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Estimation variances for parameterized marked Poisson

processes and for parameterized Poisson segment processes

Tomáš Mrkvička

Abstract. A complete and sufficient statistic is found for stationary marked Poisson
processes with a parametric distribution of marks. Then this statistic is used to derive
the uniformly best unbiased estimator for the length density of a Poisson or Cox segment
process with a parametric primary grain distribution. It is the number of segments
with reference point within the sampling window divided by the window volume and
multiplied by the uniformly best unbiased estimator of the mean segment length.
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1. Introduction

In [5], we found the minimum variance unbiased estimator for the function of
the process intensity (for example: length density) in the case of a Poisson or Cox

process of compact sets in R
d with known distribution of primary grain. This

estimator was based on the number of compact sets in the window. In this note
we extend the result for the case of parametric primary grain distribution.
The complete and sufficient statistic for the stationary marked Poisson pro-

cess with a parametric distribution of mark with unknown parameter is found in
Section 2.
The main aim of this note is to find a minimum variance unbiased estimator

of the length density in the case of a stationary Poisson process of compact sets
with a parametric primary grain distribution. If we consider only grains with
reference point within the observation window and if we assume that we know
these compact sets exactly then the problem should be reduced to the stationary
marked point process with the distribution of marks equal to the distribution of
the primary grain. There are cases when we know these compact sets exactly.
For example in the process of discs or in the Stochastic Restoration Estimation
[1] or in minus-sampling [6].

This work was partly supported by the Grant Agency of Czech Republic,
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In Section 3, we consider a stationary segment process with a parametric length
distribution with unknown parameters and unknown arbitrary direction distribu-
tion. We assume again that we know exact length of each segment with reference
point within the observation window. We propose to estimate the length density
by the means of the number of segments with reference point within the sampling
window multiplied by the uniformly best unbiased estimator of mean segment
length and divided by the window volume. This estimator, however, does not use
all information available in the window.
In Section 4 we compare the variance of the proposed estimator with the vari-

ance of the natural estimator (i.e., the estimator which is based on the total length
of the segments in the observation window) in certain special cases. The edge ef-
fect has nearly no power in a sufficiently large window therefore our proposed
estimator, based on the complete and sufficient statistic, has smaller variance in
such a window.

2. Complete, sufficient statistic for a stationary marked Poisson

process with a parametric distribution of marks

Consider a stationary marked Poisson process Φ on R
d with marks from a Polish

spaceM (for details see for example [2] or [6]). Let α denote the intensity of Φ and
Λ0(θ) the parametric distribution of marks with an unknown parameter θ ∈ Θ.
Suppose that every Λ0(θ) is absolutely continuous with respect to some σ-finite
measure ξ. Let fθ(m), m ∈ M , denote the density of the mark distribution and let
fθ(m1, . . . , mj) = fθ(m1) · . . . · fθ(mj) denote the density of the joint distribution
of j independent marks. Denote the distribution of Φ by Pα,θ and the expectation
with respect to Pα,θ by EPα,θ

. Furthermore, let φ denote a realization of Φ and

let N denote the set of all possible realizations.
Let Tj : X ⊆ M j → R

l be a statistic for an independent j-tuple of marks
which is complete and sufficient for θ. Assume, further, that the distribution of
Tj is absolutely continuous with respect to some σ-finite measure ζ with density
fTj
(θ, t), θ ∈ Θ, t ∈ Tj(X ).

The model characteristic to be estimated is a function τ(α, θ) : R+ × Θ → R.
Suppose that the process is observed through a bounded measurable observation
windowW ⊆ R

d of positive Lebesgue measure. Let EW be the set of all estimators
which depend only on points from W . We are looking for an unbiased estimator
e ∈ EW of τ(α, θ) which is the minimum variance unbiased estimator from EW .

Let ST : N →
(

N

R
l

)
; φ 7→

(
φ(W )
Tφ(W )

)
denote the statistic of Φ. ST has the

joint density

f(Φ(W ) = j, TΦ(W ) = t) = exp(−αµd(W ))
(αµd(W ))j

j!
· fTj
(θ, t),

where µd is the d-dimensional Lebesgue measure.
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Theorem 1. The statistic ST is a complete and sufficient for (α, θ).

Proof: 1) The proof of sufficiency will be based on Factorization criterion [3,
Theorem 1.5.2].

The intensity measure Λ is absolutely continuous with respect to µd × ξ and

Φ̃ = Φ|(W × M) is a finite marked point process in a bounded region, hence we

can write its density on
⋃∞

j=0(W × M)j with respect to ν =
∑∞

j=0(µ
d × ξ)j as

f({z1, m1}, . . . , {zj, mj}) = exp(−αµd(W ))
(αµd(W ))j

j!
·g(z1, m1) · . . . ·g(zj , mj),

where g =
Λ̃(d(z, m))

µd(dz)× ξ(dm)
. We have g(z, m) = IW (z) · fθ(m) since Φ is a sta-

tionary marked Poisson process. Factorization criterion for the sufficient statistic
Tj says that there exist non-negative measurable functions such that

fθ(m1) · . . . · fθ(mj) = gj(θ, Tj(m1, . . . , mj)) · hj(m1, . . . , mj).

Together we can write the density as

f({z1, m1}, . . . , {zj , mj}) = exp(−αµd(W ))
(αµd(W ))j

j!
gj(θ, Tj(m1, . . . , mj))×

× IW (z1) . . . IW (zj) hj(m1, . . . , mj)

and by Factorization Criterion the statistic ST is sufficient for α, θ.

2) Let h(j, t) : (N × Tj(X )) → R be a real integrable function such that
EPα,θh(Φ(W ), TΦ(W )) = 0 for all α, θ. We have

∞∑

j=0

∫
(αµd(W ))j

j!
e−αµd(W ) · fTj

(θ, t) · h(j, t)ζ(dt) = 0 ∀α > 0, θ ∈ Θ,

e−αµd(W ) ·
∞∑

j=0

(αµd(W ))j

j!

∫
fTj
(θ, t) · h(j, t)ζ(dt) = 0 ∀α > 0, θ ∈ Θ.

Since e−αµd(W ) > 0 for any α > 0 all coefficients of the power series in α must
vanish. Thus

∫
fTj
(θ, t) · h(j, t)ζ(dt) = 0 ∀θ ∈ Θ, ∀j ∈ N.

Tj is a complete statistic, hence h(j, t) = 0 ∀j ∈ N, ∀t ∈ R
+, a.s. and ST is

complete for (α, θ).

The Rao-Blackwell theorem [3] together with the previous theorem yields the
next result.



112 T.Mrkvička

Corollary 1. Let τ(α, θ) : R
+ × Θ → R be a function of the parameters α, θ

which we want to estimate. If e is an unbiased estimator of τ(α, θ) then

E [e(Φ) | ST ]

is the minimum variance unbiased estimator among all unbiased estimators

from EW .

Remark 1. It is easy to show that Corollary 1 holds for a stationary marked mixed
Poisson process [6, Chapter 5.2] as well.

3. Poisson segment processes

The method introduced above will be demonstrated on a stationary Poisson
segment process now. For detailed introduction of the segment process we refer
to [5].
Suppose now that we know exact length and direction of every segment which

has the reference point inside of the observation window. Then we consider this
process as a marked Poisson point process with the distribution of marks Λ0(θ)
which lives on the spaceM = R

+×Ud, where Ud is the space of all 1-dimensional
subspaces in R

d and it is isomorphic to the unit semisphere in R
d. Denote a mark

by a pair (r, β), where r ∈ R
+ is the segment length and β ∈ Ud is the segment

direction. Suppose again that each Λ0(θ) is absolutely continuous with respect to
some σ-finite measure ξ on R

+ ×Ud. Thus there exists a density of marks which
we denote again fθ(r, β), r ∈ R

+, β ∈ Ud.

Let Tj : R
+j

→ R
l be a statistics of the independent j-tuple of the marks

and assume that Tj is complete and sufficient for θ and that its distribution
is absolutely continuous with respect to some σ-finite measure η. Hence, for
example, we can determine the minimum variance unbiased estimator ej of Er,
where Er denotes the expectation of the segment length.
Let λ = E

∑
S∈ΦH1(S ∩ [0, 1]d) denote the length density of a stationary

segment process where H1 is the 1-dimensional Hausdorff measure.
We want to find a minimum variance unbiased estimator for λ of a stationary

Poisson segment process with a parametric distribution of primary grain with
unknown parameters from the set of estimators EW . It is easy to see that λ =
τ(α, θ) = αEr.
Let eλ denote the estimator of the length density eλ : N → R

+ ; φ 7→
φ(W )
µd(W )

· eφ(W ), where φ(W ) denotes the number of segment reference points in

the observation window W .

Theorem 2. The estimator eλ of the length density λ of a stationary Poisson
segment process with a parametric distribution of primary grain with unknown

parameters has minimum variance among all unbiased estimators from EW .
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Proof: We can express the expectation of eλ because we know the density of
the process.

EPα,θ
eλ(Φ) =

∞∑

j=0

exp(−αµd(W ))
αj

j!
×

[
j︷ ︸︸ ︷∫

M
. . .

∫

M

j︷ ︸︸ ︷∫

W
. . .

∫

W

j

µd(W )
×

× ej((r1, β1), . . . , (rj , βj))

fθ(r1, β1) . . . fθ(rj , βj)(dz1) . . . (dzj) ξ(d(r1, β1)) . . . ξ(d(rj , βj))
]

=
1

µd(W )

∞∑

j=0

j · exp(−αµd(W ))
αjµd(W )j

j!
×

j︷ ︸︸ ︷∫

M
. . .

∫

M
×

× ej((r1, β1), . . . , (rj , βj))

fθ(r1, β1) . . . fθ(rj , βj)ξ(d(r1, β1)) . . . ξ(d(rj , βj)) = α · Er.

Thus eλ is an unbiased estimator of λ. We finish the proof by applying Corollary 1.

Assume additionally that the typical segment length and direction are indepen-
dent random variables. It means that Λ0 corresponds to the distribution product
D × ρ. If D is the exponential distribution with parameter µ (ρ is arbitrary)

then
∑j

i=1 ri is the complete and sufficient statistic for µ. Hence the minimum
variance unbiased estimator of the length density λ is

eλ1 =
φ(W )

µd(W )

∑φ(W )
i=1 ri

φ(W )
=

∑φ(W )
i=1 ri

µd(W )
.

If D is the uniform distribution U(0, A) (ρ is arbitrary) then maxi=1,...,j ri is the
complete and sufficient statistic for A. Hence the minimum variance unbiased
estimator of the length density λ is

eλ2 =
φ(W )

µd(W )

φ(W ) + 1

2 · φ(W )
max

i=1,...,φ(W )
ri =

φ(W ) + 1

2 · µd(W )
max

i=1,...,φ(W )
ri.

Theorem 3. The variances of the estimators defined above are

var(eλ1) =
α Er2

µd(W )
,

var(eλ2) =
A2

4

[
α

µd(W )
+

1

µd(W )2
−

2

αµd(W )3

+
2

α2µd(W )4
−

2

α2µd(W )4
e−αµd(W )

]
.
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Proof: Let r(S) denote the length of the segment S. Using [5, Lemma 2] we get

var[eλ1 ] =

∫ (
r(S)

µd(W )
IW1S

)2
ΛP (dS) =

1

(µd(W ))2

∫

W1
[r(S)]2 ΛP (dS)

=
α

(µd(W ))2

∫

Ud

∫

R+

∫

W
r2 dz Λ0(d(r, β))

=
αµd(W )

(µd(W ))2

∫

R+

∫

Ud

r2fθ(r, β) ξ(d(r, β))

=
α

µd(W )

∫

R+
r2fθ(r)

∫

Ud

fθ(β) ζ(dβ) ϑ(dr)

=
α

µd(W )

∫

R+
r2fθ(r) ϑ(dr) =

α Er2

(µd(W ))
.

We cannot use [5, Lemma 2] in the second part of the proof therefore we have
to compute E(eλ2)

2 directly. After longer but straightforward computation we
received the result [4].

Remark 2. We can improve the estimator eλ if we select other reference points,
e.g. the lexicographic maximum. Then we get another estimator. We have more
estimators thus we can average them and get even lower variance. This variance
may be computed using [5, Lemma 2] in some special cases. This will be illustrated
in the next section.

Remark 3. It is easy to show that Theorems 2, 3 and Remark 2 can be extended
to Mixed Poisson processes.

4. Comparison of some estimators

So far we have supposed that we know the lengths of all segments. It means that
we have used some information outside the window W , otherwise the estimator
eλ does not use all segments hitting W . Furthermore, eλ is easily implementable
and does not depend on the directional distribution. If we consider all segments
hitting W in the estimator, then we use all information which we know, and the
minimum variance unbiased estimator on this set of estimators will be the best
among all unbiased estimators. But this estimator is too complicate and it is
hardly applicable in practice. Now a question arises whether the commonly used
estimator

ẽ(Φ) =
1

µd(W )

∑

S∈Φ:S∩W 6=∅
H1(S ∩ W )

which uses all segments hitting W can have lower variance then the minimum
variance unbiased estimator eλ from EW . Here H1(S ∩ W ) is the length of the
visible part of the segment S.
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We consider a stationary Poisson segment process on R
2. Assume for sim-

plicity that the observation window W is a square of side length a. Under this
assumptions the variance of the common unbiased estimator ẽ is [5]

(3) var[ẽ] =
α

a4

[
a2Er2 −

1

3
aEr3E(sin |β|+ cos |β|) +

1

3
Er4E(sin |β| cos |β|)

]
.

Example 1. Comparison of the variances of the estimators eλ1 and ẽ.

Let Φ be a Poisson segment process in R
2 with the exponential length dis-

tribution with parameter µ and arbitrary direction distribution. Let the typical
segment length and the direction be independent random variables. If the obser-
vation window W is a square of side length a then Theorem 3 and formula (3)
give the variances of eλ1 and ẽ. After comparison of the variances of these two
estimators we receive that there exists an a0 ≥ 0 such that var[eλ1 ] > var[ẽ]

whenever a > a0 and there exists an a′0 ≥ 0 such that var[
eλ1
+e′λ1
2 ] < var[ẽ]

whenever a > a′0, where e′λ1 is the same estimator as eλ1 but based on the lexi-

cographic maximum reference points. The variance of
eλ1
+e′

λ1
2 was computed via

[5, Lemma 2]. Moreover all these three estimators are asymptotically equivalent
as a → ∞.

Table 1. Comparison of the variances of the estimators ẽ and eλ1 in some special
cases. Deterministic direction is chosen in such a way that the direction is parallel
to one side of the square.

ρ var(ẽ) var(eλ1 ) var(
eλ1

+e′
λ1

2
) a0 a′

0

Deterministic 2α
µ2a2

− 2α
µ3a3

2α
µ2a2

2α
µ2a2

− 3α
µ3a3

+O(αe−µa

2aµ
) 0 1.15Er

Unif.
�
−π
2
, π
2

�
2α

µ2a2
− 8α

πµ3a3
+ 8α

πµ4a4
2α

µ2a2
2α

µ2a2
− 12α

πµ3a3
+ 12α

πµ4a4
+o(αe−µa) Er ≈ Er

Example 2. Comparison of the variances of the estimators eλ2 and ẽ.

Let Φ be a Poisson segment process in R
2 with a parametric length distribution

which is the uniform distribution U(0, A) and an arbitrary direction distribution.
Let the typical segment length and the direction be independent random variables.
If the observation window W is a square of side length a then Theorem 3 and
formula (3) give the variances of eλ2 and ẽ. After comparison of the variances of
these two estimators we receive that there exists an a0 ≥ 0 such that var[eλ2 ] <

var[ẽ] whenever a > a0. Moreover,
eλ2
+e′λ2
2 has even lower variance then eλ2

where e′λ2 is the same estimator as eλ2 but based on the lexicographic maximum

reference points. The variance of
eλ2
+e′λ2
2 was computed via [5, Lemma 2]. The
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estimators eλ2 and
eλ2
+e′λ2
2 are asymptotically equivalent as a → ∞, but

lim
a→∞

var(eλ2)

var(ẽ)
=
3

4
.

Table 2. Comparison of the variances of the estimators ẽ and eλ2 in some special
cases. Deterministic direction is chosen in such a way that the direction is parallel
to one side of the square.

ρ var(ẽ) var(eλ2 ) a0

Deterministic A2α
3a2

− A3α
12a3

A2α
4a2
+ A2

4a4
− A2

2αa6
+ A2

2αa8
− A2e−αa2

2αa8
a0 ≤ A+

√ 3
α

Unif.
�
−π
2
, π
2

�
A2α
3a2

− A3α
3πa3

+ A4α
15πa4

A2α
4a2
+ A2

4a4
− A2

2αa6
+ A2

2αa8
− A2e−αa2

2αa8
a0 ≤ 4

π
A+

√ 3
α

Remark 4. The estimator eλ2 is a function of the complete, sufficient statistic
while the estimator ẽ is not. Hence the estimator eλ2 has asymptotically lower

variance then ẽ. All the estimators eλ1 ,
eλ1
+e′λ1
2 and ẽ in Example 1 are functions

of the complete, sufficient statistic therefore all the estimators are asymptotically
equivalent.

We can see from these comparisons that using the estimator eλ1 for the expo-
nential length distribution does not bring nearly any improvement for the practice.
Except the case where it is difficult to measure the length of the segments. On the
other hand, the use of the estimator eλ2 for the uniform length distribution brings
a big improvement of the variance of the estimator even in the minus-sampling
case as we can see in the following simulations.
We used a Poisson segment process with intensity λ, the uniform length dis-

tribution on [0, H ] and the uniform distribution of direction independent of the
length distribution. We simulated this process in a square window with side
length A. We estimated λ by the common estimator ẽ and by our estimator
eλ2
+e′λ2
2 .
Because we do not know exact length of all segments from the realization we

used a smaller window for estimating by eλ2 . The window is decreased by H from
3 sides (upper, bottom, right) so that every segment which has reference point
inside of this smaller window must have both endpoints inside W . Similarly we
estimated e′λ2 .

Table 3. Comparison of the variances of the estimators ẽ and
eλ2
+e′λ2
2 done

by 1000 simulations for various parameters. Because there is 1 parameter more
than it is necessary in the model, we will vary only λ and A. We set H = 0.1
throughout all simulations. The column N shows average number of segments

which has reference point inside W and the column ratio shows
var(

eλ2
+e′λ2
2 )

var(ẽ)
.
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λ A N E(ẽ) E(
eλ2

+e′
λ2

2
) var(ẽ) var(

eλ2
+e′

λ2

2
) ratio

0.5 1 10 0.506365 0.505619 0.0324177 0.0379858 1.17
0.5 2 40 0.501595 0.502476 0.0082196 0.00754585 0.92
0.5 3 90 0.499526 0.498896 0.00379548 0.00319849 0.84
0.5 5 250 0.498365 0.498943 0.00141376 0.00114489 0.81
0.5 10 1000 0.500593 0.500492 0.000328948 0.000253791 0.77
1 1 20 1.0031 1.01682 0.0672616 0.0749364 1.11
1 2 80 0.996187 0.998461 0.0168793 0.0150844 0.89
1 3 180 1.00021 1.00096 0.00809763 0.00645902 0.80
1 5 500 0.995941 0.996918 0.0027469 0.00217183 0.79
1 10 2000 1.00001 1.00029 0.000657966 0.000508336 0.77
2.5 1 50 2.49811 2.50566 0.157888 0.173362 1.10
2.5 2 200 2.50665 2.5043 0.0411783 0.0358533 0.87

2.5 3 450 2.4985 2.49637 0.0192654 0.0150338 0.78
2.5 5 1250 2.50226 2.50029 0.00643597 0.00484536 0.75
5 2 400 4.99813 5.00004 0.078849 0.0689221 0.87
10 2 800 9.99727 10.0032 0.169924 0.145386 0.855
15 2 1200 14.9922 14.9813 0.250196 0.215067 0.86

We can see from the table that ratio converges to 3/4 as the window increases
for any intensity even for minus-sampling case. The table shows that ratio de-
pends mainly on the ratio of H and A. Furthermore the table shows that the
border effects have less influence on the estimator than the use of a sufficient
statistic in sufficiently large observation windows.
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