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Asymptotic stability for a nonlinear evolution equation

Zhang Hongwei, Chen Guowang

Abstract. We establish the asymptotic stability of solutions of the mixed problem for
the nonlinear evolution equation (|ut|r−2ut)t −∆utt −∆u − δ∆ut = f(u).
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1. Introduction

This paper deals with asymptotic stability, as time tends to infinity, of solutions
of the following mixed problem

(|ut|
r−2ut)t −∆utt −∆u − δ∆ut = f(u), x ∈ Ω, t > 0,(1.1)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.3)

where Ω ⊂ R
n (n ≥ 1 is a natural number) is a bounded open set with smooth

boundary ∂Ω, r ≥ 2 and δ > 0 are real number. Problems related to the equation

(1.4) f(ut)utt −∆utt −∆u = 0

are interesting not only from the point of view of PDE general theory, but also due
to its applications in mechanics. For instance, when the material density, f(ut),
is equal to 1, Equation (1.4) describes the extensional vibrations of thin rods, see
Love [1] for the physical details. When the material density f(ut) is not constant,
we are dealing with a thin rod which possesses a rigid surface and whose interior
is somehow permissive to slight deformations such that the material density varies
according to the velocity, see [2], [3]. J. Ferreira and M.A. Rojas-Medar [2] have
studied the existence of global weak solutions to the problem (1.1)–(1.3) with
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δ = 0 in noncylindrical domain. Cavalcanti et al. [3] studied the existence and
uniform decay of global weak solution to the following problem

(|ut|
r−2ut)t −∆utt −∆u − δ∆ut +

∫ t

0
g(t − z)∆u(z) dz = 0

with initial and boundary condition, where r > 2 and δ > 0 are constants, g

represents the kernel of the memory term. However, no asymptotic stability result
was presented in [2], [3] for the problem (1.1)–(1.3). In this paper, we study the
asymptotic stability of solutions of the problem (1.1)–(1.3). Throughout this
paper, we use the following notations. (· , ·) denotes the inner product of L2(Ω).
‖ · ‖, ‖ · ‖r and ‖ · ‖0 denote the norms of the spaces L2(Ω), Lr(Ω) and H10 (Ω)
respectively.

2. Main theorem

We assume that the function f(s) satisfies the following condition

(H) |f(s)| ≤ a|s|p−1, 0 ≤ F (s) ≤ a|s|p,

where F (s) =
∫ s
0 f(ρ)dρ for 2 < p ≤ ∞ if n = 1, 2 or for 2 < p ≤

2n

n − 2
if n ≥ 3,

and a is a positive constant. Furthermore, let 2 ≤ r ≤ p.

Now, we define the energy associated with Equation (1.1) by

E(t) =
r − 1

r
‖ut‖

r
r +
1

2
‖∇ut(t)‖

2 + J(u(t)), t ∈ R
+ = [0,+∞),

where

J(u) = J(u(t)) =
1

2
‖∇u(t)‖2 −

∫

Ω
F (u(t)) dx.

We see that the energy has the so-called energy identity

(2.1) E(t) + δ

∫ t

0
‖∇ut(s)‖

2ds = E(0),

where E(0) =
r − 1

r
‖u1‖

r
r +
1

2
‖∇u1‖

2 + J(u0) is the initial energy. Obviously,

E(t) is a non-increasing function in time.

Lemma 2.1. Let u0 ∈ H10 (Ω) and u1 ∈ H10 (Ω). Then under the assumption (H),

the problem (1.1)–(1.3) possesses at least one weak solution u : Ω×R
+ → R with

u ∈ L∞(0,∞;H10 (Ω)), ut ∈ L∞(0,∞;H10 (Ω)), utt ∈ L2(0,∞;H10 (Ω)),
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and for all η ∈ C∞
0 (0, T ;H

1
0 ) we have

[

(|ut(s)|
r−2ut(s), η(s)) + (∇ut(s),∇η(s))

] ∣

∣

∣

s=t

s=0

=

∫ t

0

[

(|ut(s)|
r−2ut(s), ηt(s)) + (∇ut(s),∇ηt(s))− (∇u(s),∇η(s))

− δ(∇ut(s),∇η(s)) + (f(u(s)), η(s))
]

ds.

The proof of Lemma 2.1 is omitted, since the proof of Lemma 2.1 is analogous
to Theorem 3.1 in [2].
In order to get the asymptotic stability of the solution of the problem (1.1)–

(1.3), we introduce the set

Σ =
{

(λ, E(0)) ∈ R
+ × R

+, 0 ≤ λ < λ1, 0 ≤
1

2
λ2 − aC

p
0λ

p < E(0) < E1
}

,

where

λ1 =

(

1

paC
p
0

)
1

p−2

, E1 = λ21

(

1

2
−
1

p

)

and C0 is the embedding constant (when H10 is embedded into Lp).
Then our main theorem reads as follows:

Main theorem. Under the assumptions of Lemma 2.1, if (‖∇u0‖, E(0)) ∈ Σ
and u is a solution of the problem (1.1)–(1.3), then

(2.2) lim
t→∞

E(t) = 0.

We divide the proof into several steps.

Lemma 2.2. Let u be a weak solution of the problem (1.1)–(1.3). If (‖∇u0‖, E(0))
∈ Σ, then for all t ∈ R

+,

(i) (‖∇u(t)‖, E(t)) ∈ Σ;

(ii) E(t) ≥
r − 1

r
‖ut‖

r
r +
1

2
‖∇ut‖

2;

(iii)
1

2
‖∇u‖2 −

1

2
(f(u), u) ≥

1

4
‖∇u‖2.

Proof: By the definition of E(t), (H) and embedding theorem, we have

(2.3) E(t) ≥
r − 1

r
‖ut‖

r
r +
1

2
‖∇ut‖

2 +
1

2
‖∇u‖2 − aC

p
0‖∇u‖p ≥ G(‖∇u‖),
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where G(λ) = 12λ
2 − aC

p
0λ

p. It is easy to see that G(λ) attains its maximum E1
for λ = λ1, G(λ) is strictly decreasing for λ ≥ λ1 and G(λ) → −∞ as λ → ∞.
Since E(t) ≤ E(0) < E1 for t ∈ R

+ by (2.1), we have ‖∇u‖ < λ1 for t ∈ R
+.

From (2.3) and G(‖∇u‖) ≥ 0 for 0 ≤ ‖∇u‖ < λ1, we get E(t) ≥ G(‖∇u‖) ≥ 0,
so (i) holds.

To obtain (ii), it remains to note that G(‖∇u‖) ≥ 0 whenever 0 ≤ ‖∇u‖ < λ1
and to use (2.3) again, then (ii) follows at once.

By (H) and embedding theorem,we obtain

1

2
‖∇u‖2 −

1

2
(f(u), u) ≥

1

4
‖∇u‖2 +

1

2
(
1

2
‖∇u‖2 − aC

p
0‖∇u‖p).

Hence (iii) holds since 0 ≤ ‖∇u(t)‖ < λ1 for t ∈ R
+ and G(‖∇u‖) ≥ 0 for

0 ≤ ‖∇u‖ < λ1. The lemma is proved. �

Lemma 2.3. Let (‖∇u0‖, E(0)) ∈ Σ and E(t) ≥ β, where β > 0. Then there
exists α = α(β) > 0 such that

(2.4)
r − 1

r
‖ut‖

r
r +
1

2
‖∇ut‖

2 +
1

2
‖∇u‖2 −

1

2
(f(u), u) ≥ α, for t ∈ R

+.

Proof: By the definition of E(t), (H) and E(t) ≥ β, we have

(2.5)
r − 1

r
‖ut‖

r
r +
1

2
‖∇ut‖

2 +
1

2
‖∇u‖2 ≥ β, t ∈ R

+.

Now suppose that (2.4) does not hold. For Lemma 2.1(iii), there is a sequence
{tn} ⊂ R

+ such that

r − 1

r
‖ut(tn)‖

r
r +
1

2
‖∇ut(tn)‖

2 +
1

2
‖∇u(tn)‖

2 −
1

2
(f(u(tn)), u(tn))

≥
r − 1

r
‖ut(tn)‖

r
r +
1

2
‖∇ut(tn)‖

2 +
1

4
‖∇u(tn)‖

2 → 0, n → ∞.

Then we get

r − 1

r
‖ut(tn)‖

r
r +
1

2
‖∇ut(tn)‖

2 → 0, ‖∇u(tn)‖
2 → 0, n → ∞.

This is contradiction with (2.5). The lemma is proved. �

Proof of main theorem: Suppose that (2.2) fails. Then there exists β > 0
such that E(t) ≥ β for all t ∈ R

+ since (2.1) and E(t) ≥ 0 by Lemma 2.2 (i).
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Multiplying both sides of (1.1) by u, integrating over [T, t] (0 < T ≤ t < ∞) and
integrating by parts with respect to t, we obtain
(2.6)

[

(|ut(s)|
r−2ut(s), u(s)) + (∇ut(s),∇u(s))

] ∣

∣

∣

t

s=T

=

∫ t

T

{3r − 2

r
‖ut(s)‖

r
r + 2‖∇ut(s)‖

2 − 2
[r − 1

r
‖ut(s)‖

r
r

+
1

2
‖∇ut(s)‖

2 +
1

2
‖∇u(s)‖2 −

1

2
(f(u(s)), u(s))

]

− δ(∇u(s),∇ut(s))
}

ds

=

∫ t

T
(I1 + I2 + I3) ds.

Using H10 →֒ Lr, E(t) ≤ E(0) < ∞, Hölder inequality and ‖∇ut‖
2 ∈ L1(0,∞),

we have

(2.7)

∫ t

T
I1 ds ≤ C1

∫ t

T
(‖∇ut(s)‖

r + ‖∇ut(s)‖
2) ds

≤ C2(E
r−1

r (0) + E
1

2 (0))

∫ t

T
‖∇ut(s)‖ ds

≤ C3

(
∫ t

T
‖∇ut(s)‖

2 ds

)

1

2
(

∫ t

T
ds

)

1

2

≤ C4

(
∫ t

T
ds

)

1

2

.

Here and in the following Ci (i = 1, 2, . . . ) denotes positive constants which do
not depend on t and T . By virtue of Lemma 2.3, we have

(2.8)

∫ t

T
I2 ds ≤ −2α

∫ t

T
ds.

Furthermore, by use of ‖∇u‖ ≤ λ1, E(t) ≥ 0, Lemma 2.2, Hölder inequality and
‖∇ut‖

2 ∈ L1(0,∞), we have

(2.9)

∫ t

T
I3 ≤ δ

(
∫ t

T
‖∇ut(s)‖

2 ds

)

1

2
(

∫ t

T
‖∇u(s)‖2 ds

)

1

2

≤ λ1δ

(
∫ ∞

T
‖∇ut(s)‖

2 ds

)
1

2

(
∫ t

T
ds

)

1

2

≤ C5

(
∫ t

T
ds

)

1

2

.

Then from (2.6)–(2.9) we know

(2.10)
[

(ut(s)|
r−2ut(s), u(s)) + (∇ut(s),∇u(s))

] ∣

∣

∣

t

s=T

≤ C6

(
∫ t

T
ds

)

1

2

− 2α

∫ t

T
ds.
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On the other hand, from Young inequality, H10 →֒ Lr, ‖∇u‖ ≤ λ1 < ∞, E(t) <

E(0) < ∞ and Lemma 2.2(i), we get

∣

∣

∣
(|ut(t)|

r−2ut(t), u(t)) + (∇ut(t),∇u(t))
∣

∣

∣

≤ C7

(

‖ut‖
r
r + ‖∇u‖r + ‖∇ut‖

2 + ‖∇u‖2
)

≤ C8 < ∞.

In turn, we reach a contradiction with (2.10) for fixing T when t → ∞. Hence we
derive limt→∞ E(t) = 0. This completes the proof. �

Remark 1. If we take f(s) = |s|p−2s in (1.1), then F (s) = 1p |s|
p and

1

p
sf(s) =

F (s), so (H) holds. By straightforward calculation we get

λ1 = C
− p

p−2

0 , E1 =

(

1

2
−
1

p

) (

1

C
p
0

)
2

p−2

.

It is easy to see that E1 is exactly the potential well depth corresponding to the
problem (1.1)–(1.3) obtained by Payne and Sattinger [10], that is

E1 = inf
u∈H1

0
\{0}
sup
λ∈R

J(λu),

where J(u) =
1

2
‖∇u‖2 −

1

p
‖u‖p

p.

Remark 2. If the initial point (‖u0‖, E(0)) lies in set

Σ0 =

{

(λ, E(0)) ∈ R
+ × R

+, 0 ≤ λ < λ2 =

(

1

2pcC
p
0

)
1

p−2

,

0 ≤
1

4
λ2 − aC

p
0λ

p < E(0) < E2 =
1

2
λ21

(

1

2
−
1

p

)}

,

which is smaller than Σ, we can prove (2.2) and moreover,

lim
t→∞

‖∇u(t)‖2 = 0.
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