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On loops whose inner permutations commute

Piroska Csörgő, Tomáš Kepka

Abstract. Multiplication groups of (finite) loops with commuting inner permutations are
investigated. Special attention is paid to the normal closure of the abelian permutation
group.
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1. Introduction

A loop Q is a quasigroup with a neutral element. The left and right translations
La and Ra defined by La(x) = ax and Ra(x) = xa, respectively, are permutations
of Q and the permutation group M(Q) = 〈A, B〉, where A = {La/a ∈ Q},
B = {Ra/a ∈ Q} is called the multiplication group of Q. The stabiliser I(Q) of
the neutral element is the inner permutation group of the loop Q. R.H. Bruck
showed in [1] that I(Q) is abelian, provided that Q is nilpotent of class 2. The
converse assertion does not seem to be true even for finite loops. In order to
solve this question it may help to get some information on the structure of M(Q)
for hypothetical counterexample Q. This is just the purpose of the present short
note. Here we pay particular attention to the subgroupM(Q)′ · I(Q) which is the
normal closure of I(Q) in M(Q).
We start with the following well-known folklore result:

Theorem 1.1. A group G is isomorphic to the multiplication group M(Q) of a
loop Q if and only if there exist a corefree subgroup H of G (then H ∼= I(Q))
and transversals A, B to H in G such that G = 〈A, B〉 and [A, B] ⊆ H .

Additional information on the multiplication groups can be found in [2]–[15].

2. Preliminary results

In this section, let H be a subgroup of a group G such that there exist H-
connected transversals A, B to H in G (it means that AH = G = BH , A−1A ∩
H = 1 = B−1B ∩ H and [A, B] ⊆ H). Further let L and N denote the core
coreG(H) and the normalizer NG(H) of H in G, respectively.
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Proposition 2.1. (i) (A ∪ B) ∩ H ⊆ L.
(ii) Z(G) ⊆ AL ∩ BL.
(iii) If C ⊆ A ∪ B, then C ⊆ CoreG(〈H, C〉).
(iv) N = HV , where V/L = Z(G/L).
(v) If H ⊆ E E F ⊆ G, then F ′ ⊆ E.
(vi) If M E G and M ⊆ A ∩ B, then [A ∪ B, M ] ⊆ L.

Proof: See [2, 3.11, 3.12, 3.18, 3.19]. �

Corollary 2.2. Assume that L = 1. Then

(i) A ∩ H = 1 = B ∩ H ;
(ii) Z(G) ⊆ A ∩ B;
(iii) N = H × Z(G);
(iv) if M E G and M ⊆ A ∩ B, then M ⊆ Z(〈A, B〉) (and hence M ⊆ Z(G),

provided that G = 〈A, B〉).

Lemma 2.3. (i) CG(B)A ⊆ AL and CG(A)B ⊆ BL.
(ii) CG(B) is a subgroup of AL.
(iii) CG(A) is a subgroup of BL.

Proof: (i) If c ∈ CG(B) and a ∈ A, then ca = a1u for some a1 ∈ A and u ∈ H .

Now, u = a−11 ca and ub = (a−11 )
b ·cb·ab = [b, a1]·a

−1
1 ·cb·a·[a, b] = [b, a1]u[a, b] ∈ H

for every b ∈ B. Since G = BH , it follows that u ∈ L.
(ii) and (iii). Use (i). �

Lemma 2.4. Let a ∈ A be such that aA ⊆ A. Then [a, B] ⊆ L.

Proof: We have [a, b]a1 · [a1, b] = [aa1, b] ∈ H for all a1 ∈ A and b ∈ B. Since
G = AH , it follows that [a, b] ∈ L. �

Corollary 2.5. Assume that L = 1. Then:

(i) CG(B) = {a ∈ A | aA = A} is a subgroup of A;
(ii) CG(A) = {b ∈ B | bB = B} is a subgroup of B;
(iii) zA = A and zB = B for every z ∈ Z(G).

Lemma 2.6. Assume that L = 1. If K is a subgroup of G such that H ⊆ K,
then Z(K) = (Z(G) ∩ K)× (Z(K) ∩ H).

Proof: Clearly, Z(K) ⊆ N = H × Z(G) (2.2(iii)) and the rest is clear. �

Corollary 2.7. Assume that L = 1. If K is a subgroup of G such that H ⊆ K,
then Z(K) ⊆ H if and only if Z(G) ∩ K = 1.

Proposition 2.8. Assume that H is a finite abelian group. Then:

(i) G is soluble;
(ii) if G = 〈A, B〉, then H is subnormal in G;
(iii) if L = 1 6= G = 〈A, B〉, then Z(G) 6= 1.
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Proof: (i) See [10, 4.1].

(ii) See [5, 3.1].

(iii) Since G 6= 1 = L and H is subnormal in G, we have H 6= N . Now,
Z(G) 6= 1 follows from 2.2(iii). �

Lemma 2.9. Assume that L = 1 and H is subnormal in G. If 1 6= H ≤ K E G,
then K ∩ Z(G) 6= 1.

Proof: Put N0 = H and Ni+1 = NG(Ni) for every i ≥ 0.
Then H = N0 E N1 = N E N2 E . . . and, by [7, 3.3], we have Nn = G
for some n ≥ 1. Now, assume on the contrary that K ∩ Z(G) = 1. Since
N1 = N = H × Z(G), we get K ∩ N1 = H . On the other hand, K 6= H , and so
K ∩ Nn 6= H . Let m be the greatest number with 1 ≤ m < n and K ∩ Nm = H .
Then K E G and Nm E Nm+1 implies H = K ∩ Nm E Nm+1 and Nm+1 ⊆ N1.
Consequently, N1 = G and H E G, a contradiction with L = 1 6= H . �

Lemma 2.10. Assume that L = 1, G = 〈A, B〉 and [A, B] = 1. Then both A
and B are normal subgroups of G.

Proof: Using 2.5 and the equality [A, B] = 1, we conclude that A = CG(B) and
B = CG(A). Then A is a subgroup of G, A∪B ⊆ NG(A), and hence NG(A) = G,
quite similarly NG(B) = G. �

3. The normal closure

This section is an immediate continuation of the preceding one. We keep the
notation and we denote by K the normal closure of H in G.

Proposition 3.1. K = G′H .

Proof: We have H ⊆ K E G, and so G′ ⊆ K by 2.1(v). Thus G′H ⊆ K. On
the other hand, H ⊆ G′H E G implies G′H = K. �

In the remaining part of this section, we assume that L = 1.

Lemma 3.2. Z(K) = (Z(G) ∩ K)× (Z(K) ∩ H) and
HZ(K) = H(Z(G) ∩ K) = NK(H).

Proof: See 2.6 and 2.2(iii). �

Lemma 3.3. Z(K) = 1 if and only if Z(G) ∩ K = 1 and if and only if
NK(H) = H .

Proof: The direct implication follows from 3.2. Conversely, if Z(G) ∩ K = 1,
then Z(K) ⊆ H again by 3.2. But K E G implies Z(K) E G and
Z(K) ⊆ L = 1. Thus Z(K) = 1. �
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Lemma 3.4. Let F be a subgroup of G such that H ⊆ CG(F ). Then K ⊆
CG(V ), V ⊆ CG(K) and V ∩ K ⊆ Z(K), where V = CoreG(F ).

Proof: We have H ⊆ CG(V ) E NG(V ) = G, and so K ⊆ CG(V ). The rest is
clear. �

Lemma 3.5. If H is abelian, then

Z(K) = CoreG((Z(G) ∩ K)H) = CoreG(Z(K)H).

Proof: Put F = (Z(G)∩K)H and V = CoreG(F ). By 3.2, Z(K) ⊆ F and, since
Z(K) E G, we get Z(K) ⊆ V . Further, since H is abelian, we have H ⊆ CG(F ),
and therefore V ∩K ⊆ Z(K) by 3.4. Finally, V ⊆ F ⊆ K implies V = Z(K). �

Proposition 3.6. Assume that H is a non-trivial finite abelian group and G =
〈A, B〉. Then:

(i) Z(G) ∩ K 6= 1 6= Z(K) and Z(K)H 6= H ;
(ii) if K 6⊆ N , then K 6= G.

Proof: (i) By 2.8(ii), H is subnormal in G. By Lemma 2.9 K ∩ Z(G) 6= 1.

(ii) If G 6⊆ N , then N 6= G and, since H is subnormal in G, N ⊆ W for a
proper normal subgroup W of G. Then G′ ⊆ W , and K ⊆ W . �

Proposition 3.7. Assume that H is a finite abelian group and G = 〈A, B〉.
Then K is finite.

Proof: The index [G : Z(G)] is finite ([5, 3.5]). �

Lemma 3.8. Assume that H is abelian, G = 〈A, B〉 and [A, B] ⊆ Z(K). Then
both AZ(K) and BZ(K) are normal subgroups of G and
G′ ⊆ AZ(K) ∩ BZ(K) ∩ K.

Proof: By 3.5, Z(K) = CoreG(HZ(K)). Now, both AZ(K) and BZ(K) are
normal subgroups of G by 2.10. Further, since G = AH = AZ(K)H and H is
abelian, G/AZ(K) is so and we get G′ ⊆ AZ(K) ∩ K = (A ∩ K)Z(K). �

Lemma 3.9. If G′ ⊆ Z(K), then K ⊆ N .

Proof: G′ ⊆ Z(K) implies G′ ⊆ NG(H). �

Lemma 3.10. If H is abelian, G = 〈A, B〉, [A, B] ⊆ Z(K) and
G′ ∩ AZ(K) ∩ BZ(K) ⊆ Z(K), then K ⊆ N .

Proof: Combine 3.8 and 3.9. �
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4. Further results (a)

Again, we keep the notation introduced in the aforegoing two sections. More-
over, we will assume that H is abelian, L = 1 and that PH E K for a subgroup
P of Z(G) ∩ K (notice that PH = P × H). We put U = CoreG(PH) and
H0 = U ∩ H .

Lemma 4.1. P × H0 = U ⊆ Z(K).

Proof: We have U = CoreG(PH) ⊆ CoreG((Z(G) ∩ K)H) = Z(K) by 3.5. �

Lemma 4.2. Let a ∈ A∩K and b ∈ B be such that a−1b ∈ H . Then a−1b ∈ H0.

Proof: We have a = bu, u ∈ H . Now, let a1 ∈ A, a1 = b1u1, b1 ∈ B, u1 ∈ H .
Then aa1 = ab1u1 = (av)u1 , v = [a, b1] ∈ H , and (av)u1 = a · (u−11 )

a · vu1 ∈
aPH , since PH E K. Thus aa1 ∈ aPH . On the other hand, aa1 = (bu)a1 =
b · [b, a1] ·u

a1 = au−1wua1 , w = [b, a1] ∈ H . It follows ua1 ∈ PH for every a1 ∈ A.
Consequently, u ∈ CoreG(PH) ∩ H = H0. �

Lemma 4.3. [A ∩ K, B] ∪ [B ∩ K, A] ⊆ H0.

Proof: Let a ∈ A∩K and b ∈ B. We have ab = au, u = [a, b] ∈ H , and, if b1 ∈ B,

then bb1 = b2v for some b2 ∈ B and v ∈ H . Moreover, abb1 = (au)b1 = awub1 ,

w = [a, b1] ∈ H , and so ab2v = awub1 . Consequently, ab2 = azwzub1z , z = v−1.

Since PH E K, we have [a, z] ∈ PH and az ∈ aPH . Of course, ab2 ∈ aH , and

hence ub1z = (wz)−1(az)−1ab2 ∈ PH , ub1 ∈ PH . Thus u ∈ CoreG(PH) ∩ H =
H0. �

Corollary 4.4. [A ∩ K, B] ∪ [B ∪ K, A] ⊆ Z(K).

Lemma 4.5. Both A ∩ K and B ∩ K are abelian subgroups of G.

Proof: Firstly, if a1, a2 ∈ A ∩ K, a3 ∈ A, u ∈ H are such that a1a2 = a3u,
then a3 ∈ A ∩ K and (a1a2)

b = a1a2v, v = [a1, b] · [a2, b] ∈ H0, for every

b ∈ B (use 4.1, 4.3 and 4.4). Further, ab
3 = a3w, w = [a3, b] ∈ H0, and ub =

(a−13 a1a2)
b = w−1va−13 a1a2 = w−1vu ∈ H . Consequently, u ∈ L = 1 and

a1a2 = a3 ∈ A ∩ K. Proceeding similarly, we get a−11 = a4z1, a4 ∈ A ∩ K,

z1 ∈ H , (a−11 )
b = z2a

−1
1 , z2 ∈ H0, (a

−1
1 )

b = a4z3z
b
1, z3 = [a4, b] ∈ H0, and,

finally, zb
1 = z−13 z2a

−1
4 a−11 = z−13 z2z1 ∈ H . Thus z1 = 1 and a−11 = a4 ∈ A ∩ K.

We have shown that A ∩ K is a subgroup of G. It remains to show that it is
abelian.

We have a2 = b2u2, b2 ∈ B, u2 ∈ H0 (4.2) and aa2
1 = ab2u2

1 = (a1v1)
u2 = a1v1,

v1 = [a1, b2] ∈ H0 (since H0 ⊆ Z(K)). Thus v1 ∈ A ∩ H = 1, aa2
1 = a1 and

a1a2 = a2a1. �
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Lemma 4.6. V = (A ∩ K)× H0 = (B ∩ K)× H0 is a normal abelian subgroup
of G.

Proof: The equality (A ∩ K) × H0 = (B ∩ K) × H0 follows from 4.1 and 4.2.
Further, Z(G) ∩ K ⊆ A ∩ K, and hence Z(G) ∩ K ⊆ CoreG(V ), PH ⊆ V ,
P × H0 = U ⊆ CoreG(V ) and, finally, V ⊆ CoreG(V ) by 4.4. The subgroup V is
abelian by 4.5. �

Lemma 4.7. K ′ ⊆ U ⊆ V .

Proof: Clearly, U ⊆ V and we have to show that K ′ ⊆ U . But H ⊆ PH E K
implies K ′ ⊆ PH , and, since K ′ E G, we get K ′ ⊆ CoreG(PH) = U . �

Corollary 4.8. G′′′ = 1.

Lemma 4.9. For all u ∈ H and x ∈ G there exists au ∈ A ∩ K such that

auu ∈ Hx.

Proof: A is a two-sided transversal to every subgroup conjugate to H . Con-
sequently, there exists au ∈ A such that u−1 ∈ Hxau, i.e., auu ∈ Hx. Since
H ∪ Hx ⊆ K, we have au ∈ K. �

Lemma 4.10. CoreK(H) = Z(K) ∩ H .

Proof: Clearly, Z(K) ∩ H ⊆ CoreK(H). Now, let w ∈ CoreK(H). Firstly, we

show that wb ∈ NK(H) for every b ∈ B.

By 4.9, aww ∈ Hb−1 for some aw ∈ A ∩ K. Similarly, if u ∈ H , then

auu ∈ Hb−1 , au ∈ A∩K, and we have aww·auu = auu·aww, sinceHb−1 is abelian.

Consequently, (aww)au = (aww)u
−1

. Now, awwauw−1 = (aww)auw−1 =

(aww)u
−1

w−1 = uawwu−1w−1 = au−1

w , since both A ∩ K and H are abelian.
We have shown that wau = zw, z = [aw, u−1]. By 4.6, z = a1z1, where
a1 ∈ A ∩ K and z1 ∈ H0. On the other hand, w ∈ CoreK(H) implies wau ∈ H .
It follows a1 ∈ A ∩ H = 1, a1 = 1, and hence wau ∈ wH0. Now we have

au−1

w = (aww)auw−1 = awwauw−1 ∈ awH , [aw, u−1] ∈ H and uaw ∈ uH = H
for every u ∈ H . This means that aw ∈ NG(H) = N . But then aw ∈

K ∩ N = NK(H) = HZ(K) (3.2). We have aww ∈ Hb−1 , ab
wwb ∈ H ⊆ NK(H),

ab
w ∈ awH0 by 4.3, a

b
w ∈ NK(H) (since aw ∈ NK(H)), and therefore w

b ∈ NK(H)
for every b ∈ B.
We have shown our claim. Now, it follows that w ∈ CoreG(NK(H)) =

CoreG(Z(K)H) = Z(K) by 3.5. Thus w ∈ Z(K) ∩ H and the proof is fin-
ished.

�

Proposition 4.11. Assume that H is abelian, L = 1 and that PH E K for a
subgroup P of Z(G) ∩ K. Then:

(i) CoreG(PH) = P×H0 ⊆ Z(K), whereH0 = H∩CoreG(PH) ⊆ Z(K)∩H ;
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(ii) a−1b ∈ H0 for all a ∈ A ∩ K and b ∈ B such that a−1b ∈ H ;
(iii) b−1a ∈ H0 for all b ∈ B ∩ K and a ∈ A such that b−1a ∈ H ;
(iv) [A ∩ K, B] ∪ [B ∩ K, A] ⊆ H0 ⊆ Z(K);
(v) both A ∩ K and B ∩ K are abelian subgroups of G and

K = (A ∩ K)H = (B ∩ K)H ;
(vi) (A ∩ K)× H0 = (B ∩ K)× H0 is a normal abelian subgroup of C;
(vii) (A ∩ K)Z(K) = (B ∩ K)Z(K) is a normal abelian subgroup of G;
(viii) K ′ ⊆ P × H0 = CoreG(PH) ⊆ (A ∩ K)× H0;
(ix) G′′′ = 1 and K is nilpotent of class at most 2;
(x) CoreK(H) = Z(K) ∩ H .

Proof: See the preceding lemmas. �

Corollary 4.12. Let H0 = 1. Then:

(i) CoreG(PH) = P ;
(ii) A ∩ K = B ∩ K = Z(G) ∩ K;
(iii) K = (A ∩ K)× H = (B ∩ K)× H is abelian;
(iv) H E K and K = G′H ⊆ NG(H) = N .

Lemma 4.13. If G = 〈A, B〉, then A ∩ Z(K) = B ∩ Z(K) = Z(G) ∩ K is a

normal abelian subgroup of G.

Proof: Both V = (A ∩ K)× H0 = (B ∩ K)× H0 and Z(K) are normal abelian
subgroups of G. Thus C = V ∩ Z(K) = A ∩ Z(K) = B ∩ Z(K) is normal in G.
By 2.2(iv), C ⊆ Z(G) ∩ K. Conversely, Z(G) ∩ K ⊆ C by 2.2(ii). �

Lemma 4.14. [(A ∪ B) ∩ K, G] ⊆ PH0 = U .

Proof: Let a ∈ A∩K, x ∈ G, x = bu, b ∈ B, u ∈ H . Then ax = abu = (aw)u =
auw = a[a, u]w, where w = [a, b] ∈ H0 by 4.11(iv). Further, [a, u] ∈ K ′ ⊆ PH0
by 4.11(viii), and hence ax ∈ aPH0 and [a, x] ∈ PH0. �

Lemma 4.15. NG(aU) = NG(aZ(K)) = NG(bU) = NG(bZ(K)) = G for all
a ∈ A ∩ K, b ∈ B ∩ K.

Proof: If x ∈ G, then (aU)x = axU = aU by 4.14. The rest is clear. �

Corollary 4.16. The subgroups 〈a, U〉, 〈a, Z(K)〉 〈b, U〉 and 〈b, Z(K)〉 are nor-
mal abelian subgroups of G, a ∈ A ∩ K, b ∈ B ∩ K.

5. Further results (b)

In this section, we assume that H is non-trivial finite abelian, L = 1 and
G = 〈A, B〉. By 3.6(i), we have Z(G) ∩ K 6= 1. By 3.7, K is finite. Now, let
P be a non-trivial subgroup of Z(G) ∩ K. We put U = CoreG(PH) = P × H0,
H0 = U ∩ H .
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Proposition 5.1. (i) A = AU/U and B = BU/U are H-connected transversals
to H = UH/U in G = G/U .
(ii) G = 〈A, B〉.
(iii) H ∼= H/H0 and CoreG(H) = 1 (notice that UH = PH).

(iv) K = K/U = (G)′H .
(v) P × H = PH E K if and only if K ⊆ N

G
(H).

(vi) [K : H ] = [K : UH ].

Proof: Easy to check. �

Remark 5.2. Assume that G′ 6⊆ N and |K| is minimal with respect to this
property. It follows easily from 5.1 that (P ×H =)PH E K for every non-trivial
subgroup P of Z(G) ∩ K and consequently 4.11 takes place. Among others,
[A∩K, B]∪ [B∩K, A] ⊆ Z(K)∩H , both A∩K and B∩K are abelian subgroups
of G, CoreK(H) = Z(K) ∩ H and G′′′ = 1. Further, since H is not normal in K
but ∩PH is, we have ∩P 6= 1 and it means that Z(G)∩K is a cyclic p-group for
a prime p.

Remark 5.3. Assume that there exists a prime q such that q divides |H | but q
does not divide [G′ : G′ ∩ H ]. We claim that G′ ⊆ N = NG(H).

Again, let G be a counterexample with smallest |K| and let P be a subgroup
of Z(G) ∩ K such that |P | = p is a prime. Then p divides
[K : H ] = [G′ : G′ ∩ H ], and hence p 6= q. Now, if Q ⊆ H0, Q being the Sylow
q-subgroup of H , then Q is characteristic in U = P × H0, and then Q E G,
Q ⊆ L = 1, a contradiction. Thus Q 6⊆ H0 and q divides |H | (see 5.1). According
to 5.1(vi), q does not divide [K : H ], and hence PH E K by 5.1(v) and the
minimality of |K|. Now, Q ⊆ H ⊆ PH E K, Q is a Sylow q-subgroup of K and
Q is characteristic in PH = P × H , since the latter group is abelian. Further,
PH is normal in K and consequently Q is the only Sylow q-subgroup of K. Then
Q E G, a contradiction with L = 1.

Remark 5.4. Assume that G′ 6⊆ N (equivalently, N = NG(H) is not normal
in G).

(i) By 5.3, if p is a prime number dividing |H |, then p divides
[G′ : G′ ∩ H ] = [K : H ] = |A ∩ K| = |B ∩ K|.

(ii) If |A ∩ K| is a power of a prime p, then K = G′H is a (finite) p-group.
(iii) If G is finite and |A| = |B| = [G : H ] is a power of a prime p, then G is a

p-group.

Remark 5.5. Combining 1.1 and 5.4, we get the following result: Let Q be a
finite loop such that I(Q) is abelian, but Q is nilpotent of class 3 or more. Then
every prime number dividing |I(Q)| divides |Q|, too. In particular, if |Q| is a
power of a prime p, then M(Q) is a p-group.
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Sokolovská 83, 186 75 Prague 8, Czech Republic

(Received March 30, 2004, revised April 14, 2004)


