Subgroups and products of \mathbb{R} -factorizable P-groups CONSTANCIO HERNÁNDEZ, MICHAEL TKACHENKO Abstract. We show that every subgroup of an \mathbb{R} -factorizable abelian P-group is topologically isomorphic to a closed subgroup of another \mathbb{R} -factorizable abelian P-group. This implies that closed subgroups of \mathbb{R} -factorizable P-groups are not necessarily \mathbb{R} -factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product $X = \prod_{i \in I} X_i$ of P-spaces and the space X is pseudo- ω_1 -compact, then $nw(Y) \leq \aleph_0$. In particular, direct products of \mathbb{R} -factorizable P-groups are \mathbb{R} -factorizable and ω -stable. Keywords: P-space, P-group, pseudo- $ω_1$ -compact, ω-stable, \mathbb{R} -factorizable, \aleph_0 -bounded, pseudocharacter, cellularity, \aleph_0 -box topology, σ -product Classification: Primary 54H11, 22A05, 54G10; Secondary 54A25, 54C10, 54C25 ### 1. Introduction The main subject of this article are P-groups, that is, topological groups in which all G_{δ} -sets are open. It is known that P-groups are peculiar in many respects. For example, every P-group G has a local base at the identity of open subgroups and if G is \aleph_0 -bounded, it has a local base at the identity of open normal subgroups [15, Lemma 2.1]. Weak compactness type conditions substantially improve the properties of P-groups. The following result proved in [15] demonstrates this phenomenon and will be frequently used in the article. **Theorem 1.1** ([15, Theorem 4.16 and Corollary 4.14]). For a P-group G, the following conditions are equivalent: - (1) G is \mathbb{R} -factorizable: - (2) G is pseudo- ω_1 -compact; - (3) G is ω -stable; - (4) G is \aleph_0 -bounded and every continuous homomorphic image H of G with $\psi(H) \leq \aleph_1$ is Lindelöf. In addition, every \mathbb{R} -factorizable P-group G satisfies $c(G) \leq \aleph_1$. All terms that appear in Theorem 1.1 are explained in the next subsection. Subgroups of \mathbb{R} -factorizable P-groups need not be \mathbb{R} -factorizable (see [13, Example 2.1] or [15, Example 3.28]). It is an open problem whether every \aleph_0 -bounded P-group is topologically isomorphic to a subgroup of an \mathbb{R} -factorizable P-group (see Problem 4.1). We show, however, that every subgroup of an \mathbb{R} -factorizable abelian P-group can be embedded as a closed subgroup into another \mathbb{R} -factorizable abelian P-group (see Theorem 2.5). Hence closed subgroups of \mathbb{R} -factorizable P-groups can fail to be \mathbb{R} -factorizable. This is the main result of Section 2. By [15, Theorem 5.5], direct products of \mathbb{R} -factorizable P-groups are \mathbb{R} -factorizable. In Theorem 3.7, we present a purely topological result about a special representation of continuous maps of products of P-spaces which generalizes Theorem 5.5 of [15]. It implies, in particular, that for any product of P-spaces, the properties of being ω -stable and pseudo- ω_1 -compact are equivalent. **1.1 Notation and terminology.** All spaces and topological groups are assumed to be Hausdorff unless a different axiom of separation is specified explicitly. Let $\{X_i : i \in I\}$ be a family of topological spaces. A subset B of the product $X = \prod_{i \in I} X_i$ is called a *box* in X if it has the form $B = \prod_{i \in I} B_i$, where $B_i \subseteq X_i$ for each $i \in I$. Given a box $B \subseteq X$, we define the set coord $B \subseteq I$ by $$\operatorname{coord} B = \{ i \in I : B_i \neq X_i \}.$$ The \aleph_0 -box topology of the product X is the topology generated by all boxes of the form $U = \prod_{i \in I} U_i$, where $|\operatorname{coord} U| \leq \aleph_0$ and each U_i is open in X_i . Clearly, the Tychonoff topology of the space X is generated by open boxes U with $|\operatorname{coord} U| < \aleph_0$. For every nonempty set $J \subseteq I$, we put $X_J = \prod_{i \in I} X_i$ and denote by π_J the projection of X onto X_J . Given a map $f: X \to Y$, we say that f depends only on a set $J \subseteq I$ if f(x) = f(y) for all $x, y \in X$ satisfying $\pi_J(x) = \pi_J(y)$. Pick a point $a \in X$ and, for every $x \in X$, put $$supp(x) = \{i \in I : x_i \neq a_i\}.$$ Then the subset $$\sigma(a) = \{x \in X : \text{supp}(x) \text{ is finite } \}$$ of X is called the σ -product of the family $\{X_i : i \in I\}$ with center at a. Let $G = \prod_{i \in I} G_i$ be a direct product of groups. For every $x \in G$, we set $\text{supp } x = \{i \in I : x_i \neq e_i\}$, where e_i is the identity of G_i . Then the σ -product $\sigma(e) \subseteq G$ is a subgroup of G, where e is the identity of G. Suppose that Y is a space. We say that Y is a P-space if every countable intersection of open sets is open in Y. Let τ be an infinite cardinal. A subset $Z \subseteq Y$ is said to be G_{τ} -dense in Y if Z intersects every nonempty G_{τ} -set in Y. A space Y is called ω -stable if every continuous image Z of Y which admits a coarser second countable Tychonoff topology satisfies $nw(Z) \leq \aleph_0$. In general, let $\tau \geq \aleph_0$. A space Y is called τ -stable if every continuous image Z of Y which admits a coarser Tychonoff topology of weight $\leq \tau$ satisfies $nw(Z) \leq \aleph_0$. If Y is τ -stable for $\tau \geq \aleph_0$, then Y is said to be stable. It is known that arbitrary products and σ -products of second countable spaces are ω -stable [1, Corollary 13]. A space Y is said to be $pseudo-\omega_1$ -compact if every locally finite (equivalently, discrete) family of open sets in Y is countable. Lindelöf spaces as well as spaces of countable cellularity are pseudo- ω_1 -compact. A topological group G is called \aleph_0 -bounded if it can be covered by countably many translates of any neighborhood of the identity. We also say that G is \mathbb{R} -factorizable if every continuous real-valued function f on G can be represented in the form $f = h \circ \varphi$, where $\varphi \colon G \to H$ is a continuous homomorphism onto a second countable topological group H and h is a continuous real-valued function on H. Every \mathbb{R} -factorizable group is \aleph_0 -bounded, but not vice versa [13], [14]. The kernel of a homomorphism $p: G \to H$ is ker p. The minimal subgroup of a group G containing a set $A \subseteq G$ is denoted by $\langle A \rangle$. As usual, w(Y), nw(Y), $\psi(Y)$, L(Y), and c(Y) are the weight, network weight, pseudocharacter, Lindelöf number and cellularity of a space Y, respectively. The set of all positive integers is denoted by \mathbb{N} , while \mathbb{Z} is the additive group of integers. ## 2. Subgroups of \mathbb{R} -factorizable P-groups Here we show that an arbitrary subgroup of an \mathbb{R} -factorizable abelian P-group is topologically isomorphic to a closed subgroup of another \mathbb{R} -factorizable abelian P-group. This result enables us to conclude that closed subgroups of \mathbb{R} -factorizable P-groups are not necessarily \mathbb{R} -factorizable. Since, by Theorem 1.1, \mathbb{R} -factorizablity and pseudo- ω_1 -compactness coincide for P-groups, this makes \mathbb{R} -factorizable P-groups look like pseudocompact groups: every subgroup of a pseudocompact group is topologically isomorphic to a closed subgroup of another pseudocompact group [4]. This analogy between \mathbb{R} -factorizable P-groups and pseudocompact groups will be extended in Section 3. We start with several auxiliary facts. **Lemma 2.1.** Suppose that G is an \mathbb{R} -factorizable P-group, and let H be a G_{ω_1} -dense subgroup of G. Then H is \mathbb{R} -factorizable. PROOF: By Theorem 1.1, G satisfies $c(G) \leq \aleph_1$. Therefore, the dense subgroup H of G also satisfies $c(H) \leq \aleph_1$. Let $f: H \to \mathbb{R}$ be a continuous function. By Schepin's theorem in [12], one can find a quotient homomorphism $\pi: H \to K$ onto a topological group K with $\psi(K) \leq \aleph_1$ and a continuous function $g: K \to \mathbb{R}$ such that $f = g \circ \pi$. Observe that $H \subseteq G \subseteq \varrho G = \varrho H$, where ϱG and ϱH denote the Raĭkov completions of G and G, respectively. Now, consider the continuous homomorphic extension $\hat{\pi}: \varrho H \to \varrho K$ of π , and take the restriction $\hat{\pi} = \hat{\pi}|_{G}: G \to \varrho K$ of $\hat{\pi}$ to G. Since H is G_{ω_1} -dense in G, the image $K = \tilde{\pi}(H)$ is G_{ω_1} -dense in $\tilde{\pi}(G)$. We claim that $\tilde{\pi}(G) = K$. Indeed, $\psi(K) \leq \aleph_1$ implies that there exists a family $\{U_\alpha : \alpha < \omega_1\}$ of open sets in $\tilde{\pi}(G)$ such that $\{e\} = K \cap \bigcap_{\alpha \in \omega_1} U_\alpha$, where e is the identity of ϱK . If $P = \bigcap_{\alpha \in \omega_1} U_\alpha \setminus \{e\} \neq \emptyset$, then P is a nonempty G_{ω_1} -set in $\tilde{\pi}(G)$ that does not intersect K, which is a contradiction. Thus, $\psi(\tilde{\pi}(G)) \leq \aleph_1$. Since every fiber of $\tilde{\pi}$ is a G_{ω_1} -set in G, the group H intersects all fibers of $\tilde{\pi}$. Hence we have $\tilde{\pi}(G) = \tilde{\pi}(H) = K$. So, $\tilde{f} = g \circ \tilde{\pi}$ is a continuous extension of f to G. This implies that H is C-embedded in G and, hence, H is \mathbb{R} -factorizable by [7, Theorem 2.4]. Pseudo- ω_1 -compactness is not a productive property, not even in the class of P-spaces (one can modify Novak's construction in [11] to produce a counterexample). The following lemma shows the difference between P-spaces and P-groups. **Lemma 2.2.** A finite product of \mathbb{R} -factorizable P-groups is pseudo- ω_1 -compact (equivalently, \mathbb{R} -factorizable). PROOF: Let $G = G_1 \times \cdots \times G_n$, where each G_i is an \mathbb{R} -factorizable P-group. Then G is also a P-group. Hence we can assume that n=2. Note that the factors G_1 and G_2 are \aleph_0 -bounded, and so is the product group G. So, by Theorem 1.1, it suffices to verify that every continuous homomorphic image H of G with $\psi(H) \leq \aleph_1$ is Lindelöf. Let $p: G \to H$ be a corresponding homomorphism. Then one can apply [14, Lemma 3.7] to find, for every i=1,2, a continuous homomorphism $f_i: G_i \to K_i$ onto a topological group K_i with $\psi(K_i) \leq \aleph_1$ such that $\ker f_1 \times \ker f_2 \subseteq \ker p$. Refining topologies of the groups K_i , we can assume that the homomorphisms f_1 and f_2 are open. Then K_1 and K_2 are P-groups by [15, Lemma 2.1] and the product homomorphism $f_1 = f_1 \times f_2$ of $f_1 = f_1 \times f_2$ of $f_2 = f_1 \times f_2$ is open. From our choice of the homomorphisms $f_1 = f_1 \times f_2$ is open, the homomorphism $f_1 = f_1 \times f_2$ is continuous. By Theorem 1.1, the $f_2 = f_1 \times f_2$ and $f_2 = f_2 \times f_3 = f_1$ and $f_2 = f_1 \times f_3 = f_2$ is open, the homomorphism $f_2 = f_1 \times f_3 = f_3 = f_3$. Since $f_2 = f_1 \times f_3 = f_3$ The next result has several applications in this section and in Section 3. **Lemma 2.3.** The following conditions are equivalent for a product space $X = \prod_{i \in I} X_i$: - (a) X is pseudo- ω_1 -compact; - (b) the product $X_J = \prod_{i \in J} X_i$ is pseudo- ω_1 -compact for each finite set $J \subseteq I$; - (c) every σ -product $\sigma(a) \subseteq X$ is pseudo- ω_1 -compact; - (d) every σ -product $\sigma(a) \subseteq X$ endowed with the relative \aleph_0 -box topology is pseudo- ω_1 -compact. PROOF: It clear that (a) \Rightarrow (b). Since, for each $a \in X$, $\sigma(a)$ is dense in X when X carries the usual product topology and the \aleph_0 -box topology is finer than the product topology of X, we have that $(c) \Rightarrow (a)$ and $(d) \Rightarrow (c) \Rightarrow (b)$. Therefore, it suffices to show that $(b) \Rightarrow (d)$. Let $\{U_{\alpha}: \alpha < \omega_1\}$ be a collection of nonempty open sets in $\sigma(a)$. We shall show that this family cannot be discrete. Without loss of generality, we may assume that $U_{\alpha} = \sigma \cap V_{\alpha}$ for each $\alpha < \omega_1$, where V_{α} has the form $\prod_{i \in I} V_{\alpha,i}$, the sets $V_{\alpha,i}$ are open in X_i and coord $V_{\alpha} \leq \aleph_0$. Take a point $x_{\alpha} \in U_{\alpha}$. Since $x_{\alpha} \in \sigma(a)$, the point $a(i) \in X_i$ is an element of $V_{\alpha,i}$ for all $i \in I \setminus J_{\alpha}$, where $J_{\alpha} = \operatorname{supp}(x_{\alpha})$ is a finite subset of I. Now we apply the Δ -lemma in order to find a subset A of ω_1 of cardinality \aleph_1 and a finite set $J \subseteq I$ such that $J_{\alpha} \cap J_{\beta} = J$ whenever $\alpha, \beta \in A$ and $J_{\alpha} \neq J_{\beta}$. Since the space $X_J = \prod_{i \in J} X_i$ is pseudo- ω_1 -compact, there exists a point $y \in X_J$ such that every neighborhood of y intersects infinitely many elements of the family $\{\prod_{i \in J} V_{\alpha,i} : \alpha \in A\}$. Define a point $x \in \sigma(a)$ by $$x(i) = \begin{cases} y(i) & \text{if } i \in J; \\ a(i) & \text{if } i \in I \setminus J. \end{cases}$$ It is easy to see that $\pi_J(x) = y$ and every neighborhood of x intersects an infinite number of elements of $\{U_\alpha : \alpha \in A\}$. Hence the space $\sigma(a)$ is pseudo- ω_1 -compact. The equivalence of (a) and (b) in the above lemma should be a known result, but the authors have not found a corresponding reference in the literature. Corollary 2.4. Let $\Pi = \prod_{i \in I} G_i$ be a direct product of \mathbb{R} -factorizable P-groups. Then $\sigma(e) \subseteq \Pi$, endowed with the relative \aleph_0 -box topology, is an \mathbb{R} -factorizable P-group. PROOF: It is clear that $\sigma(e)$ is a P-group. Therefore, $\sigma(e)$ is \mathbb{R} -factorizable by Theorem 1.1, Lemma 2.2 and Lemma 2.3. We now have all necessary tools to deduce the main result of this section about closed embeddings into \mathbb{R} -factorizable P-groups. **Theorem 2.5.** Suppose that G is an \mathbb{R} -factorizable abelian P-group. If H is an arbitrary subgroup of G, then H can be embedded as a closed subgroup into another \mathbb{R} -factorizable abelian P-group. PROOF: Let \mathbb{Z} be the discrete group of integers. Clearly, $G \times \mathbb{Z}$ is an \mathbb{R} -factorizable abelian P-group that contains an isomorphic copy of G. Replacing G by $G \times \mathbb{Z}$, if necessary, we may assume that G contains an element g of infinite order, $g \neq 0_G$. Let $\lambda = |G| \cdot \aleph_2$ and put $\kappa = \lambda$ if λ is a regular cardinal or $\kappa = \lambda^+$, otherwise. Consider the group $$\sigma = \{x \in G^\kappa : |\operatorname{supp} x| < \aleph_0\}$$ endowed with the relative \aleph_0 -box topology inherited from G^{κ} . Then σ is an \mathbb{R} -factorizable abelian P-group by Corollary 2.4 and, clearly, $|\sigma| = \kappa$. Let $\sigma \setminus \{0_{\sigma}\} = \kappa$ $\{x_{\alpha} : \alpha < \kappa\}$. To every element x_{α} , we assign an element $\tilde{x}_{\alpha} \in \sigma$ recursively as follows. Choose $\delta_0 > \max \sup x_0$ and define $\tilde{x}_0 \in \sigma$ by $$\tilde{x}_0(\nu) = \begin{cases} x_0(\nu) & \text{if } \nu \neq \delta_0; \\ g & \text{if } \nu = \delta_0. \end{cases}$$ Suppose that we have already defined \tilde{x}_{β} for each $\beta < \alpha$, where $\alpha < \kappa$. Choose $\delta_{\alpha} > \sup(\sup x_{\alpha} \cup \bigcup_{\beta < \alpha} \sup \tilde{x}_{\beta})$ and define a point $\tilde{x}_{\alpha} \in \sigma$ by $$\tilde{x}_{\alpha}(\nu) = \begin{cases} x_{\alpha}(\nu) & \text{if } \nu \neq \delta_{\alpha}; \\ g & \text{if } \nu = \delta_{\alpha}. \end{cases}$$ It is clear that $\delta_{\alpha} = \max \sup \tilde{x}_{\alpha}$. This finishes our construction. Observe that the sequence $\{\delta_{\alpha}: \alpha < \kappa\}$ is strictly increasing (hence it is cofinal in κ) and $\tilde{x}_{\beta}(\delta_{\alpha}) = 0_G$ whenever $\beta < \alpha < \kappa$. Consider the subgroup $G_0 = \langle H_0 \cup B \rangle$ of σ , where $$H_0 = \{x \in \sigma : x(0) \in H \text{ and } x(\nu) = 0_G \text{ for each } \nu \neq 0\}$$ and $B = \{\tilde{x}_{\alpha} : \alpha < \kappa\}$. We claim that the group G_0 is \mathbb{R} -factorizable and contains $H_0 \simeq H$ as a closed subgroup. It is easy to see that H_0 is closed in G_0 because it can be expressed as the intersection of the coordinate 0 axes with G_0 . Indeed, suppose that $x \in G_0$ and $x(\nu) = 0_G$ for all $\nu > 0$. By the definition of G_0 , x has the form $x = h + k_1 \tilde{x}_{\alpha_1} + \dots + k_n \tilde{x}_{\alpha_n}$, where $h \in H_0$, $\alpha_1 < \alpha_2 < \dots < \alpha_n < \kappa$ and $k_i \in \mathbb{Z}$ for $i = 1, \dots, n$. Then $\tilde{x}_{\alpha_i}(\delta_{\alpha_n}) = 0_G$ for each i < n and $\tilde{x}_{\alpha_n}(\delta_{\alpha_n}) = g$. Hence $k_n = 0$. If we proceed in the same way for $i = n - 1, \dots, 1$, we obtain $k_n = \dots = k_1 = 0$, whence x = h, with $h \in H_0$. By Lemma 2.1, to prove that G_0 is \mathbb{R} -factorizable, it suffices to verify that G_0 is G_{ω_1} -dense in σ . To this end, it is enough to show that if $x \in \sigma$, $C \subseteq \kappa$ and $|C| \leq \aleph_1$, then there exists $\alpha < \kappa$ such that $\tilde{x}_{\alpha}(\nu) = x(\nu)$ for each $\nu \in C$. Suppose that $x \in \sigma$ and choose $\beta < \kappa$ such that $\delta_{\beta} > \sup C$. Then choose $\alpha < \kappa$ such that $\beta \leq \alpha$ and $x_{\alpha}(\nu) = x(\nu)$ for each $\nu < \delta_{\beta}$. Then $\tilde{x}_{\alpha}(\nu) = x(\nu)$ for each $\nu \in C$. This implies that the group G_0 is G_{ω_1} -dense in σ and, therefore, \mathbb{R} -factorizable. **Corollary 2.6.** Closed subgroups of \mathbb{R} -factorizable P-groups need not be \mathbb{R} -factorizable. PROOF: According to [13, Example 3.1], there exist an \mathbb{R} -factorizable abelian P-group G and a dense subgroup H of G such that H is not \mathbb{R} -factorizable. By Theorem 2.5, H is topologically isomorphic to a closed subgroup of another \mathbb{R} -factorizable P-group, so that closed subgroups of \mathbb{R} -factorizable P-groups are not necessarily \mathbb{R} -factorizable. It is known that all subgroups of compact groups as well as all subgroups of σ -compact groups are \mathbb{R} -factorizable [13], [14]. In the following definition, we introduce the class of groups with this property. **Definition 2.7.** A topological group G is called *hereditarily* \mathbb{R} -factorizable if all subgroups of G are \mathbb{R} -factorizable. **Theorem 2.8.** Every hereditarily \mathbb{R} -factorizable P-group is countable and, therefore, discrete. PROOF: Suppose to the contrary that G is an uncountable hereditarily \mathbb{R} -factorizable P-group and take a subset A of G of cardinality \aleph_1 . It is clear that the P-group $H = \langle A \rangle$ has cardinality \aleph_1 . Since H is \mathbb{R} -factorizable and $L(H) \leq \aleph_1$, from [15, Corollary 3.34] it follows that H is a Lindelöf group. In its turn, this implies that $w(H) \leq \aleph_1$ (see [15, Corollary 4.11]). If $w(H) = \aleph_1$, then by [7, Theorem 3.1], H has a subgroup which fails to be \mathbb{R} -factorizable, thus contradicting the hereditary \mathbb{R} -factorizability of G. Hence, $w(H) = \aleph_0$. Since H is a P-space, it is discrete and, consequently, $|H| = w(H) = \aleph_0$. This contradiction completes the proof. One can reformulate Theorem 2.8 by saying that every uncountable P-group G contains a subgroup of size \aleph_1 which fails to be \mathbb{R} -factorizable. Indeed, if G is \mathbb{R} -factorizable, this immediately follows from the above argument. Otherwise, by Theorem 1.1, G contains a discrete family $\{U_\alpha : \alpha < \omega_1\}$ of nonempty open sets. Choose a subgroup H of G of size \aleph_1 such that $V_\alpha = H \cap U_\alpha \neq \emptyset$ for each $\alpha < \omega_1$. Then the family $\{V_\alpha : \alpha < \omega_1\}$ of nonempty open sets is discrete in H, so that the group H is not \mathbb{R} -factorizable by Theorem 1.1. # 3. Continuous images By [15, Theorem 5.5], an arbitrary direct product G of \mathbb{R} -factorizable P-groups is \mathbb{R} -factorizable. Here we strengthen this result and show that every continuous map $f: G \to X$ to a Hausdorff space X of countable pseudocharacter can be factored via a quotient homomorphism $\pi: G \to K$ onto a second countable topological group K. In fact, this follows from an even stronger result (see Theorem 3.7): if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product X of P-spaces and X is pseudo- ω_1 -compact, then $nw(Y) \leq \aleph_0$. In particular, the space X is ω -stable. We precede this result by a series of lemmas. The first of them is an analogue of Noble's theorem on z-closed projections [9], [10]. **Lemma 3.1.** The Cartesian product $X \times Y$ of regular P-spaces X and Y is pseudo- ω_1 -compact if and only if X and Y are pseudo- ω_1 -compact and the projection $p: X \times Y \to X$ transforms clopen subsets of $X \times Y$ to clopen subsets of X. PROOF: Suppose that $X \times Y$ is pseudo- ω_1 -compact and let $W \subseteq X \times Y$ be a clopen set. If there exists a point $x_0 \in \overline{p(W)} \setminus p(W)$, take any point $y_0 \in Y$ and a neighborhood $W_0' = U_0' \times V_0$ of (x_0, y_0) , where U_0' and V_0 are clopen sets, such that $W_0' \cap W = \emptyset$. Pick a point $(x_1, y_1) \in W$ with $x_1 \in U_0'$. Now we take neighborhoods $W_1 = U_1 \times V_1$ and $W_1' = U_1' \times V_1$ of (x_1, y_1) and (x_0, y_1) , respectively, where U_1 , U_1' and V_1 are clopen sets such that $W_1' \cap W = \emptyset$, $W_1 \subseteq W$ and $U_1 \cup U_1' \subseteq U_0'$. Suppose that for some $\alpha < \omega_1$, we have already chosen points $(x_\beta, y_\beta) \in W$ as well as clopen sets W_β and W_β' for each $\beta < \alpha$, such that $W_\beta = U_\beta \times V_\beta$ is a neighborhood of (x_β, y_β) satisfying $W_\beta \subseteq W$ and $W_\beta' = U_\beta' \times V_\beta$ is a neighborhood of (x_0, y_β) with $W_\beta' \cap W = \emptyset$, and where $U_\beta \cup U_\beta' \subseteq U_\gamma'$ if $\gamma < \beta < \alpha$. Choose $(x_\alpha, y_\alpha) \in W$ in such a way that $x_\alpha \in \bigcap_{\beta < \alpha} U_\beta'$. Then we can take neighborhoods $W_\alpha = U_\alpha \times V_\alpha$ and $W_\alpha' = U_\alpha' \times V_\alpha$ of (x_α, y_α) and (x_0, y_α) , respectively, such that $W_\alpha' \cap W = \emptyset$ and $W_\alpha \subseteq W$, and where $U_\alpha \cup U_\alpha' \subseteq \bigcap_{\beta < \alpha} U_\beta'$. This finishes our recursive construction. Since $X \times Y$ is pseudo- ω_1 -compact, the family $\mathcal{F} = \{W_\alpha : \alpha < \omega_1\}$ has an accumulation point $(x,y) \in W$. We claim that (x,y) is an accumulation point of the family $\mathcal{F}' = \{W'_\alpha : \alpha < \omega_1\}$. Indeed, let $\alpha_0 < \omega_1$ be arbitrary. Since $U_\alpha \cup U'_\alpha \subseteq U_\beta$ if $\beta < \alpha < \omega_1$ and each U'_α is clopen, we have $x \in \bigcap_{\alpha < \omega_1} U'_\alpha$. Let $U \times V$ be a neighborhood of (x,y) in $X \times Y$. Since y is an accumulation point of the family $\{V_\alpha : \alpha < \omega_1\}$, there exists $\alpha > \alpha_0$ such that $V \cap V_\alpha \neq \emptyset$. Clearly, $x \in U \cap U'_\alpha$, so that $(U \times V) \cap (U'_\alpha \times V_\alpha) \neq \emptyset$. Our claim is proved. Thus, $(x, y) \in \overline{\bigcup \mathcal{F}} \cap \overline{\bigcup \mathcal{F}'} \neq \emptyset$. However, $\bigcup \mathcal{F} \subseteq W$ and $\bigcup \mathcal{F}' \subseteq (X \times Y) \setminus W = W'$, whence $\overline{\bigcup \mathcal{F}} \cap \overline{\bigcup \mathcal{F}'} \subseteq W \cap W' = \emptyset$. This contradiction shows that the set p(W) is clopen in X. Conversely, suppose that both spaces X and Y are pseudo- ω_1 -compact and $p: X \times Y \to X$ transforms clopen subsets of $X \times Y$ to clopen subsets of X. Suppose to the contrary that $X \times Y$ contains a discrete family $\{O_\alpha : \alpha < \omega_1\}$ of nonempty clopen sets. For every $\alpha < \omega_1$, put $W_\alpha = \bigcup_{\beta \geq \alpha} O_\beta$. Then we have a decreasing sequence $W_0 \supseteq W_1 \supseteq \cdots \supseteq W_\alpha \supseteq \ldots$, $\alpha < \omega_1$, of nonempty clopen subsets of $X \times Y$ with empty intersection. Each set $U_\alpha = p(W_\alpha)$ is clopen in X and, since X is pseudo- ω_1 -compact, the set $\bigcap_{\alpha < \omega_1} U_\alpha$ is nonempty. Let x_0 be an element of $\bigcap_{\alpha < \omega_1} U_\alpha$. The sets $V_\alpha = (\{x_0\} \times Y) \cap W_\alpha$ are clopen in the pseudo- ω_1 -compact space $\{x_0\} \times Y$. Hence $\bigcap_{\alpha < \omega_1} V_\alpha \subseteq \bigcap_{\alpha < \omega_1} W_\alpha$ is nonempty. This contradiction proves the lemma. **Lemma 3.2.** Suppose that the product $X \times Y$ of P-spaces X and Y is pseudo- ω_1 -compact. If W is a clopen set in $X \times Y$, then for every $x_0 \in p(W)$, there exists a clopen neighborhood U of x_0 in X such that $U \times V_{x_0} \subseteq W$, where $V_{x_0} = \{y \in Y : (x_0, y) \in W\}$. PROOF: Set $O = (X \times V_{x_0}) \setminus W$. Since V_{x_0} is clopen in Y, the set O is clopen in $X \times Y$. From Lemma 3.1 it follows that p(O) and $U = X \setminus p(O)$ are clopen sets in X, where $p: X \times Y \to X$ is the projection. Note that $x_0 \in U$ and if $(x,y) \in U \times V_{x_0}$, then $x \notin p(O)$. So, $(x,y) \in W$ and, hence, $U \times V_{x_0} \subseteq W$. \square The next result can be obtained by combining [8, Theorem 1.6] and the characterization of the so-called *approximation property* for products of two spaces given in [2]. We prefer, however, to supply the reader with a direct proof. **Lemma 3.3.** Suppose that the product $X = \prod_{i=1}^k X_i$ of P-spaces is pseudo- ω_1 -compact. If W is a clopen set in X, then $W = \bigcup_{n \in \omega} \prod_{i=1}^k U_{n,i}$, where the sets $U_{n,i}$ are clopen in X_i for all $n \in \omega$ and $i \leq k$. PROOF: By Lemma 3.1, it suffices to consider the case n=2. Let W be a clopen subset of $X_1 \times X_2$. Then $W' = X \setminus W$ is clopen as well. For every $x \in X_1$, put $$V_x = \{ y \in X_2 : (x, y) \in W \} \text{ and } V'_x = \{ y \in X_2 : (x, y) \in W' \}.$$ Then both sets V_x and V_x' are clopen in X_2 and $V_x' = X_2 \setminus V_x$. Consider the equivalence relation \sim on X_1 defined by $x \sim y$ if and only if $V_x = V_y$. We claim that for every $x \in X_1$, the equivalence class [x] of x is open in X_1 . Indeed, if $y \in [x]$, then $V_y = V_x = V$. Apply Lemma 3.2 to choose a clopen neighborhood U of y in X_1 such that $U \times V \subseteq W$ and $U \times V' \subseteq W'$, where $V' = X_2 \setminus V$. Then $V_z = V$ for each $z \in U$, so that $y \in U \subseteq [x]$. This proves that the set [x] is open. Since the space X_1 is pseudo- ω_1 -compact and the equivalence classes [x] with $x \in X_1$ form a disjoint open cover of X_1 , there exists a countable set $\{x_n : n \in \omega\} \subseteq X_1$ such that $X_1 = \bigcup_{n \in \omega} [x_n]$. It is clear that every set $U_{n,1} = [x_n]$ is clopen in X_1 . Therefore, $W = \bigcup_{n \in \omega} U_{n,1} \times U_{n,2}$ is the required representation of W, where $U_{n,2} = V_{x_n}$ for each $n \in \omega$. It is well known (see [6]) that if a product space $X = \prod_{i \in I} X_i$ has countable cellularity, then every regular closed set in X depends on at most countably many coordinates. In a sense, our next result is an analogue of this fact in the case when the product space X is pseudo- ω_1 -compact and the factors X_i are P-spaces. **Lemma 3.4.** Suppose that a product $X = \prod_{i \in I} X_i$ of P-spaces is pseudo- ω_1 -compact. Let $\sigma(a) \subseteq X$ be a σ -product endowed with the relative \aleph_0 -box topology (finer than the usual subspace topology). Then every clopen subset of $\sigma(a)$ depends on at most countably many coordinates. PROOF: It is clear that the space $\sigma(a)$ with the \aleph_0 -box topology is a P-space. Let U be a clopen subset of $\sigma(a)$. Then $V = \sigma(a) \setminus U$ is also clopen in $\sigma(a)$. Suppose that $\pi_J(U) \cap \pi_J(V) \neq \emptyset$ for every countable set $J \subseteq I$. Let us call a set $A \subseteq \sigma(a)$ canonical if A has the form $\sigma(a) \cap P$, where P is an \aleph_0 -box in X. First, we prove the following auxiliary fact. **Claim.** Let $A \subseteq U$ and $B \subseteq V$ be canonical open sets in $\sigma(a)$ such that $U' = U \setminus \overline{A} \neq \emptyset$ and $V' = V \setminus \overline{B} \neq \emptyset$. Then $\pi_J(U') \cap \pi_J(V') \neq \emptyset$ for each countable set $J \subseteq I$. Indeed, there exists a nonempty countable set $C \subseteq I$ such that $A = \sigma(a) \cap \pi_C^{-1}\pi_C(A)$ and $B = \sigma(a) \cap \pi_C^{-1}\pi_C(B)$. Let J be a countable subset of I. We can assume that $C \subseteq J$. Since $A \cap V = \emptyset = B \cap U$, we infer that (1) $$\pi_J(A) \cap \pi_J(V) = \emptyset$$ and $\pi_J(B) \cap \pi_J(U) = \emptyset$. Note that the set $U' \cup A$ is dense in U and $V' \cup B$ is dense in V. Since the restriction of π_J to $\sigma(a)$ is an open map, from $\pi_J(U) \cap \pi_J(V) \neq \emptyset$ it follows that (2) $$\pi_J(U' \cup A) \cap \pi_J(V' \cup B) \neq \emptyset.$$ Note that $U' \subseteq U$ and $V' \subseteq V$, so (1) implies that $\pi_J(U') \cap \pi_J(B) = \emptyset$, $\pi_J(V') \cap \pi_J(A) = \emptyset$ and $\pi_J(A) \cap \pi_J(B) = \emptyset$. Therefore, from (2) it follows that $\pi_J(U') \cap \pi_J(V') \neq \emptyset$. This proves our claim. We will construct by recursion three sequences $\{I_{\alpha} : \alpha < \omega_1\}$, $\{U_{\alpha} : \alpha < \omega_1\}$ and $\{V_{\alpha} : \alpha < \omega_1\}$ satisfying the following conditions for all $\beta, \gamma < \omega_1$: - (i) $I_{\beta} \subseteq I$, $|I_{\beta}| \leq \aleph_0$; - (ii) $I_{\gamma} \subseteq I_{\beta}$ if $\gamma < \beta$; - (iii) U_{β} and V_{β} are nonempty canonical clopen sets in $\sigma(a)$; - (iv) $U_{\beta} \subseteq U$, $V_{\beta} \subseteq V$ and $\pi_{I_{\beta}}(U_{\beta}) = \pi_{I_{\beta}}(V_{\beta})$; - (v) $U_{\gamma} = \sigma(a) \cap \pi_{I_{\beta}}^{-1} \pi_{I_{\beta}}(U_{\gamma})$ and $V_{\gamma} = \sigma(a) \cap \pi_{I_{\beta}}^{-1} \pi_{I_{\beta}}(V_{\gamma})$ if $\gamma < \beta$; - (vi) $U_{\gamma} \cap U_{\beta} = \emptyset$ and $V_{\gamma} \cap V_{\beta} = \emptyset$ if $\gamma < \beta$. To start, take a nonempty countable set $I_0 \subseteq I$ and choose canonical clopen sets U_0 and V_0 in $\sigma(a)$ such that $U_0 \subseteq U$, $V_0 \subseteq V$ and $\pi_{I_0}(U_0) \cap \pi_{I_0}(V_0) \neq \emptyset$. Taking smaller clopen sets, one can assume that $\pi_{I_0}(U_0) = \pi_{I_0}(V_0)$. Suppose that at some stage $\alpha < \omega_1$, we have defined sequences $\{I_\beta : \beta < \alpha\}$, $\{U_\beta : \beta < \alpha\}$ and $\{V_\beta : \beta < \alpha\}$ satisfying conditions (i)–(vi). Since each I_β is countable and the sets U_β , V_β depend on countably many coordinates, there exists a countable set $I_\alpha \subseteq I$ such that $I_\beta \subseteq I_\alpha$, $U_\beta = \sigma(a) \cap \pi_{I_\alpha}^{-1} \pi_{I_\alpha}(U_\beta)$ and $V_\beta = \sigma(a) \cap \pi_{I_\alpha}^{-1} \pi_{I_\alpha}(V_\beta)$ for each $\beta < \alpha$. Let $U'_\alpha = U \setminus \overline{G}_\alpha$ and $V'_\alpha = V \setminus \overline{H}_\alpha$, where $G_\alpha = \bigcup_{\beta < \alpha} U_\beta$ and $H_\alpha = \bigcup_{\beta < \alpha} V_\beta$. Apply the above Claim to choose nonempty canonical clopen sets $U_\alpha \subseteq U'_\alpha$ and $V_\alpha \subseteq V'_\alpha$ such that $\pi_{I_\alpha}(U_\alpha) = \pi_{I_\alpha}(V_\alpha)$. An easy verification shows that the sequences $\{I_\beta : \beta \leq \alpha\}$, $\{U_\beta : \beta \leq \alpha\}$ and $\{V_\beta : \beta \leq \alpha\}$ satisfy conditions (i)–(vi) for all $\beta, \gamma \leq \alpha$, thus finishing our recursive construction. Let $K = \bigcup_{\alpha < \omega_1} I_{\alpha}$. By (iv), the set $G = \bigcup_{\alpha < \omega_1} U_{\alpha}$ is contained in U and $H = \bigcup_{\alpha < \omega_1} V_{\alpha}$ is contained in V, so that $\overline{G} \cap \overline{H} = \emptyset$. To obtain a contradiction, it suffices to show that the sets G and H have a common cluster point in $\sigma(a)$. From (v), (ii) and our definition of the sets G and H it follows that $G = \sigma(a) \cap \pi_K^{-1} \pi_K(G)$ and $H = \sigma(a) \cap \pi_K^{-1} \pi_K(H)$, so we can assume without loss of generality that K = I. By Lemma 2.3, the P-space $\sigma(a)$ is pseudo- ω_1 -compact. Hence the family $\gamma = \{U_\alpha : \alpha < \omega_1\}$ has an accumulation point $x \in \sigma(a)$ and every neighborhood of x in $\sigma(a)$ intersects uncountably many elements of γ . Let O be a canonical open neighborhood of x in X and let $C = \operatorname{coord} O$. Since $|C| \leq \aleph_0$, (ii) implies that there exists $\beta < \omega_1$ such that $C \subseteq I_\beta$. There are uncountably many ordinals $\alpha < \omega_1$ such that $\beta \leq \alpha$ and $O \cap U_\alpha \neq \emptyset$. For every such an $\alpha < \omega_1$, let z_α be an arbitrary point of the set $\pi_{I_{\alpha}}(O \cap U_{\alpha}) \subseteq \pi_{I_{\alpha}}(O) \cap \pi_{I_{\alpha}}(U_{\alpha})$. From (iv) it follows that $\pi_{I_{\alpha}}(U_{\alpha}) = \pi_{I_{\alpha}}(V_{\alpha})$, so $z_{\alpha} \in \pi_{I_{\alpha}}(O) \cap \pi_{I_{\alpha}}(V_{\alpha})$. Choose a point $z \in V_{\alpha}$ such that $\pi_{I_{\alpha}}(z) = z_{\alpha}$. Since coord $O = C \subseteq I_{\beta} \subseteq I_{\alpha}$, we conclude that $z \in O \cap V_{\alpha} \neq \emptyset$. This immediately implies that x is an accumulation point of the family $\{V_{\alpha} : \alpha < \omega_1\}$ and, hence, $x \in \overline{H}$. Thus, $x \in \overline{G} \cap \overline{H} \neq \emptyset$, which is a contradiction. We have thus proved that $\pi_J(U) \cap \pi_J(V) = \emptyset$ for some nonempty countable subset J of I, whence it follows that $U = \sigma(a) \cap \pi_J^{-1} \pi_J(U)$. In other words, U depends only on the set J. A simple modification of the argument in the proof of Lemma 3.4 (combined with the Δ -lemma) implies the following corollary. Corollary 3.5. Let $\{X_i : i \in I\}$ be a family of P-spaces such that the product $X = \prod_{i \in I} X_i$ is pseudo- ω_1 -compact. If U and V are open sets in X and $\overline{U} \cap \overline{V} = \emptyset$, then there exists a nonempty countable set $J \subseteq I$ such that $\pi_J(U) \cap \pi_J(V) = \emptyset$. It is not clear whether one can find a countable set $J \subseteq I$ in Corollary 3.5 satisfying $\overline{\pi_J(U)} \cap \overline{\pi_J(V)} = \emptyset$. **Lemma 3.6.** Let $X = \prod_{i \in I}$ be a product space and $\sigma(a) \subseteq X$ be the σ -product with center at $a \in X$. Suppose that $\emptyset \neq J \subseteq I$ and that a continuous map $f: X \to Y$ to a Hausdorff space Y satisfies f(x) = f(y) whenever $x, y \in \sigma(a)$ and $\pi_J(x) = \pi_J(y)$. Then f depends only on J. PROOF: Let $x, y \in X$ satisfy $\pi_J(x) = \pi_J(y)$. Suppose to the contrary that $f(x) \neq f(y)$ and choose in X disjoint open neighborhoods U and V of x and y, respectively, such that $f(U) \cap f(V) = \emptyset$. We can assume without loss of generality that the sets U and V are canonical and coord $U = C = \operatorname{coord} V$. Let us define two points $x^*, y^* \in X$ by $$x^*(i) = \begin{cases} x(i) & \text{if } i \in C; \\ x^*(i) = a(i) & \text{if } i \in I \setminus C \end{cases}$$ and, similarly, $$y^*(i) = \begin{cases} y(i) & \text{if } i \in C; \\ y^*(i) = a(i) & \text{if } i \in I \setminus C. \end{cases}$$ Then $x^*, y^* \in \sigma(a)$ and $\pi_J(x^*) = \pi_J(y^*)$, so that $f(x^*) = f(y^*)$. On the other hand, we have $x^* \in U$ and $y^* \in V$, whence $f(x^*) \in f(U)$ and $f(y^*) \in f(V)$. Since $f(U) \cap f(V) = \emptyset$, this implies that $f(x^*) \neq f(y^*)$, which is a contradiction. Let $f: X \to Y$ and $g: X \to Z$ be continuous maps, where Y = f(X). We say that f is finer than g or, in symbols, $f \prec g$ if there exists a continuous map $\varphi: Y \to Z$ such that $g = \varphi \circ f$. The theorem below is the main result of this section. **Theorem 3.7.** Let $X = \prod_{i \in I} X_i$ be a product of P-spaces and $f: X \to Y$ be a continuous map onto a space Y of countable pseudocharacter. If X is pseudo- ω_1 -compact, then f depends on at most countably many coordinates. In addition, one can find a countable set $C \subseteq I$ and, for each $i \in C$, a continuous map $h_i: X_i \to \mathbb{N}$ to the discrete space \mathbb{N} such that $(\prod_{i \in C} h_i) \circ \pi_C \prec f$. Hence $nw(Y) \leq \aleph_0$. PROOF: First, we show that f depends on countably many coordinates. Choose any point $a \in X$ and denote by $\sigma(a)$ the σ -product of the spaces X_i with center at a. Let $\sigma(a)$ carry the relative \aleph_0 -box topology (which is finer than the subspace topology of $\sigma(a)$ inherited from X). By Lemma 2.3, the P-space $\sigma(a)$ is pseudo- ω_1 -compact. Since $\psi(Y) \leq \aleph_0$, the set $F_y = f^{-1}(y) \cap \sigma(a)$ is clopen in $\sigma(a)$ for each $y \in Y$. Clearly, $\{F_y : y \in f(\sigma(a))\}$ is a partition of $\sigma(a)$ into disjoint clopen sets. Hence, the pseudo- ω_1 -compactness of $\sigma(a)$ implies that the image $Z = f(\sigma(a))$ is countable. Given a nonempty set $J\subseteq I$, we denote by π_J the projection of X onto $X_J=\prod_{i\in J}X_i$. By Lemma 3.4, every set F_y depends only on a countable number coordinates, that is, there exists a countable set $C(y)\subseteq I$ such that $F_y=\sigma(a)\cap\pi_{C(y)}^{-1}\pi_{C(y)}(F_y)$. Put $C=\bigcup_{y\in Z}C(y)$. Then C is a countable subset of I and $F_y=\sigma(a)\cap\pi_C^{-1}\pi_C(F_y)$ for each $y\in Z$. Therefore, if $x,y\in\sigma(a)$ and $\pi_C(x)=\pi_C(y)$, then f(x)=f(y). Apply Lemma 3.6 to conclude that f depends only on the set C. In other words, there exists a map $f_C\colon X_C\to Y$ such $f=f_C\circ\pi_C$. The map f_C is continuous because the projection π_C is open. We can assume, therefore, that C=I (and $f_C=f$). In addition, we can assume that $I=\omega$, i.e., $X=\prod_{n\in\omega}X_n$ and that each factor X_n is infinite. For every $n \in \omega$, consider the subspace K_n of X defined by $$K_n = \{x \in X : x(i) = a(i) \text{ for each } i > n\}.$$ Then $K_n \cong \prod_{i \leq n} X_i$, so that K_n is a pseudo- ω_1 -compact P-space. As above, it is easy to see that the image $f(K_n)$ is countable for each $n \in \omega$ and the set $F_{n,y} = K_n \cap f^{-1}(y)$ is clopen in K_n for each $y \in f(K_n)$. By Lemma 3.3, every set $F_{n,y}$ can be represented as a countable union of basic open sets of the form $U_0 \times \cdots \times U_n$, where U_i is a clopen subset of X_i for each $i \leq n$ (we identify K_n and $X_0 \times \ldots \times X_n$). Since these representations of the sets $F_{n,y}$ involve only countably many clopen sets in each of the factors X_0, \ldots, X_n , one can find, for every $i \leq n$, a continuous map $g_{n,i} \colon X_i \to \mathbb{N}$ to the discrete space \mathbb{N} such that the direct product $p_n = \prod_{i \leq n} g_{n,i}$ satisfies $p_n \prec f_n$, where $f_n = f \upharpoonright_{K_n}$. For every $i \in \omega$, let g_i be the diagonal product of the family $\{g_{n,i} : n \geq i\}$. Then the map $g_i \colon X_i \to \mathbb{N}^{\omega \setminus i}$ is continuous and, clearly, the product map $q_n = \prod_{i \leq n} g_i$ satisfies $q_n \prec p_n \prec f_n$ for each $n \in \omega$. Again, the image $g_i(X_i)$ is countable and the fibers $g_i^{-1}(y)$, with $y \in g_i(X_i)$, form a partition of X_i into clopen sets. Hence, for every $i \in \omega$, there exists a continuous onto map $h_i \colon X_i \to \mathbb{N}$ satisfying $h_i \prec g_i$. Let $h = \prod_{i \in \omega} h_i : X \to \mathbb{N}^{\omega}$ be the direct product of the family $\{h_i : i \in \omega\}$. Note that each map h_i is open and onto, and so is the map h. Let us verify that $h \prec f$. Indeed, since $h_i \prec g_i$ for each $i \in \omega$, we have $\prod_{i \leq n} h_i \prec \prod_{i \leq n} g_i = q_n \prec f_n$ and, hence, $$\phi_n = h \upharpoonright_{K_n} = \prod_{i \le n} h_i \prec f_n$$ for all $n \in \omega$. First, we claim that $h^{-1}h(x) \subseteq f^{-1}f(x)$ for every $x \in X$. Suppose to the contrary that there exist points $x, y \in X$ such that h(x) = h(y) but $f(x) \neq f(y)$. Choose in Y disjoint neighborhoods U_x and U_y of f(x) and f(y), respectively. By the continuity of f, there are canonical open sets $V_x \ni x$ and $V_y \ni y$ in the product space X such that $f(V_x) \subseteq U_x$ and $f(V_y) \subseteq U_y$. We can assume without loss of generality that $V_x = V_0^x \times \cdots \times V_n^x \times P_n$ and $V_y = V_0^y \times \cdots \times V_n^y \times P_n$, where $n \in \omega$, the sets V_i^x, V_i^y are open in X_i for $i = 0, \ldots, n$ and $P_n = \prod_{i>n} X_i$. For every $n \in \omega$, denote by r_n the retraction of X onto K_n defined by $r_n(x)(i) = x(i)$ if $i \leq n$ and $r_n(x) = a(i)$ if i > n. Then $x' = r_n(x) \in V_x \cap K_n$ and $y' = r_n(y) \in V_y \cap K_n$. Therefore, from $f(x') \in f(V_x) \subseteq U_x$, $f(y') \subseteq f(V_y) \subseteq U_y$ and $U_x \cap U_y = \emptyset$ it follows that $f(x') \neq f(y')$. By (3), however, we have $h \prec \phi_n \circ r_n \prec f_n \circ r_n = f \circ r_n$ and, hence, the equality h(x) = h(y) implies that $f(r_n(x)) = f(r_n(y))$ or, equivalently, f(x') = f(y'). This contradiction proves the claim. So, there exists a map $i: \mathbb{N}^\omega \to Y$ satisfying $f = i \circ h$. Since the map h is open, i is continuous. Therefore, $h \prec f$. Finally, the space \mathbb{N}^{ω} is second countable, so that the image $Y = f(X) = i(\mathbb{N}^{\omega})$ has a countable network. It is shown in [15, Lemma 3.29] that every ω -stable space is pseudo- ω_1 -compact. For P-spaces, ω -stability and pseudo- ω_1 -compactness are equivalent by [15, Proposition 3.30]. It turns out that this equivalence holds for arbitrary products of P-spaces. Corollary 3.8. Suppose that the product $X = \prod_{i \in I} X_i$ of P-spaces is pseudo- ω_1 -compact. Then the space X is ω -stable. PROOF: Let $f: X \to Y$ be a continuous map onto a space Y which admits a coarser second countable Tychonoff topology. Then Y is Hausdorff and $\psi(Y) \leq \aleph_0$, so that $nw(Y) \leq \aleph_0$ by Theorem 3.7. By [1, Theorem 10], every σ -product of Lindelöf P-spaces is ω -stable. The next corollary extends this result to products of Lindelöf P-spaces. Corollary 3.9. Every product of Lindelöf P-spaces is ω -stable. PROOF: By Noble's theorem in [10], finite products of Lindelöf P-spaces are Lindelöf (hence, pseudo- ω_1 -compact). Therefore, an arbitrary product $X = \prod_{i \in I} X_i$ of Lindelöf P-spaces is pseudo- ω_1 -compact by Lemma 2.3, and the required conclusion follows from Corollary 3.8. In general, the product of two pseudo- ω_1 -compact P-spaces can fail to be pseudo- ω_1 -compact. In the class of P-groups, however, pseudo- ω_1 -compactness becomes productive by Lemmas 2.2 and 2.3. This explains, in part, the strong factorization property of products of \mathbb{R} -factorizable P-groups given in the next theorem. **Theorem 3.10.** Let $G = \prod_{i \in I} G_i$ be a direct product of \mathbb{R} -factorizable P-groups. If $f: G \to Y$ is a continuous map onto a space Y with $\psi(Y) \leq \aleph_0$, then there exists a quotient homomorphism $\pi: G \to H$ onto a second countable topological group H such that $\pi \prec f$. In particular, $nw(Y) \leq \aleph_0$. PROOF: By Lemmas 2.2 and 2.3, the group G is pseudo- ω_1 -compact. Apply Theorem 3.7 to find a countable set $C \subseteq I$ and, for each $i \in C$, a continuous map $h_i: G_i \to \mathbb{N}$ such that $(\prod_{i \in C} h_i) \circ \pi_C \prec f$. Since the groups G_i are \mathbb{R} -factorizable, for each $i \in C$ there exists a continuous homomorphism $p_i: G_i \to K_i$ onto a second countable group K_i such that $p_i \prec h_i$. Note that the fibers $p_i^{-1}(y)$ are G_δ -sets in G_i , so they are open in G_i . Clearly, the homomorphism p_i remains continuous if we endow the group K_i with the discrete topology. The group G_i is pseudo- ω_1 -compact by Theorem 1.1, so the cover of G_i by the fibers $p_i^{-1}(y)$, with $y \in K_i$, is countable. Hence the discrete group $K_i = p_i(G_i)$ is countable and the homomorphism p_i is open. Let p be the direct product of the homomorphisms $p_i, i \in C$. Then the homomorphism $p: \prod_{i \in C} G_i \to \prod_{i \in C} K_i$ is continuous, open and the group $H = \prod_{i \in C} K_i$ is second countable. It is clear that the homomorphism $\varphi = p \circ \pi_C$ of G to H is continuous, open and satisfies $\varphi \prec (\prod_{i \in C} h_i) \circ \pi_C \prec f$. Therefore, there exists a continuous map $i: H \to Y$ such that $f = i \circ \varphi$ and, hence, Y = i(H). This implies that Y has a countable network. The following corollary to Theorem 3.10 is immediate. It was proved (by a different method) in [15]. Corollary 3.11. Let G be a direct product of \mathbb{R} -factorizable P-groups. Then the group G is \mathbb{R} -factorizable and τ -stable for $\tau \in \{\omega, \omega_1\}$. PROOF: The \mathbb{R} -factorizability of G follows directly from Theorem 3.10. In addition, G is ω_1 -stable by [15, Theorem 3.9]. To conclude that G is ω -stable, apply Corollary 3.8 and Lemmas 2.2 and 2.3. By a theorem of Comfort and Ross [5], the class of pseudocompact groups is productive. Therefore, Corollary 3.11 extends a certain similarity in the permanence properties of \mathbb{R} -factorizable P-groups and pseudocompact groups mentioned in Section 2. In addition, the groups of both classes are ω -stable. In fact, one can apply Lemma 5.9 of [14] to prove the following analogue of Theorem 3.10 for pseudocompact groups: if a regular space Y of countable pseudocharacter is a continuous image of (a G_{δ} -subset of) a pseudocompact group, then $nw(Y) \leq \aleph_0$. ## 4. Open problems Here we formulate two open problems concerning Theorem 2.5. **Problem 4.1.** Is every \aleph_0 -bounded P-group topologically isomorphic to a subgroup of an \mathbb{R} -factorizable P-group? **Problem 4.2.** Does Theorem 2.5 remain valid in the non-abelian case? #### References - Arhangel'skii A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177–181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039–1043. - [2] Blair R.L., Hager A.W., z-embeddings in $\beta X \times \beta Y$, Set-Theoretic Topology, Academic Press, New York, 1977, pp. 47–72. - [3] Comfort W.W., Compactness-like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31–37. - [4] Comfort W.W., Robertson L., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 1–48. - [5] Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483–496. - [6] Engelking R., General Topology, Heldermann Verlag, 1989. - [7] Hernández C., Tkachenko M., Subgroups of R-factorizable groups, Comment. Math. Univ. Carolinae 39 (1998), 371–378. - [8] Hernández S., Algebras of real-valued continuous functions in product spaces, Topology Appl. 22 (1986), 33–42. - [9] Noble M., A note on z-closed projection, Proc. Amer. Math. Soc. 23 (1969), 73-76. - [10] Noble M., Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381–391. - [11] Novak J., On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106–112. - [12] Schepin E.V., Real-valued functions and canonical sets in Tychonoff products and topological groups, Russian Math. Surveys 31 (1976), 19–30. - [13] Tkachenko M., Subgroups, quotient groups and products of ℝ-factorizable groups, Topology Proc. 16 (1991), 201–231. - [14] Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179–231. - [15] Tkachenko M., R-factorizable groups and subgroups of Lindelöf P-groups, submitted. Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco # 186, Col. Vicentina, C.P. 09340, Iztapalapa, Mexico, D.F. E-mail: chg@xanum.uam.mx, mich@xanum.uam.mx (Received July 4, 2002, revised November 13, 2003)