\alpha, \beta \in A$  and  $J_{\alpha} \neq J_{\beta}$ . Since the space  $X_J = \prod_{i \in J} X_i$  is pseudo- $\omega_1$ -compact, there exists a point  $y \in X_J$  such that every neighborhood of y intersects infinitely many elements of the family  $\{\prod_{i \in J} V_{\alpha,i} : \alpha \in A\}$ . Define a point  $x \in \sigma(a)$  by

$$x(i) = \begin{cases} y(i) & \text{if } i \in J; \\ a(i) & \text{if } i \in I \setminus J. \end{cases}$$

It is easy to see that  $\pi_J(x) = y$  and every neighborhood of x intersects an infinite number of elements of  $\{U_\alpha : \alpha \in A\}$ . Hence the space  $\sigma(a)$  is pseudo- $\omega_1$ -compact.

The equivalence of (a) and (b) in the above lemma should be a known result, but the authors have not found a corresponding reference in the literature.

Corollary 2.4. Let  $\Pi = \prod_{i \in I} G_i$  be a direct product of  $\mathbb{R}$ -factorizable P-groups. Then  $\sigma(e) \subseteq \Pi$ , endowed with the relative  $\aleph_0$ -box topology, is an  $\mathbb{R}$ -factorizable P-group.

PROOF: It is clear that  $\sigma(e)$  is a P-group. Therefore,  $\sigma(e)$  is  $\mathbb{R}$ -factorizable by Theorem 1.1, Lemma 2.2 and Lemma 2.3.

We now have all necessary tools to deduce the main result of this section about closed embeddings into  $\mathbb{R}$ -factorizable P-groups.

**Theorem 2.5.** Suppose that G is an  $\mathbb{R}$ -factorizable abelian P-group. If H is an arbitrary subgroup of G, then H can be embedded as a closed subgroup into another  $\mathbb{R}$ -factorizable abelian P-group.

PROOF: Let  $\mathbb{Z}$  be the discrete group of integers. Clearly,  $G \times \mathbb{Z}$  is an  $\mathbb{R}$ -factorizable abelian P-group that contains an isomorphic copy of G. Replacing G by  $G \times \mathbb{Z}$ , if necessary, we may assume that G contains an element g of infinite order,  $g \neq 0_G$ .

Let  $\lambda = |G| \cdot \aleph_2$  and put  $\kappa = \lambda$  if  $\lambda$  is a regular cardinal or  $\kappa = \lambda^+$ , otherwise. Consider the group

$$\sigma = \{x \in G^\kappa : |\operatorname{supp} x| < \aleph_0\}$$

endowed with the relative  $\aleph_0$ -box topology inherited from  $G^{\kappa}$ . Then  $\sigma$  is an  $\mathbb{R}$ -factorizable abelian P-group by Corollary 2.4 and, clearly,  $|\sigma| = \kappa$ . Let  $\sigma \setminus \{0_{\sigma}\} = \kappa$ 

 $\{x_{\alpha} : \alpha < \kappa\}$ . To every element  $x_{\alpha}$ , we assign an element  $\tilde{x}_{\alpha} \in \sigma$  recursively as follows. Choose  $\delta_0 > \max \sup x_0$  and define  $\tilde{x}_0 \in \sigma$  by

$$\tilde{x}_0(\nu) = \begin{cases} x_0(\nu) & \text{if } \nu \neq \delta_0; \\ g & \text{if } \nu = \delta_0. \end{cases}$$

Suppose that we have already defined  $\tilde{x}_{\beta}$  for each  $\beta < \alpha$ , where  $\alpha < \kappa$ . Choose  $\delta_{\alpha} > \sup(\sup x_{\alpha} \cup \bigcup_{\beta < \alpha} \sup \tilde{x}_{\beta})$  and define a point  $\tilde{x}_{\alpha} \in \sigma$  by

$$\tilde{x}_{\alpha}(\nu) = \begin{cases} x_{\alpha}(\nu) & \text{if } \nu \neq \delta_{\alpha}; \\ g & \text{if } \nu = \delta_{\alpha}. \end{cases}$$

It is clear that  $\delta_{\alpha} = \max \sup \tilde{x}_{\alpha}$ . This finishes our construction.

Observe that the sequence  $\{\delta_{\alpha}: \alpha < \kappa\}$  is strictly increasing (hence it is cofinal in  $\kappa$ ) and  $\tilde{x}_{\beta}(\delta_{\alpha}) = 0_G$  whenever  $\beta < \alpha < \kappa$ . Consider the subgroup  $G_0 = \langle H_0 \cup B \rangle$  of  $\sigma$ , where

$$H_0 = \{x \in \sigma : x(0) \in H \text{ and } x(\nu) = 0_G \text{ for each } \nu \neq 0\}$$

and  $B = \{\tilde{x}_{\alpha} : \alpha < \kappa\}$ . We claim that the group  $G_0$  is  $\mathbb{R}$ -factorizable and contains  $H_0 \simeq H$  as a closed subgroup. It is easy to see that  $H_0$  is closed in  $G_0$  because it can be expressed as the intersection of the coordinate 0 axes with  $G_0$ . Indeed, suppose that  $x \in G_0$  and  $x(\nu) = 0_G$  for all  $\nu > 0$ . By the definition of  $G_0$ , x has the form  $x = h + k_1 \tilde{x}_{\alpha_1} + \dots + k_n \tilde{x}_{\alpha_n}$ , where  $h \in H_0$ ,  $\alpha_1 < \alpha_2 < \dots < \alpha_n < \kappa$  and  $k_i \in \mathbb{Z}$  for  $i = 1, \dots, n$ . Then  $\tilde{x}_{\alpha_i}(\delta_{\alpha_n}) = 0_G$  for each i < n and  $\tilde{x}_{\alpha_n}(\delta_{\alpha_n}) = g$ . Hence  $k_n = 0$ . If we proceed in the same way for  $i = n - 1, \dots, 1$ , we obtain  $k_n = \dots = k_1 = 0$ , whence x = h, with  $h \in H_0$ .

By Lemma 2.1, to prove that  $G_0$  is  $\mathbb{R}$ -factorizable, it suffices to verify that  $G_0$  is  $G_{\omega_1}$ -dense in  $\sigma$ . To this end, it is enough to show that if  $x \in \sigma$ ,  $C \subseteq \kappa$  and  $|C| \leq \aleph_1$ , then there exists  $\alpha < \kappa$  such that  $\tilde{x}_{\alpha}(\nu) = x(\nu)$  for each  $\nu \in C$ . Suppose that  $x \in \sigma$  and choose  $\beta < \kappa$  such that  $\delta_{\beta} > \sup C$ . Then choose  $\alpha < \kappa$  such that  $\beta \leq \alpha$  and  $x_{\alpha}(\nu) = x(\nu)$  for each  $\nu < \delta_{\beta}$ . Then  $\tilde{x}_{\alpha}(\nu) = x(\nu)$  for each  $\nu \in C$ . This implies that the group  $G_0$  is  $G_{\omega_1}$ -dense in  $\sigma$  and, therefore,  $\mathbb{R}$ -factorizable.

**Corollary 2.6.** Closed subgroups of  $\mathbb{R}$ -factorizable P-groups need not be  $\mathbb{R}$ -factorizable.

PROOF: According to [13, Example 3.1], there exist an  $\mathbb{R}$ -factorizable abelian P-group G and a dense subgroup H of G such that H is not  $\mathbb{R}$ -factorizable. By Theorem 2.5, H is topologically isomorphic to a closed subgroup of another  $\mathbb{R}$ -factorizable P-group, so that closed subgroups of  $\mathbb{R}$ -factorizable P-groups are not necessarily  $\mathbb{R}$ -factorizable.

It is known that all subgroups of compact groups as well as all subgroups of  $\sigma$ -compact groups are  $\mathbb{R}$ -factorizable [13], [14]. In the following definition, we introduce the class of groups with this property.

**Definition 2.7.** A topological group G is called *hereditarily*  $\mathbb{R}$ -factorizable if all subgroups of G are  $\mathbb{R}$ -factorizable.

**Theorem 2.8.** Every hereditarily  $\mathbb{R}$ -factorizable P-group is countable and, therefore, discrete.

PROOF: Suppose to the contrary that G is an uncountable hereditarily  $\mathbb{R}$ -factorizable P-group and take a subset A of G of cardinality  $\aleph_1$ . It is clear that the P-group  $H = \langle A \rangle$  has cardinality  $\aleph_1$ . Since H is  $\mathbb{R}$ -factorizable and  $L(H) \leq \aleph_1$ , from [15, Corollary 3.34] it follows that H is a Lindelöf group. In its turn, this implies that  $w(H) \leq \aleph_1$  (see [15, Corollary 4.11]). If  $w(H) = \aleph_1$ , then by [7, Theorem 3.1], H has a subgroup which fails to be  $\mathbb{R}$ -factorizable, thus contradicting the hereditary  $\mathbb{R}$ -factorizability of G. Hence,  $w(H) = \aleph_0$ . Since H is a P-space, it is discrete and, consequently,  $|H| = w(H) = \aleph_0$ . This contradiction completes the proof.

One can reformulate Theorem 2.8 by saying that every uncountable P-group G contains a subgroup of size  $\aleph_1$  which fails to be  $\mathbb{R}$ -factorizable. Indeed, if G is  $\mathbb{R}$ -factorizable, this immediately follows from the above argument. Otherwise, by Theorem 1.1, G contains a discrete family  $\{U_\alpha : \alpha < \omega_1\}$  of nonempty open sets. Choose a subgroup H of G of size  $\aleph_1$  such that  $V_\alpha = H \cap U_\alpha \neq \emptyset$  for each  $\alpha < \omega_1$ . Then the family  $\{V_\alpha : \alpha < \omega_1\}$  of nonempty open sets is discrete in H, so that the group H is not  $\mathbb{R}$ -factorizable by Theorem 1.1.

# 3. Continuous images

By [15, Theorem 5.5], an arbitrary direct product G of  $\mathbb{R}$ -factorizable P-groups is  $\mathbb{R}$ -factorizable. Here we strengthen this result and show that every continuous map  $f: G \to X$  to a Hausdorff space X of countable pseudocharacter can be factored via a quotient homomorphism  $\pi: G \to K$  onto a second countable topological group K. In fact, this follows from an even stronger result (see Theorem 3.7): if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product X of P-spaces and X is pseudo- $\omega_1$ -compact, then  $nw(Y) \leq \aleph_0$ . In particular, the space X is  $\omega$ -stable. We precede this result by a series of lemmas. The first of them is an analogue of Noble's theorem on z-closed projections [9], [10].

**Lemma 3.1.** The Cartesian product  $X \times Y$  of regular P-spaces X and Y is pseudo- $\omega_1$ -compact if and only if X and Y are pseudo- $\omega_1$ -compact and the projection  $p: X \times Y \to X$  transforms clopen subsets of  $X \times Y$  to clopen subsets of X.

PROOF: Suppose that  $X \times Y$  is pseudo- $\omega_1$ -compact and let  $W \subseteq X \times Y$  be a clopen set. If there exists a point  $x_0 \in \overline{p(W)} \setminus p(W)$ , take any point  $y_0 \in Y$  and a neighborhood  $W_0' = U_0' \times V_0$  of  $(x_0, y_0)$ , where  $U_0'$  and  $V_0$  are clopen sets, such that  $W_0' \cap W = \emptyset$ . Pick a point  $(x_1, y_1) \in W$  with  $x_1 \in U_0'$ . Now we take neighborhoods  $W_1 = U_1 \times V_1$  and  $W_1' = U_1' \times V_1$  of  $(x_1, y_1)$  and  $(x_0, y_1)$ , respectively, where  $U_1$ ,

 $U_1'$  and  $V_1$  are clopen sets such that  $W_1' \cap W = \emptyset$ ,  $W_1 \subseteq W$  and  $U_1 \cup U_1' \subseteq U_0'$ . Suppose that for some  $\alpha < \omega_1$ , we have already chosen points  $(x_\beta, y_\beta) \in W$  as well as clopen sets  $W_\beta$  and  $W_\beta'$  for each  $\beta < \alpha$ , such that  $W_\beta = U_\beta \times V_\beta$  is a neighborhood of  $(x_\beta, y_\beta)$  satisfying  $W_\beta \subseteq W$  and  $W_\beta' = U_\beta' \times V_\beta$  is a neighborhood of  $(x_0, y_\beta)$  with  $W_\beta' \cap W = \emptyset$ , and where  $U_\beta \cup U_\beta' \subseteq U_\gamma'$  if  $\gamma < \beta < \alpha$ . Choose  $(x_\alpha, y_\alpha) \in W$  in such a way that  $x_\alpha \in \bigcap_{\beta < \alpha} U_\beta'$ . Then we can take neighborhoods  $W_\alpha = U_\alpha \times V_\alpha$  and  $W_\alpha' = U_\alpha' \times V_\alpha$  of  $(x_\alpha, y_\alpha)$  and  $(x_0, y_\alpha)$ , respectively, such that  $W_\alpha' \cap W = \emptyset$  and  $W_\alpha \subseteq W$ , and where  $U_\alpha \cup U_\alpha' \subseteq \bigcap_{\beta < \alpha} U_\beta'$ . This finishes our recursive construction.

Since  $X \times Y$  is pseudo- $\omega_1$ -compact, the family  $\mathcal{F} = \{W_\alpha : \alpha < \omega_1\}$  has an accumulation point  $(x,y) \in W$ . We claim that (x,y) is an accumulation point of the family  $\mathcal{F}' = \{W'_\alpha : \alpha < \omega_1\}$ . Indeed, let  $\alpha_0 < \omega_1$  be arbitrary. Since  $U_\alpha \cup U'_\alpha \subseteq U_\beta$  if  $\beta < \alpha < \omega_1$  and each  $U'_\alpha$  is clopen, we have  $x \in \bigcap_{\alpha < \omega_1} U'_\alpha$ . Let  $U \times V$  be a neighborhood of (x,y) in  $X \times Y$ . Since y is an accumulation point of the family  $\{V_\alpha : \alpha < \omega_1\}$ , there exists  $\alpha > \alpha_0$  such that  $V \cap V_\alpha \neq \emptyset$ . Clearly,  $x \in U \cap U'_\alpha$ , so that  $(U \times V) \cap (U'_\alpha \times V_\alpha) \neq \emptyset$ . Our claim is proved.

Thus,  $(x, y) \in \overline{\bigcup \mathcal{F}} \cap \overline{\bigcup \mathcal{F}'} \neq \emptyset$ . However,  $\bigcup \mathcal{F} \subseteq W$  and  $\bigcup \mathcal{F}' \subseteq (X \times Y) \setminus W = W'$ , whence  $\overline{\bigcup \mathcal{F}} \cap \overline{\bigcup \mathcal{F}'} \subseteq W \cap W' = \emptyset$ . This contradiction shows that the set p(W) is clopen in X.

Conversely, suppose that both spaces X and Y are pseudo- $\omega_1$ -compact and  $p: X \times Y \to X$  transforms clopen subsets of  $X \times Y$  to clopen subsets of X. Suppose to the contrary that  $X \times Y$  contains a discrete family  $\{O_\alpha : \alpha < \omega_1\}$  of nonempty clopen sets. For every  $\alpha < \omega_1$ , put  $W_\alpha = \bigcup_{\beta \geq \alpha} O_\beta$ . Then we have a decreasing sequence  $W_0 \supseteq W_1 \supseteq \cdots \supseteq W_\alpha \supseteq \ldots$ ,  $\alpha < \omega_1$ , of nonempty clopen subsets of  $X \times Y$  with empty intersection. Each set  $U_\alpha = p(W_\alpha)$  is clopen in X and, since X is pseudo- $\omega_1$ -compact, the set  $\bigcap_{\alpha < \omega_1} U_\alpha$  is nonempty. Let  $x_0$  be an element of  $\bigcap_{\alpha < \omega_1} U_\alpha$ . The sets  $V_\alpha = (\{x_0\} \times Y) \cap W_\alpha$  are clopen in the pseudo- $\omega_1$ -compact space  $\{x_0\} \times Y$ . Hence  $\bigcap_{\alpha < \omega_1} V_\alpha \subseteq \bigcap_{\alpha < \omega_1} W_\alpha$  is nonempty. This contradiction proves the lemma.

**Lemma 3.2.** Suppose that the product  $X \times Y$  of P-spaces X and Y is pseudo- $\omega_1$ -compact. If W is a clopen set in  $X \times Y$ , then for every  $x_0 \in p(W)$ , there exists a clopen neighborhood U of  $x_0$  in X such that  $U \times V_{x_0} \subseteq W$ , where  $V_{x_0} = \{y \in Y : (x_0, y) \in W\}$ .

PROOF: Set  $O = (X \times V_{x_0}) \setminus W$ . Since  $V_{x_0}$  is clopen in Y, the set O is clopen in  $X \times Y$ . From Lemma 3.1 it follows that p(O) and  $U = X \setminus p(O)$  are clopen sets in X, where  $p: X \times Y \to X$  is the projection. Note that  $x_0 \in U$  and if  $(x,y) \in U \times V_{x_0}$ , then  $x \notin p(O)$ . So,  $(x,y) \in W$  and, hence,  $U \times V_{x_0} \subseteq W$ .  $\square$ 

The next result can be obtained by combining [8, Theorem 1.6] and the characterization of the so-called *approximation property* for products of two spaces given in [2]. We prefer, however, to supply the reader with a direct proof.

**Lemma 3.3.** Suppose that the product  $X = \prod_{i=1}^k X_i$  of P-spaces is pseudo- $\omega_1$ -compact. If W is a clopen set in X, then  $W = \bigcup_{n \in \omega} \prod_{i=1}^k U_{n,i}$ , where the sets  $U_{n,i}$  are clopen in  $X_i$  for all  $n \in \omega$  and  $i \leq k$ .

PROOF: By Lemma 3.1, it suffices to consider the case n=2. Let W be a clopen subset of  $X_1 \times X_2$ . Then  $W' = X \setminus W$  is clopen as well. For every  $x \in X_1$ , put

$$V_x = \{ y \in X_2 : (x, y) \in W \} \text{ and } V'_x = \{ y \in X_2 : (x, y) \in W' \}.$$

Then both sets  $V_x$  and  $V_x'$  are clopen in  $X_2$  and  $V_x' = X_2 \setminus V_x$ . Consider the equivalence relation  $\sim$  on  $X_1$  defined by  $x \sim y$  if and only if  $V_x = V_y$ . We claim that for every  $x \in X_1$ , the equivalence class [x] of x is open in  $X_1$ . Indeed, if  $y \in [x]$ , then  $V_y = V_x = V$ . Apply Lemma 3.2 to choose a clopen neighborhood U of y in  $X_1$  such that  $U \times V \subseteq W$  and  $U \times V' \subseteq W'$ , where  $V' = X_2 \setminus V$ . Then  $V_z = V$  for each  $z \in U$ , so that  $y \in U \subseteq [x]$ . This proves that the set [x] is open.

Since the space  $X_1$  is pseudo- $\omega_1$ -compact and the equivalence classes [x] with  $x \in X_1$  form a disjoint open cover of  $X_1$ , there exists a countable set  $\{x_n : n \in \omega\} \subseteq X_1$  such that  $X_1 = \bigcup_{n \in \omega} [x_n]$ . It is clear that every set  $U_{n,1} = [x_n]$  is clopen in  $X_1$ . Therefore,  $W = \bigcup_{n \in \omega} U_{n,1} \times U_{n,2}$  is the required representation of W, where  $U_{n,2} = V_{x_n}$  for each  $n \in \omega$ .

It is well known (see [6]) that if a product space  $X = \prod_{i \in I} X_i$  has countable cellularity, then every regular closed set in X depends on at most countably many coordinates. In a sense, our next result is an analogue of this fact in the case when the product space X is pseudo- $\omega_1$ -compact and the factors  $X_i$  are P-spaces.

**Lemma 3.4.** Suppose that a product  $X = \prod_{i \in I} X_i$  of P-spaces is pseudo- $\omega_1$ -compact. Let  $\sigma(a) \subseteq X$  be a  $\sigma$ -product endowed with the relative  $\aleph_0$ -box topology (finer than the usual subspace topology). Then every clopen subset of  $\sigma(a)$  depends on at most countably many coordinates.

PROOF: It is clear that the space  $\sigma(a)$  with the  $\aleph_0$ -box topology is a P-space. Let U be a clopen subset of  $\sigma(a)$ . Then  $V = \sigma(a) \setminus U$  is also clopen in  $\sigma(a)$ . Suppose that  $\pi_J(U) \cap \pi_J(V) \neq \emptyset$  for every countable set  $J \subseteq I$ . Let us call a set  $A \subseteq \sigma(a)$  canonical if A has the form  $\sigma(a) \cap P$ , where P is an  $\aleph_0$ -box in X. First, we prove the following auxiliary fact.

**Claim.** Let  $A \subseteq U$  and  $B \subseteq V$  be canonical open sets in  $\sigma(a)$  such that  $U' = U \setminus \overline{A} \neq \emptyset$  and  $V' = V \setminus \overline{B} \neq \emptyset$ . Then  $\pi_J(U') \cap \pi_J(V') \neq \emptyset$  for each countable set  $J \subseteq I$ .

Indeed, there exists a nonempty countable set  $C \subseteq I$  such that  $A = \sigma(a) \cap \pi_C^{-1}\pi_C(A)$  and  $B = \sigma(a) \cap \pi_C^{-1}\pi_C(B)$ . Let J be a countable subset of I. We can assume that  $C \subseteq J$ . Since  $A \cap V = \emptyset = B \cap U$ , we infer that

(1) 
$$\pi_J(A) \cap \pi_J(V) = \emptyset$$
 and  $\pi_J(B) \cap \pi_J(U) = \emptyset$ .

Note that the set  $U' \cup A$  is dense in U and  $V' \cup B$  is dense in V. Since the restriction of  $\pi_J$  to  $\sigma(a)$  is an open map, from  $\pi_J(U) \cap \pi_J(V) \neq \emptyset$  it follows that

(2) 
$$\pi_J(U' \cup A) \cap \pi_J(V' \cup B) \neq \emptyset.$$

Note that  $U' \subseteq U$  and  $V' \subseteq V$ , so (1) implies that  $\pi_J(U') \cap \pi_J(B) = \emptyset$ ,  $\pi_J(V') \cap \pi_J(A) = \emptyset$  and  $\pi_J(A) \cap \pi_J(B) = \emptyset$ . Therefore, from (2) it follows that  $\pi_J(U') \cap \pi_J(V') \neq \emptyset$ . This proves our claim.

We will construct by recursion three sequences  $\{I_{\alpha} : \alpha < \omega_1\}$ ,  $\{U_{\alpha} : \alpha < \omega_1\}$  and  $\{V_{\alpha} : \alpha < \omega_1\}$  satisfying the following conditions for all  $\beta, \gamma < \omega_1$ :

- (i)  $I_{\beta} \subseteq I$ ,  $|I_{\beta}| \leq \aleph_0$ ;
- (ii)  $I_{\gamma} \subseteq I_{\beta}$  if  $\gamma < \beta$ ;
- (iii)  $U_{\beta}$  and  $V_{\beta}$  are nonempty canonical clopen sets in  $\sigma(a)$ ;
- (iv)  $U_{\beta} \subseteq U$ ,  $V_{\beta} \subseteq V$  and  $\pi_{I_{\beta}}(U_{\beta}) = \pi_{I_{\beta}}(V_{\beta})$ ;
- (v)  $U_{\gamma} = \sigma(a) \cap \pi_{I_{\beta}}^{-1} \pi_{I_{\beta}}(U_{\gamma})$  and  $V_{\gamma} = \sigma(a) \cap \pi_{I_{\beta}}^{-1} \pi_{I_{\beta}}(V_{\gamma})$  if  $\gamma < \beta$ ;
- (vi)  $U_{\gamma} \cap U_{\beta} = \emptyset$  and  $V_{\gamma} \cap V_{\beta} = \emptyset$  if  $\gamma < \beta$ .

To start, take a nonempty countable set  $I_0 \subseteq I$  and choose canonical clopen sets  $U_0$  and  $V_0$  in  $\sigma(a)$  such that  $U_0 \subseteq U$ ,  $V_0 \subseteq V$  and  $\pi_{I_0}(U_0) \cap \pi_{I_0}(V_0) \neq \emptyset$ . Taking smaller clopen sets, one can assume that  $\pi_{I_0}(U_0) = \pi_{I_0}(V_0)$ .

Suppose that at some stage  $\alpha < \omega_1$ , we have defined sequences  $\{I_\beta : \beta < \alpha\}$ ,  $\{U_\beta : \beta < \alpha\}$  and  $\{V_\beta : \beta < \alpha\}$  satisfying conditions (i)–(vi). Since each  $I_\beta$  is countable and the sets  $U_\beta$ ,  $V_\beta$  depend on countably many coordinates, there exists a countable set  $I_\alpha \subseteq I$  such that  $I_\beta \subseteq I_\alpha$ ,  $U_\beta = \sigma(a) \cap \pi_{I_\alpha}^{-1} \pi_{I_\alpha}(U_\beta)$  and  $V_\beta = \sigma(a) \cap \pi_{I_\alpha}^{-1} \pi_{I_\alpha}(V_\beta)$  for each  $\beta < \alpha$ . Let  $U'_\alpha = U \setminus \overline{G}_\alpha$  and  $V'_\alpha = V \setminus \overline{H}_\alpha$ , where  $G_\alpha = \bigcup_{\beta < \alpha} U_\beta$  and  $H_\alpha = \bigcup_{\beta < \alpha} V_\beta$ . Apply the above Claim to choose nonempty canonical clopen sets  $U_\alpha \subseteq U'_\alpha$  and  $V_\alpha \subseteq V'_\alpha$  such that  $\pi_{I_\alpha}(U_\alpha) = \pi_{I_\alpha}(V_\alpha)$ . An easy verification shows that the sequences  $\{I_\beta : \beta \leq \alpha\}$ ,  $\{U_\beta : \beta \leq \alpha\}$  and  $\{V_\beta : \beta \leq \alpha\}$  satisfy conditions (i)–(vi) for all  $\beta, \gamma \leq \alpha$ , thus finishing our recursive construction.

Let  $K = \bigcup_{\alpha < \omega_1} I_{\alpha}$ . By (iv), the set  $G = \bigcup_{\alpha < \omega_1} U_{\alpha}$  is contained in U and  $H = \bigcup_{\alpha < \omega_1} V_{\alpha}$  is contained in V, so that  $\overline{G} \cap \overline{H} = \emptyset$ . To obtain a contradiction, it suffices to show that the sets G and H have a common cluster point in  $\sigma(a)$ . From (v), (ii) and our definition of the sets G and H it follows that  $G = \sigma(a) \cap \pi_K^{-1} \pi_K(G)$  and  $H = \sigma(a) \cap \pi_K^{-1} \pi_K(H)$ , so we can assume without loss of generality that K = I.

By Lemma 2.3, the P-space  $\sigma(a)$  is pseudo- $\omega_1$ -compact. Hence the family  $\gamma = \{U_\alpha : \alpha < \omega_1\}$  has an accumulation point  $x \in \sigma(a)$  and every neighborhood of x in  $\sigma(a)$  intersects uncountably many elements of  $\gamma$ . Let O be a canonical open neighborhood of x in X and let  $C = \operatorname{coord} O$ . Since  $|C| \leq \aleph_0$ , (ii) implies that there exists  $\beta < \omega_1$  such that  $C \subseteq I_\beta$ . There are uncountably many ordinals  $\alpha < \omega_1$  such that  $\beta \leq \alpha$  and  $O \cap U_\alpha \neq \emptyset$ . For every such an  $\alpha < \omega_1$ , let  $z_\alpha$ 

be an arbitrary point of the set  $\pi_{I_{\alpha}}(O \cap U_{\alpha}) \subseteq \pi_{I_{\alpha}}(O) \cap \pi_{I_{\alpha}}(U_{\alpha})$ . From (iv) it follows that  $\pi_{I_{\alpha}}(U_{\alpha}) = \pi_{I_{\alpha}}(V_{\alpha})$ , so  $z_{\alpha} \in \pi_{I_{\alpha}}(O) \cap \pi_{I_{\alpha}}(V_{\alpha})$ . Choose a point  $z \in V_{\alpha}$  such that  $\pi_{I_{\alpha}}(z) = z_{\alpha}$ . Since coord  $O = C \subseteq I_{\beta} \subseteq I_{\alpha}$ , we conclude that  $z \in O \cap V_{\alpha} \neq \emptyset$ . This immediately implies that x is an accumulation point of the family  $\{V_{\alpha} : \alpha < \omega_1\}$  and, hence,  $x \in \overline{H}$ . Thus,  $x \in \overline{G} \cap \overline{H} \neq \emptyset$ , which is a contradiction.

We have thus proved that  $\pi_J(U) \cap \pi_J(V) = \emptyset$  for some nonempty countable subset J of I, whence it follows that  $U = \sigma(a) \cap \pi_J^{-1} \pi_J(U)$ . In other words, U depends only on the set J.

A simple modification of the argument in the proof of Lemma 3.4 (combined with the  $\Delta$ -lemma) implies the following corollary.

Corollary 3.5. Let  $\{X_i : i \in I\}$  be a family of P-spaces such that the product  $X = \prod_{i \in I} X_i$  is pseudo- $\omega_1$ -compact. If U and V are open sets in X and  $\overline{U} \cap \overline{V} = \emptyset$ , then there exists a nonempty countable set  $J \subseteq I$  such that  $\pi_J(U) \cap \pi_J(V) = \emptyset$ .

It is not clear whether one can find a countable set  $J \subseteq I$  in Corollary 3.5 satisfying  $\overline{\pi_J(U)} \cap \overline{\pi_J(V)} = \emptyset$ .

**Lemma 3.6.** Let  $X = \prod_{i \in I}$  be a product space and  $\sigma(a) \subseteq X$  be the  $\sigma$ -product with center at  $a \in X$ . Suppose that  $\emptyset \neq J \subseteq I$  and that a continuous map  $f: X \to Y$  to a Hausdorff space Y satisfies f(x) = f(y) whenever  $x, y \in \sigma(a)$  and  $\pi_J(x) = \pi_J(y)$ . Then f depends only on J.

PROOF: Let  $x, y \in X$  satisfy  $\pi_J(x) = \pi_J(y)$ . Suppose to the contrary that  $f(x) \neq f(y)$  and choose in X disjoint open neighborhoods U and V of x and y, respectively, such that  $f(U) \cap f(V) = \emptyset$ . We can assume without loss of generality that the sets U and V are canonical and coord  $U = C = \operatorname{coord} V$ . Let us define two points  $x^*, y^* \in X$  by

$$x^*(i) = \begin{cases} x(i) & \text{if } i \in C; \\ x^*(i) = a(i) & \text{if } i \in I \setminus C \end{cases}$$

and, similarly,

$$y^*(i) = \begin{cases} y(i) & \text{if } i \in C; \\ y^*(i) = a(i) & \text{if } i \in I \setminus C. \end{cases}$$

Then  $x^*, y^* \in \sigma(a)$  and  $\pi_J(x^*) = \pi_J(y^*)$ , so that  $f(x^*) = f(y^*)$ . On the other hand, we have  $x^* \in U$  and  $y^* \in V$ , whence  $f(x^*) \in f(U)$  and  $f(y^*) \in f(V)$ . Since  $f(U) \cap f(V) = \emptyset$ , this implies that  $f(x^*) \neq f(y^*)$ , which is a contradiction.

Let  $f: X \to Y$  and  $g: X \to Z$  be continuous maps, where Y = f(X). We say that f is finer than g or, in symbols,  $f \prec g$  if there exists a continuous map  $\varphi: Y \to Z$  such that  $g = \varphi \circ f$ . The theorem below is the main result of this section.

**Theorem 3.7.** Let  $X = \prod_{i \in I} X_i$  be a product of P-spaces and  $f: X \to Y$  be a continuous map onto a space Y of countable pseudocharacter. If X is pseudo- $\omega_1$ -compact, then f depends on at most countably many coordinates. In addition, one can find a countable set  $C \subseteq I$  and, for each  $i \in C$ , a continuous map  $h_i: X_i \to \mathbb{N}$  to the discrete space  $\mathbb{N}$  such that  $(\prod_{i \in C} h_i) \circ \pi_C \prec f$ . Hence  $nw(Y) \leq \aleph_0$ .

PROOF: First, we show that f depends on countably many coordinates. Choose any point  $a \in X$  and denote by  $\sigma(a)$  the  $\sigma$ -product of the spaces  $X_i$  with center at a. Let  $\sigma(a)$  carry the relative  $\aleph_0$ -box topology (which is finer than the subspace topology of  $\sigma(a)$  inherited from X). By Lemma 2.3, the P-space  $\sigma(a)$  is pseudo- $\omega_1$ -compact. Since  $\psi(Y) \leq \aleph_0$ , the set  $F_y = f^{-1}(y) \cap \sigma(a)$  is clopen in  $\sigma(a)$  for each  $y \in Y$ . Clearly,  $\{F_y : y \in f(\sigma(a))\}$  is a partition of  $\sigma(a)$  into disjoint clopen sets. Hence, the pseudo- $\omega_1$ -compactness of  $\sigma(a)$  implies that the image  $Z = f(\sigma(a))$  is countable.

Given a nonempty set  $J\subseteq I$ , we denote by  $\pi_J$  the projection of X onto  $X_J=\prod_{i\in J}X_i$ . By Lemma 3.4, every set  $F_y$  depends only on a countable number coordinates, that is, there exists a countable set  $C(y)\subseteq I$  such that  $F_y=\sigma(a)\cap\pi_{C(y)}^{-1}\pi_{C(y)}(F_y)$ . Put  $C=\bigcup_{y\in Z}C(y)$ . Then C is a countable subset of I and  $F_y=\sigma(a)\cap\pi_C^{-1}\pi_C(F_y)$  for each  $y\in Z$ . Therefore, if  $x,y\in\sigma(a)$  and  $\pi_C(x)=\pi_C(y)$ , then f(x)=f(y). Apply Lemma 3.6 to conclude that f depends only on the set C. In other words, there exists a map  $f_C\colon X_C\to Y$  such  $f=f_C\circ\pi_C$ . The map  $f_C$  is continuous because the projection  $\pi_C$  is open. We can assume, therefore, that C=I (and  $f_C=f$ ). In addition, we can assume that  $I=\omega$ , i.e.,  $X=\prod_{n\in\omega}X_n$  and that each factor  $X_n$  is infinite.

For every  $n \in \omega$ , consider the subspace  $K_n$  of X defined by

$$K_n = \{x \in X : x(i) = a(i) \text{ for each } i > n\}.$$

Then  $K_n \cong \prod_{i \leq n} X_i$ , so that  $K_n$  is a pseudo- $\omega_1$ -compact P-space. As above, it is easy to see that the image  $f(K_n)$  is countable for each  $n \in \omega$  and the set  $F_{n,y} = K_n \cap f^{-1}(y)$  is clopen in  $K_n$  for each  $y \in f(K_n)$ . By Lemma 3.3, every set  $F_{n,y}$  can be represented as a countable union of basic open sets of the form  $U_0 \times \cdots \times U_n$ , where  $U_i$  is a clopen subset of  $X_i$  for each  $i \leq n$  (we identify  $K_n$  and  $X_0 \times \ldots \times X_n$ ). Since these representations of the sets  $F_{n,y}$  involve only countably many clopen sets in each of the factors  $X_0, \ldots, X_n$ , one can find, for every  $i \leq n$ , a continuous map  $g_{n,i} \colon X_i \to \mathbb{N}$  to the discrete space  $\mathbb{N}$  such that the direct product  $p_n = \prod_{i \leq n} g_{n,i}$  satisfies  $p_n \prec f_n$ , where  $f_n = f \upharpoonright_{K_n}$ . For every  $i \in \omega$ , let  $g_i$  be the diagonal product of the family  $\{g_{n,i} : n \geq i\}$ . Then the map  $g_i \colon X_i \to \mathbb{N}^{\omega \setminus i}$  is continuous and, clearly, the product map  $q_n = \prod_{i \leq n} g_i$  satisfies  $q_n \prec p_n \prec f_n$  for each  $n \in \omega$ . Again, the image  $g_i(X_i)$  is countable and the fibers  $g_i^{-1}(y)$ , with  $y \in g_i(X_i)$ , form a partition of  $X_i$  into clopen sets. Hence, for every  $i \in \omega$ , there exists a continuous onto map  $h_i \colon X_i \to \mathbb{N}$  satisfying  $h_i \prec g_i$ . Let

 $h = \prod_{i \in \omega} h_i : X \to \mathbb{N}^{\omega}$  be the direct product of the family  $\{h_i : i \in \omega\}$ . Note that each map  $h_i$  is open and onto, and so is the map h.

Let us verify that  $h \prec f$ . Indeed, since  $h_i \prec g_i$  for each  $i \in \omega$ , we have  $\prod_{i \leq n} h_i \prec \prod_{i \leq n} g_i = q_n \prec f_n$  and, hence,

$$\phi_n = h \upharpoonright_{K_n} = \prod_{i \le n} h_i \prec f_n$$

for all  $n \in \omega$ . First, we claim that  $h^{-1}h(x) \subseteq f^{-1}f(x)$  for every  $x \in X$ . Suppose to the contrary that there exist points  $x, y \in X$  such that h(x) = h(y) but  $f(x) \neq f(y)$ . Choose in Y disjoint neighborhoods  $U_x$  and  $U_y$  of f(x) and f(y), respectively. By the continuity of f, there are canonical open sets  $V_x \ni x$  and  $V_y \ni y$  in the product space X such that  $f(V_x) \subseteq U_x$  and  $f(V_y) \subseteq U_y$ . We can assume without loss of generality that  $V_x = V_0^x \times \cdots \times V_n^x \times P_n$  and  $V_y = V_0^y \times \cdots \times V_n^y \times P_n$ , where  $n \in \omega$ , the sets  $V_i^x, V_i^y$  are open in  $X_i$  for  $i = 0, \ldots, n$  and  $P_n = \prod_{i>n} X_i$ . For every  $n \in \omega$ , denote by  $r_n$  the retraction of X onto  $K_n$  defined by  $r_n(x)(i) = x(i)$  if  $i \leq n$  and  $r_n(x) = a(i)$  if i > n. Then  $x' = r_n(x) \in V_x \cap K_n$  and  $y' = r_n(y) \in V_y \cap K_n$ . Therefore, from  $f(x') \in f(V_x) \subseteq U_x$ ,  $f(y') \subseteq f(V_y) \subseteq U_y$  and  $U_x \cap U_y = \emptyset$  it follows that  $f(x') \neq f(y')$ . By (3), however, we have  $h \prec \phi_n \circ r_n \prec f_n \circ r_n = f \circ r_n$  and, hence, the equality h(x) = h(y) implies that  $f(r_n(x)) = f(r_n(y))$  or, equivalently, f(x') = f(y'). This contradiction proves the claim. So, there exists a map  $i: \mathbb{N}^\omega \to Y$  satisfying  $f = i \circ h$ . Since the map h is open, i is continuous. Therefore,  $h \prec f$ .

Finally, the space  $\mathbb{N}^{\omega}$  is second countable, so that the image  $Y = f(X) = i(\mathbb{N}^{\omega})$  has a countable network.

It is shown in [15, Lemma 3.29] that every  $\omega$ -stable space is pseudo- $\omega_1$ -compact. For P-spaces,  $\omega$ -stability and pseudo- $\omega_1$ -compactness are equivalent by [15, Proposition 3.30]. It turns out that this equivalence holds for arbitrary products of P-spaces.

Corollary 3.8. Suppose that the product  $X = \prod_{i \in I} X_i$  of P-spaces is pseudo- $\omega_1$ -compact. Then the space X is  $\omega$ -stable.

PROOF: Let  $f: X \to Y$  be a continuous map onto a space Y which admits a coarser second countable Tychonoff topology. Then Y is Hausdorff and  $\psi(Y) \leq \aleph_0$ , so that  $nw(Y) \leq \aleph_0$  by Theorem 3.7.

By [1, Theorem 10], every  $\sigma$ -product of Lindelöf P-spaces is  $\omega$ -stable. The next corollary extends this result to products of Lindelöf P-spaces.

Corollary 3.9. Every product of Lindelöf P-spaces is  $\omega$ -stable.

PROOF: By Noble's theorem in [10], finite products of Lindelöf P-spaces are Lindelöf (hence, pseudo- $\omega_1$ -compact). Therefore, an arbitrary product  $X = \prod_{i \in I} X_i$ 

of Lindelöf P-spaces is pseudo- $\omega_1$ -compact by Lemma 2.3, and the required conclusion follows from Corollary 3.8.

In general, the product of two pseudo- $\omega_1$ -compact P-spaces can fail to be pseudo- $\omega_1$ -compact. In the class of P-groups, however, pseudo- $\omega_1$ -compactness becomes productive by Lemmas 2.2 and 2.3. This explains, in part, the strong factorization property of products of  $\mathbb{R}$ -factorizable P-groups given in the next theorem.

**Theorem 3.10.** Let  $G = \prod_{i \in I} G_i$  be a direct product of  $\mathbb{R}$ -factorizable P-groups. If  $f: G \to Y$  is a continuous map onto a space Y with  $\psi(Y) \leq \aleph_0$ , then there exists a quotient homomorphism  $\pi: G \to H$  onto a second countable topological group H such that  $\pi \prec f$ . In particular,  $nw(Y) \leq \aleph_0$ .

PROOF: By Lemmas 2.2 and 2.3, the group G is pseudo- $\omega_1$ -compact. Apply Theorem 3.7 to find a countable set  $C \subseteq I$  and, for each  $i \in C$ , a continuous map  $h_i: G_i \to \mathbb{N}$  such that  $(\prod_{i \in C} h_i) \circ \pi_C \prec f$ . Since the groups  $G_i$  are  $\mathbb{R}$ -factorizable, for each  $i \in C$  there exists a continuous homomorphism  $p_i: G_i \to K_i$  onto a second countable group  $K_i$  such that  $p_i \prec h_i$ . Note that the fibers  $p_i^{-1}(y)$  are  $G_\delta$ -sets in  $G_i$ , so they are open in  $G_i$ . Clearly, the homomorphism  $p_i$  remains continuous if we endow the group  $K_i$  with the discrete topology. The group  $G_i$  is pseudo- $\omega_1$ -compact by Theorem 1.1, so the cover of  $G_i$  by the fibers  $p_i^{-1}(y)$ , with  $y \in K_i$ , is countable. Hence the discrete group  $K_i = p_i(G_i)$  is countable and the homomorphism  $p_i$  is open.

Let p be the direct product of the homomorphisms  $p_i, i \in C$ . Then the homomorphism  $p: \prod_{i \in C} G_i \to \prod_{i \in C} K_i$  is continuous, open and the group  $H = \prod_{i \in C} K_i$  is second countable. It is clear that the homomorphism  $\varphi = p \circ \pi_C$  of G to H is continuous, open and satisfies  $\varphi \prec (\prod_{i \in C} h_i) \circ \pi_C \prec f$ . Therefore, there exists a continuous map  $i: H \to Y$  such that  $f = i \circ \varphi$  and, hence, Y = i(H). This implies that Y has a countable network.

The following corollary to Theorem 3.10 is immediate. It was proved (by a different method) in [15].

Corollary 3.11. Let G be a direct product of  $\mathbb{R}$ -factorizable P-groups. Then the group G is  $\mathbb{R}$ -factorizable and  $\tau$ -stable for  $\tau \in \{\omega, \omega_1\}$ .

PROOF: The  $\mathbb{R}$ -factorizability of G follows directly from Theorem 3.10. In addition, G is  $\omega_1$ -stable by [15, Theorem 3.9]. To conclude that G is  $\omega$ -stable, apply Corollary 3.8 and Lemmas 2.2 and 2.3.

By a theorem of Comfort and Ross [5], the class of pseudocompact groups is productive. Therefore, Corollary 3.11 extends a certain similarity in the permanence properties of  $\mathbb{R}$ -factorizable P-groups and pseudocompact groups mentioned in Section 2. In addition, the groups of both classes are  $\omega$ -stable. In fact, one can apply Lemma 5.9 of [14] to prove the following analogue of Theorem 3.10 for

pseudocompact groups: if a regular space Y of countable pseudocharacter is a continuous image of (a  $G_{\delta}$ -subset of) a pseudocompact group, then  $nw(Y) \leq \aleph_0$ .

## 4. Open problems

Here we formulate two open problems concerning Theorem 2.5.

**Problem 4.1.** Is every  $\aleph_0$ -bounded P-group topologically isomorphic to a subgroup of an  $\mathbb{R}$ -factorizable P-group?

**Problem 4.2.** Does Theorem 2.5 remain valid in the non-abelian case?

#### References

- Arhangel'skii A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177–181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039–1043.
- [2] Blair R.L., Hager A.W., z-embeddings in  $\beta X \times \beta Y$ , Set-Theoretic Topology, Academic Press, New York, 1977, pp. 47–72.
- [3] Comfort W.W., Compactness-like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31–37.
- [4] Comfort W.W., Robertson L., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 1–48.
- [5] Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483–496.
- [6] Engelking R., General Topology, Heldermann Verlag, 1989.
- [7] Hernández C., Tkachenko M., Subgroups of R-factorizable groups, Comment. Math. Univ. Carolinae 39 (1998), 371–378.
- [8] Hernández S., Algebras of real-valued continuous functions in product spaces, Topology Appl. 22 (1986), 33–42.
- [9] Noble M., A note on z-closed projection, Proc. Amer. Math. Soc. 23 (1969), 73-76.
- [10] Noble M., Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381–391.
- [11] Novak J., On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106–112.
- [12] Schepin E.V., Real-valued functions and canonical sets in Tychonoff products and topological groups, Russian Math. Surveys 31 (1976), 19–30.
- [13] Tkachenko M., Subgroups, quotient groups and products of ℝ-factorizable groups, Topology Proc. 16 (1991), 201–231.
- [14] Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179–231.
- [15] Tkachenko M., R-factorizable groups and subgroups of Lindelöf P-groups, submitted.

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco # 186, Col. Vicentina, C.P. 09340, Iztapalapa, Mexico, D.F.

E-mail: chg@xanum.uam.mx, mich@xanum.uam.mx

(Received July 4, 2002, revised November 13, 2003)