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On multiplication groups of left conjugacy closed loops

Aleš Drápal

Abstract. A loop Q is said to be left conjugacy closed (LCC) if the set {Lx;x ∈ Q}
is closed under conjugation. Let Q be such a loop, let L and R be the left and right
multiplication groups of Q, respectively, and let InnQ be its inner mapping group. Then
there exists a homomorphism L → InnQ determined by Lx 7→ R−1

x Lx, and the orbits
of [L,R] coincide with the cosets of A(Q), the associator subloop of Q. All LCC loops
of prime order are abelian groups.
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The structure of left conjugacy closed loops (LCC loops) seems to be far less
transparent than that of (both sided) conjugacy closed loops (the CC loops).
Nevertheless, some basic facts transfer from CC to LCC easily, and we shall
review them in Section 2. Section 3 extends the similarities to the connection of
the associator subloop A(Q) with the group [L,R]. We shall prove that the cosets
modulo A(Q) of an LCC loop Q coincide with the orbits of [L,R]. The associator
subloop A(Q) is the least normal subloop with Q/A(Q) a group, and L = 〈Lx;
x ∈ Q〉 and R = 〈Rx; x ∈ Q〉 are the left and right multiplication groups of Q,
respectively.
In Section 4 we study LCC loops with L E MltQ (where MltQ = 〈L,R〉 is the

multiplication group of Q). We show that L E MltQ ⇔ R1 ≤ L1 and that for
such loops L1 and A(Q) are abelian groups (L1 ≤ L is the stabilizer of the unit
element 1 ∈ Q, i.e., the left inner mapping group of Q).
The main published sources on LCC loops seem to be [1] and [11], with [8]

and [12] being also relevant. Basarab’s paper [1] contains a proof that Q/Nλ
is an abelian group if Q is a loop for which the LCC property is isotopically
invariant (i.e., all principal isotopes of Q are LCC loops). Such loops are also
known as universal left conjugacy closed loops, and they get a lot of attention
in the paper of Strambach and P. Nagy [11] as well. However, that paper also
contains examples of other LCC loops. In fact, a large part of [11] is concerned
with constructions of various examples of LCC loops. Some of them are universal
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LCC loops, some of them are Bol loops, and some of them are differentiable.
The algebraic theory developed in [11] mostly concerns properties of such special
classes of LCC loops, in particular Bol loops. On general level it corresponds
(roughly spoken) to Propositions 2.2 and 2.4 below, and to observations that
commutative LCC loops are abelian groups and LCC loops with inverse property
are extra loops. Another large part of [11] is concerned with geometry of LCC
loops; here we shall consider only the algebraic aspects.

The meaning of Nλ is standard, i.e., Nλ = {a ∈ Q; a(xy) = (ax)y for all
x, y ∈ Q} denotes the left nucleus of Q. We shall also work with Nµ and Nρ,
the middle and right nuclei of Q, respectively. In general, no two nuclei have to
coincide, and none of them needs to be a normal subloop. In LCC loops Nλ is
normal and coincides with Nµ (see Proposition 2.7). This is proved in [1] as the
first step towards showing that Q/Nλ is an abelian group if Q is an universal LCC
loop. Basarab’s proof of the latter theorem is restated in [9] for CC-loops, and [5]
contains another variant of the same idea. The arguments used in [5] are modified
in Section 5 to show, among others, that either the isotope x ◦ y = x · (f\y) is
never LCC, for all f ∈ Q, f 6= 1, or at least one of the nuclei Nλ and Nρ is
nontrivial.

Questions concerning the possible triviality of Nλ and Nρ are discussed in
Section 6, together with various suggestions for future research.

Section 1 contains auxiliary statements. Those without proof come from Sec-
tions 1 of [5] or [6]. These statements are both well known and simple enough to
expect that most of the readers will supply their own proof rather than consult
the given sources. However, their knowledge can be helpful for other reasons,
since many results in this paper are generalizations of theorems from [5] and [6]
(some of which come from the now classical paper [7] of Goodaire and Robinson).

The standard books for loop theory are [4] and [3].

Mappings are composed in this paper from the right to the left, and hence Ta

means here R−1
a La (and not L

−1
a Ra, which is more usual and which is equal here

to T−1
a ). The inner mapping group (MltQ)1 will be denoted by InnQ. We shall

often use the fact that InnQ is generated by L1 ∪R1 ∪{Tx; x ∈ Q} (and the fact
that L1 is generated by mappings of the form L−1

xy LxLy, while R1 is generated

by mappings of the form R−1
yxRxRy).

Theorem 2.8 was formulated in [6] for CC loops. It was possible to carry over
the proof in a direct way, since it uses only the left conjugacy closedness.

LCC Bol loops are called in [11] Burn loops. It is shown there that a left Bol
loop Q is LCC if and only if x2 ∈ Nλ for all x ∈ Q. Left Bol loops of exponent 2
are hence always LCC loops, and that makes [8] an important source of examples
of LCC loops. In [12] one shows that multiplicative loops of certain quasifields
are universal LCC loops. I am indebted to Michael Kinyon for pointing out the
relevance of [8] and [12].

Recent papers that concern CC loops and are known to the author are [2], [10],
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[9], [5] and [6]. It seems that the concept of conjugacy closedness was formulated
first by Soikis in [13], and then independently by Goodaire and Robinson in [7].

1. Loops and groups

Lemma 1.1. Let G be a permutation group on Ω, let 1 and ω be elements of Ω,
and let g ∈ G map 1 to ω. Suppose that T is a normal subgroup of G. Then
Tω = gT1g

−1.

Proof: We have gT1g
−1 ≤ Gω ∩ T = Tω, and g

−1Tωg ≤ G1 ∩ T = T1 gives
Tω ≤ gT1g

−1. �

Corollary 1.2. Let G be a permutation group on Ω and let T be a normal
subgroup of G. Then 〈Tω; ω ∈ Ω〉 is a normal subgroup of G as well.

Proof: Indeed, from Lemma 1.1 we see that gTωg
−1 is equal to some Tω′ , ω′ ∈ Ω,

for every g ∈ G and ω ∈ Ω. �

Corollary 1.3. Let G be a transitive permutation group on Ω and let T be a
normal subgroup of G. Define equivalence ∼ on Ω by α ∼ β ⇔ Tα = Tβ . The

equivalence classes of ∼ form a set of conjugate blocks of G.

Proof: Consider g ∈ G and assume α ∼ β, where α, β ∈ Ω. Then g(α) ∼ g(β),
since Tg(α) = gTαg

−1 = gTβg
−1 = Tg(β), by Lemma 1.1. �

Each congruence of a loop Q is determined by a normal subloop K. It is well
known that a subloop K is normal if and only if x(yK) = (xy)K, (Ky)x = K(yx)
and xK = Kx for all x, y ∈ Q. This list of conditions can be slightly modified:

Lemma 1.4. Let K be a subloop of a loop Q. The subloop K is normal if and
only if x(yK) = (xy)K, x(Ky) = (xK)y and xK = Kx for all x, y ∈ Q.

Proof: The conditions of the lemma imply (Ky)x = (yK)x = y(Kx) = y(xK) =
(yx)K = K(yx), and so K is normal. If it is normal, then x(Ky) = x(yK) =
(xy)K = K(xy) = (Kx)y = (xK)y. �

Another way how to read the conditions under which a subloop K is normal, is
to observe that they express the requirement that the generators of InnQ preserve
K, which is the same as to say that InnQ preserves K. From that one easily
obtains that a subset K of Q containing 1 is a normal subloop if and only if it is
a block of MltQ (this is a well known fact).
Note that a ∈ Q belongs to Nρ if and only if a is fixed by every generator

L−1
xy LxLy of L1 (and thus by every ϕ ∈ L1). From Corollary 1.3 we hence obtain
immediately:

Lemma 1.5. Let Q be a loop and let L and R be its left and right multiplication
groups, respectively. If L E MltQ, then Nρ is a normal subloop of Q. If R E

MltQ, then Nλ is a normal subloop of Q.
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Let x, y and z be elements of a loop Q. The associator (x, y, z) is defined as
(x · yz)\(xy · z). The associator subloop A(Q) is thus the least normal subloop of
Q that contains all associators (x, y, z). The following lemma is inspired by the
results of [9, Section 4].

Lemma 1.6. Let Q be a loop and let L be its left multiplication group. Then
ϕ(xa) = ϕ(x)a for every x ∈ Q, a ∈ Nρ and ϕ ∈ L. If A(Q) ≤ Nρ, then

L−1
xy LxLy(z) = z(x, y, z)−1 for all x, y, z ∈ Q. If A(Q) ≤ Nρ is abelian, then L1
is abelian as well.

Proof: One has Ly(xa) = y(xa) = (yx)a = Ly(x) ·a for all x, y ∈ Q and a ∈ Nρ.

In such a situation xa equals y((y\x)a), and so L−1
y (xa) = L

−1
y (x) ·a. If ϕ(xa) =

ϕ(x)a and ψ(xa) = ψ(x)a for all x ∈ Q, then ϕψ(xa) = ϕ(ψ(x) · a) = ϕψ(x) · a.

For x, y, u ∈ Q consider a ∈ Q such that L−1
xy LxLy(ua) = u. Then x(y · ua) =

xy · u and a ∈ A(Q). Assume A(Q) ≤ Nρ. Then u = L−1
xy (LxLy(u) · a) =

L−1
xy LxLy(u) · a, by the preceding part of the proof, and (x · yu)a = xy · u yields

a = (x · yu)\(xy · u) = (x, y, u).

Let now A(Q) ≤ Nρ be, in addition, abelian. Set ϕ = L−1
xy LxLy and ψ =

L−1
uv LuLv, where x, y, u, v ∈ Q. Then ϕψ(z) = ϕ(z ·(u, v, z)−1) = ϕ(z)·(u, v, z)−1

= z(x, y, z)−1(u, v, z)−1 = z(u, v, z)−1(x, y, z)−1 = ψϕ(z), and the rest is clear.
�

An isotopism of loops Q1 and Q2 is a triple (α, β, γ) of bijective mappings
Q1 → Q2, where

α(x) · β(y) = γ(x · y) for all x, y ∈ Q1.

When Q1 = Q2, then one speaks about an autotopism. All autotopisms of a
loop Q clearly form a group.

Lemma 1.7. Let Q be a loop and let α and β be permutations of Q such that
(β, α, α) is an autotopism. If α(1) = 1, then α = β and α is an automorphism.

Lemma 1.8. Let Q be a loop and a its element. Then:

(i) a ∈ Nλ ⇔ (La, idQ, La) is an autotopism,
(ii) a ∈ Nρ ⇔ (idQ, Ra, Ra) is an autotopism, and

(iii) a ∈ Nµ ⇔ (R−1
a , La, idQ) is an autotopism.

Lemma 1.9. Let Q be a loop and let L and R be its left and right multiplication
groups, respectively. Put G = MltQ. Then

CG(R) = {La; a ∈ Nλ} and CG(L) = {Ra; a ∈ Nρ}.
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Lemma 1.10. Let Q be a loop and let L be its left multiplication group. Then

{Ra; a ∈ Nρ} ∩ L = Z(L) ∼=Mρ = {a ∈ Q; Ra ∈ Z(L)} ≤ Z(Nρ),

and a 7→ Ra yields an isomorphism Mρ
∼= Z(L).

Proposition 1.11. Let Q be a loop and let L and R be its left and right multi-
plication groups, respectively. Put B = 〈Lu; u ∈ Q〉, and C = 〈Ru; u ∈ Q〉. Then
the orbits of both B and C coincide with the cosets of the associator subloop A(Q).

Lemma 1.12. Let Q be a loop and L be its left multiplication group. Let H be
a normal subloop of Q. If {ϕ ∈ L; ϕ(H) = H} is a normal subgroup of L, then
Q/H is a group.

2. Basic properties

Say that a subset S of a group G is closed under conjugation, if xyx−1 ∈ S
and x−1yx ∈ S for all x, y ∈ S. In other words, S is closed under conjugation
if and only if S is a normal subset of 〈S〉. A loop Q is left conjugacy closed , by
definition, if the set {Lx; x ∈ Q} is closed under conjugation. Seemingly, one
could define a stronger notion by demanding this set to be a normal subset not
only of L, the left multiplication group of Q, but also of the full multiplication
group MltQ. We shall see in a while that in such a case Q has to be a group.

Lemma 2.1. Let Q be a loop and let x, y, z be its elements.

(i) If LxLyL
−1
x = Lz, then z = (xy)/x; and

(ii) if RxLyR
−1
x = Lz, then z = y.

Proof: To get (i), write LxLyL
−1
x = Lz as LxLy = LzLx and apply this equality

to 1. Then xy = zx and z = (xy)/x. Similarly, RxLy = LzRx yields yx = zx,
and y = z follows. �

Now, if {Lx; x ∈ Q} is a normal subset of MltQ, then L centralizes R. But
that means Q = Nλ = Nρ, by Lemma 1.9, and so Q is a group. The purported
generalization of LCC thus brings nothing new.
We have (xy)/x = Tx(y), and so the LCC loops can be described by the

equality LxLyL
−1
x = LTx(y), or, alternatively, by L

−1
x LyLx = LT−1

x (y). Another

description can be made by the means of autotopisms:

Proposition 2.2. A loop Q is left conjugacy closed if and only if (Tx, Lx, Lx) is
an autotopism for every x ∈ Q.

Proof: Triples (Tx, Lx, Lx) yield an autotopism for all x ∈ Q if and only if

((xy)/x) · (xz) = x(yz) for all x, y, z ∈ Q.

This is the same as L(xy)/xLx = LxLy, and the rest is clear. �
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Corollary 2.3. Let Q be a left conjugacy closed loop. Then

(i) the nuclei Nλ and Nµ coincide, and

(ii) an element x ∈ Q belongs to Nρ if and only Tx ∈ AutQ.

Proof: The product of (R−1
a , La, idQ) and (La, idQ, La) is an autotopism, by

Proposition 2.2. Hence if one of the triples is an autotopism, then the other one
has to be an autotopism as well. We thus see that (i) follows from Lemma 1.8.
Another combination of Lemma 1.8 and Proposition 2.2 implies that a ∈ Nρ if

and only if (idQ, R
−1
a , R−1

a )(Ta, La, La) = (Ta, Ta, Ta) is an autotopism. This
proves (ii). �

Let Q be a loop and let L be its left multiplication group. The loop Q is said
to be an Aℓ-loop if L1 ≤ AutQ. To verify that Q is an Aℓ-loop it clearly suffices
to verify that the generators L−1

xy LxLy of L1 are automorphisms.

Proposition 2.4. Every left conjugacy closed loop Q is an Aℓ-loop and satisfies

L−1
xy LxLy = T

−1
xy TxTy for all x, y ∈ Q.

Proof: From Proposition 2.2 we obtain that

(T−1
xy TxTy, L

−1
xy LxLy, L

−1
xy LxLy)

is an autotopism. The rest follows from Lemma 1.7. �

Lemma 2.5. Let Q be a loop. Consider any of the following six identities. The
identity is satisfied by all x, y, z ∈ Q if and only if Q is left conjugacy closed.

LxLyL
−1
x = L(xy)/x, LxRyR

−1
z L−1

x = RxyR
−1
xz , LxRyL

−1
x = RxyR

−1
x ,

R−1
xy LxRy = Tx, L−1

x RyR
−1
z Lx = Rx\yR

−1
x\z

, and L−1
x RyLx = Rx\yR

−1
x\1

.

Proof: Write LxLz = L(xz)/xLx as x(zy) = ((xz)/x)(xy). We see that this
identity can be written also as LxRy = RxyTx. This establishes equivalence of
the identities in the first column. The identities of the second column are clearly
equivalent, and this is true for the third column as well. Furthermore, the third
column is obtained from the second column by setting z = 1. Replacing y by
z in R−1

xy LxRy = Tx yields R
−1
xy LxRy = Tx = R−1

xz LxRz , and LxRyR
−1
z L−1

x =

RxyR
−1
xz follows. The first column hence implies the second one. The identity

LxRyL
−1
x = RxyR

−1
x of the third column can be written also as R−1

xy LxRy =

R−1
x Lx = Tx, which gets us back to the first column. �

Corollary 2.6. LetR be the right multiplication group of a left conjugacy closed
loop Q. Then R is a normal subgroup of MltQ.
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Proposition 2.7. The left and middle nuclei of an LCC loop Q coincide and
form a normal subloop.

Proof: By point (i) of Corollary 2.3 we only need to prove the normality. How-
ever, that follows from Lemma 1.5, by Corollary 2.6. �

Theorem 2.8. Let Q be a left conjugacy closed loop. Denote by L its left
multiplication group. Then there exists a unique homomorphism Λ : L → InnQ
that maps Lx to Tx for each x ∈ Q. This homomorphism is the identity on L1,
and its kernel is equal to Z(L) = {Rx; x ∈ Q} ∩ L. If Rx ∈ Z(L), then x ∈ Nρ.

Proof: We need to show that Lε1
x1 . . . L

εn
xn
= idQ implies T

ε1
x1 . . . T

εn
xn
= idQ

for all x1, . . . , xn ∈ Q and ε1, . . . , εn ∈ {−1, 1}. The triples (T εi
xi
, Lεi

xi
, Lεi

xi
) are

autotopisms for every i, 1 ≤ i ≤ n, by Proposition 2.2, and hence

(T ε1
x1 . . . T

εn

xn
, Lε1

x1 . . . L
εn

xn
, Lε1

x1 . . . L
εn

xn
)

is an autotopism as well. Since the two right-hand members of this triple are
assumed to equal idQ, it follows that T

ε1
x1 . . . T

εn
xn
= idQ as well, by Lemma 1.7.

We have Λ(ϕ) = ϕ whenever ϕ = L−1
xy LxLy for some x, y ∈ Q, by Proposi-

tion 2.4. Such mappings generate L1, and so Λ(ϕ) = ϕ for all ϕ ∈ L1.
Every ψ ∈ L can be uniquely expressed as Laϕ, where ϕ ∈ L1 and a ∈ Q.

Assume ψ ∈ KerΛ. Then Ta = R−1
a La = ϕ−1 ∈ L1, which means Ra ∈ L.

We also have Ta ∈ AutQ, by Proposition 2.4, and hence a ∈ Nρ, by point (ii) of

Corollary 2.3. Now, Ra ∈ Z(L), by Lemma 1.10, and ψ = Laϕ = LaL
−1
a Ra = Ra.

We have verified KerΛ ≤ Z(L), and Z(L) ≤ {Ra; a ∈ Q} ∩ L is clear from
Lemma 1.9. On the other hand, if Ra ∈ L, then Ra = LaT

−1
a ∈ L implies

Ta ∈ L1, and so Λ(Ra) = Λ(La)Λ(T
−1
a ) = TaT

−1
a = idQ. �

Corollary 2.9. Let L the left multiplication group of a left conjugacy closed
loop Q. Then L1 ≤ 〈Tx; x ∈ Q〉.

Proof: Since L is generated by {Lx; x ∈ Q}, the image of Λ has to be generated
by {Tx; x ∈ Q}. The image contains L1, by Theorem 2.8. �

Corollary 2.10. Let x and y be elements of a left conjugacy closed loop Q. Then

TxTyT
−1
x = TTx(y).

Proof: We have Λ(LxLyL
−1
x ) = Λ(LTx(y)). �

Theorem 2.11. A left conjugacy closed loop of prime order is an abelian group.

Proof: Let Q be an LCC loop with p elements, p a prime. Let Λ : L → InnQ be
the homomorphism of Theorem 2.8. Since p divides the order of L, but does not
divide the order of InnQ, p has to divide the order of KerΛ. From the description
of KerΛ in Theorem 2.8 it follows that Nρ contains at least p elements. That
means Nρ = Q, and so Q has to be a group. �
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3. The associator subloop

Throughout this section Q will mean a left conjugacy closed loop, and L and
R will be the left and right multiplication groups of Q, respectively.

Lemma 3.1. If x, y ∈ Q, then

[Lx, Ry] = L
−1
x R−1

y LxRy = Rx\1R
−1
x\y

Ry ∈ R1, and

[L−1
x , R−1

y ] = LxRyL
−1
x R−1

y = RxyR
−1
x R−1

y ∈ Rxy .

In particular, [Lx, Rx] = Rx\1Rx.

Proof: This follows directly from identities in the third column of Lemma 2.5.
�

Proposition 3.2. Let Q be a left conjugacy closed loop and R its right multi-
plication group. Then

R1 = 〈[Lx, Ry]; x, y ∈ Q〉 E InnQ.

Proof: The normality of R1 in InnQ follows from the normality of R in MltQ
(see Corollary 2.6). From Lemma 3.1 we obtain [Lx, Ry ] ∈ R1, for all x, y ∈

Q. It remains to show that each R−1
xy RyRx can be expressed by a product of

commutators. If y is replaced by x\y, then R−1
xy RyRx turns to R

−1
y Rx\yRx and

from Lemma 3.1 we see that this is equal to

(Rx\1R
−1
x\y

Ry)
−1 (Rx\1Rx) = [Lx, Ry ]

−1 [Lx, Rx].
�

Lemma 3.3. The group 〈Ru; u ∈ Q〉 is normal in MltQ and is contained in
[L,R].

Proof: The normality follows from Corollary 1.2, as R is a normal subgroup
of MltQ, by Corollary 2.6. Fix u ∈ Q and observe that Ru = LuR1L

−1
u , by

Lemma 1.1. This means that Ru is generated by mappings Lu[Lx, Ry]L
−1
u =

[LuLxL
−1
u , LuRyL

−1
u ], where x, y ∈ Q, by Proposition 3.2. However, LuRyL

−1
u ∈

R, by Corollary 2.6. Hence Ru ≤ [L,R], for every u ∈ Q. �

Lemma 3.4. The group 〈Ru; u ∈ Q〉 contains each of the commutators [Lx, Ry],

[Ry , Lx], [L
−1
x , Ry] and [Ry , L

−1
x ], for all x, y ∈ Q.

Proof: One has [u, v]−1 = [v, u] in every group G, for all u, v ∈ G. In
view of Proposition 3.2 we thus need only to consider [L−1

x , Ry]. That equals

Lx[Ry, Lx]L
−1
x , which belongs to our group, as that is normal in MltQ and

[Ry , Lx] is in R1. �
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Theorem 3.5. Let Q be a left conjugacy closed loop and denote by L and R
the left and right multiplication group of Q, respectively. Then

[L,R] = 〈Ru; u ∈ Q〉 E MltQ,

and the orbits of [L,R] coincide with the cosets modulo the associator subloop
A(Q).

Proof: Denote 〈Ru; u ∈ Q〉 by B, and note that the orbits of B coincide with
the cosets of A(Q) by Proposition 1.11. From Lemma 3.3 we have B E MltQ
and B ≤ [L,R]. It remains to show [α, β] ∈ B for all α ∈ L and β ∈ R. Write
β as R−1

y ψ, ψ ∈ R1, and α as L
ε1
x1 . . . L

εk
xk
, where xi ∈ Q and εi ∈ {−1, 1},

1 ≤ i ≤ k. We shall proceed by induction on k. The case k = 0 is trivial and so
we assume k ≥ 1. Then α = Lε

xγ, where x = x1, ε = ε1 and γ = Lε2
x2 . . . L

εk
xk
.

Now, [α, β] = [Lε
xγ,R

−1
y ψ] = γ−1µψ, where µ = L−ε

x ψ−1RyL
ε
xγR

−1
y . To prove

[α, β] ∈ B is hence equivalent to proving γ−1µ ∈ B, which is equivalent to proving
µγ−1 ∈ B, as ψ ∈ R1 ≤ B and B E MltQ. Now,

µγ−1 = (L−ε
x ψ−1Lε

x)(L
−ε
x RyL

ε
xR

−1
y )(RyγR

−1
y γ−1),

L−1
x ψ−1Lx ∈ Rx\1 ≤ B, Lxψ

−1L−1
x ∈ Rx ≤ B, L−ε

x RyL
ε
xR

−1
y ∈ B by Lem-

ma 3.4, and RyγR
−1
y γ−1 = [γ−1, R−1

y ]
−1 ∈ B by the induction assumption.

�

4. Normality on the left

In this section we shall again assume that Q is a left conjugacy closed loop,
with L and R being the left and right multiplication groups of Q, respectively.
Furthermore, we shall denote by L̄ the least normal subgroup of MltQ that con-
tains L.
The equality LxRyL

−1
x = RxyR

−1
x (see Lemma 2.5) can be written as Ry =

L−1
x RxyR

−1
x Lx and so we can immediately state

Lemma 4.1. All x, y ∈ Q satisfy R−1
xy RyRx = (R

−1
xy L

−1
x Rxy)(R

−1
x LxRx).

Corollary 4.2. The right inner multiplication group R1 is a subgroup of L̄1.

Proof: Indeed, by Lemma 4.1 the generators of R1 are products of conjugates
of L±1

x , where x runs through Q. �

Proposition 4.3. Let Q be a left conjugacy closed loop and let L and R be its
left and right multiplication groups. Then L E MltQ if and only if R1 ≤ L1.

Proof: Assume L E MltQ. Then L = L̄, and R1 ≤ L1 follows from Corol-
lary 4.2. Assume now R1 ≤ L1. We have MltQ = LR, and so to get L E MltQ
it suffices to show that the generators of L are normalized by the elements of R.
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This will be true if R−1
y LxRy ∈ L and RyL

−1
x R−1

y ∈ L for all x, y ∈ Q, i.e.,

if [Lx, Ry] ∈ L and [L−1
x , R−1

y ] ∈ L for all x, y ∈ Q. Now, [Lx, Ry ] ∈ R1 and

[L−1
x , R−1

y ] ∈ Rxy , by Lemma 3.1. However, R1 ≤ L, which is assumed, implies

Rxy ≤ L, as Ru = LuR1L
−1
u for every u ∈ Q, by Lemma 1.1. �

Corollary 4.4. If L E MltQ, then L ∩R = Z(L)R1.

Proof: If Raϕ ∈ L ∩ R, where ϕ ∈ R1, then Ra ∈ L, by Proposition 4.3, and
Ra ∈ Z(L), by Theorem 2.8. The converse inclusion follows from Theorem 2.8
and Proposition 4.3 immediately. �

Corollary 4.5. If L EMltQ, then the homomorphism Λ : L → InnQ, Lx 7→ Tx

for all x ∈ Q, is surjective, and InnQ is generated by the set {Tx; x ∈ Q}.

Proof: The image of Λ always contains L1, by Theorem 2.8, and it contains
all Tx, x ∈ Q, by the definition. If L E MltQ, then it contains also R1, by
Proposition 4.3, and the rest is clear. �

Set Mρ = {a ∈ Nρ; Ra ∈ Z(L)}, like in Lemma 1.10. By that lemma, Mρ ≤
Z(Nρ). This is true for all loops. Since we assume that Q is left conjugacy closed,
we can express Mρ simply as {a ∈ Q; Ra ∈ L}, by Theorem 2.8. Note also that
Ra ∈ L if and only if Ta ∈ L1.

Proposition 4.6. Let Q be a left conjugacy closed loop and let L be its left
multiplication group. Suppose L E MltQ. Then Mρ is a normal subloop of Q,
and Q/Mρ is a group. Furthermore, Mρ ≤ Z(Nρ) is an abelian group and L1 is
an abelian group as well. The right nucleus Nρ is a normal subloop of Q.

Proof: If Ta ∈ L1, then TxTaT
−1
x ∈ L1, as we assume L1 E InnQ. However,

TxTaT
−1
x equals TTx(a), by Lemma 2.10. In other words, a ∈Mρ implies Tx(a) ∈

Mρ. From Corollary 4.5 we now see that Mρ is a normal subloop of Q.
Express a permutation ψ ∈ L as Lxϕ, ϕ ∈ L1. Then Λ(ψ) = Txϕ gets into

L1 if and only if Tx ∈ L1, i.e., if and only if x ∈ Mρ. We have proved that

ψ(Mρ) = Mρ if and only if ψ ∈ Λ−1(L1). This is true for every LCC loop, but

under the assumption of L E MltQ, we know, in addition, that Λ−1(L1) E L
and that Mρ is a normal subloop of Q. Hence Lemma 1.12 can be used to see
that Q/Mρ is really a group. Mρ is abelian by Lemma 1.10, L1 is abelian by
Lemma 1.6 (since Mρ contains A(Q)), and Nρ is normal by Lemma 1.5. �

Proposition 4.7. Let Q be a left conjugacy closed loop and let L be its left
multiplication group. If L = MltQ, then Q is an abelian group.

Proof: It suffices to show that Q has to be a group. Elements of L normalize
the set of all left translations. Hence if L contains R, then LxRy = RyLx for
all x, y ∈ Q, by point (ii) of Lemma 2.1. However, left and right translations
commute if and only if Q is a group. �
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Proposition 4.8. Let Q be a left conjugacy closed loop and let L and R be its
left and right multiplication groups, respectively. If R = MltQ, then there exists
no proper normal subgroup of MltQ that contains L.

Proof: Let us assume R = MltQ. Then InnQ = R1, and so InnQ ≤ L̄1, by
Lemma 4.2. However, that means L̄ = MltQ. �

5. Isotopes

Consider a loopQ. Its principal isotopes are the loopsQ(◦) with x◦y = x/e·f\y
for all x, y ∈ Q. Elements e, f ∈ Q are parameters of Q(◦). Call Q(◦) a left
principal isotope if f = 1 and right principal isotope if e = 1. If Q(◦) is a left
principal isotope, then the set of left translations of Q(◦) coincides with the set
of left translations of Q. Hence left principal isotopes of LCC loops are also LCC
loops. In fact, we have more:

Proposition 5.1. Let Q be a left conjugacy closed loop and let e be its element.
Set x ◦ y = (x/e) · y, for all x, y ∈ Q. Then x 7→ ex constitutes an isomorphism
Q(·) ∼= Q(◦).

Proof: Indeed, ex ◦ ey = ((ex)/e) · (ey) = e(xy), for all x, y ∈ Q. �

Proposition 5.1 appears in [11] as Remark 1.1.3. Each principal isotope can be
obtained as right principal isotope of a left principal isotope. Hence we have:

Corollary 5.2. An LCC loop Q is a universal LCC loop if and only if all right
principal isotopes are left conjugacy closed.

This was observed by Basarab [1] as well.

Lemma 5.3. Let Q be a left conjugacy closed loop and let f be its element. The
following conditions are equivalent:

(i) operation x ◦ y = x · (f\y) yields an LCC loop;
(ii) R−1

xy L(fx)/fRy = R
−1
x L(fx)/f for all x, y ∈ Q;

(iii) x\Tf (x) ∈ Nλ for all x ∈ Q; and
(iv) Tf (x) ≡ x mod Nλ for all x ∈ Q.

If f satisfies these conditions, then [Lx, L
−1
f ] = Lu, where u = x\Tf (x), for all

x ∈ Q.

Proof: The operation ◦ is LCC if and only if it satisfies the law x(z(fy)) =
((xz)/x)(x(fy)), i.e., if

x(f\(zy)) = ((x(f\z))/(f\x)) · (f\(xy))

for all x, y, z ∈ Q. This identity can be also expressed by

LxL
−1
f Ry = Rf\(xy)R

−1
f\x

LxL
−1
f .
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Since Rf\xyR
−1
f\x
= L−1

f RxyR
−1
x Lf , by Lemma 2.5, we can convert the latter

identity to

L(fx)/fRy = LfLxL
−1
f Ry = RxyR

−1
x LfLxL

−1
f = RxyR

−1
x L(fx)/f .

This establishes the equivalence of (i) and (ii).

The identity of (ii) can be also expressed as L(fx)/fRyL
−1
(fx)/f

= RxyR
−1
x .

However, RxyR
−1
x equals LxRyL

−1
x , by Lemma 2.5. Thus (ii) implies that

L−1
x L(fx)/f centralizes all Ry , y ∈ Q. That means, by Lemma 1.9, that LxL(fx)/f

is equal to some Lu, u ∈ Nλ. From LxLu = L(fx)/f we get xu = Tf (x) and

u = x\Tf (x). Hence (ii) implies (iii).
Assume now (iii) and put u = x\Tf (x). Then u ∈ Nµ, by Proposition 2.7, and

thus LxLu = Lxu = L(fx)/f . Hence L
−1
x L(fx)/f = Lu centralizes all Ry , y ∈ Q,

by Lemma 1.9, and so

L(fx)/fRyL
−1
(fx)/f

= LxRyL
−1
x = RxyR

−1
x

for all x, y ∈ Q. We see that (iii) implies (ii).
Point (iv) reformulates point (iii), since Nλ is a normal subloop.

If LxLu = L(fx)/f , then Lu = L
−1
x LfLxL

−1
f = [Lx, L

−1
f ]. �

To restate Basarab’s theorem on universal LCC loops we need the following
observation (see [11, Theorem 1.1.8]).

Lemma 5.4. A commutative LCC loop is an abelian group.

Proof: Let Q be a commutative LCC loop. Then the law x(yz) = ((xy)/x)(xz)
turns to x(yz) = y(xz), and so x(yz) = y(zx) = z(yx) = (xy)z. �

Theorem 5.5 (Basarab). Let Q be a left conjugacy closed loop. Then Q is
universally conjugacy closed if and only if Q/Nλ is an abelian group.

Proof: If Q is a universal LCC loop, then x ≡ (yx)/y mod Nλ for all x, y ∈ Q,
by Lemma 5.3. Hence Q/Nλ is commutative, and Lemma 5.4 can be used. On the
other hand, if Q/Nλ is an abelian group, then Tf (x) ≡ x mod Nλ for all x, f ∈ Q.
It follows that Q is universally LCC, by point (iv) of Lemma 5.3. �

Basarab [1] did not state his result as an equivalence, but as an implication.
However, the converse statement is implicitly present already in his proof.

Let us now turn to the significance of Lemma 5.3 for nonuniversal LCC loops.
For a loop Q put C(Q) = {a ∈ Q; ax = xa for all x ∈ Q}.

Lemma 5.6. Let Q be a left conjugacy closed loop. Then C(Q) ⊆ Nρ.

Proof: If a ∈ C(Q), then x(ay) = ((xa)/x)(xy) turns to x(ay) = a(xy), and so
x(ya) = x(ay) = a(xy) = (xy)a. �
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Proposition 5.7. Let Q be a left conjugacy closed loop. If both Nλ and C(Q) ⊆
Nρ are trivial, then there exists no f ∈ Q, f 6= 1, for which the operation
x ◦ y = x(f\y) yields a left conjugacy closed loop.

Proof: Let x ◦ y = x · (f\y) be an LCC loop. Then x\Tf (x) ∈ Nλ for all x ∈ Q,
by Lemma 5.3. If Nλ = 1, then x = Tf (x) for all x ∈ Q, which means x ∈ C(Q).

�

Proposition 5.7 was independently obtained by Piroska Csörgő (personal com-
munication).

6. Questions and problems

The purpose of this paper has been to collect basic facts about general LCC
loops as they can be derived from the present knowledge of CC loops. While
writing the paper I was not aware of any nontrivial LCC loops with trivial left
nucleus. When the first draft of this paper was circulated, such loops where
readily supplied by M. Kinyon and J.D. Phillips, who used model builder mace4
to find examples on 8, 9, 10 and 12 elements. All these examples contain a 6= 1
with ax = xa for all x, all their right translations are even permutations and all
of the examples contain a left translation which is an odd permutation. The right
multiplication group is in the case of 8 elements equal to the alternating group,
which means that the loop is simple. This example seems to suggest that there
might exist LCC loops in which the right multiplication group equals the (full)
multiplication group. However, no such loop seems to have been constructed yet.
M. Kinyon also noted that LCC loops Q with trivial Nλ can be obtained

from [8], since that paper gives examples of Bol loops of exponent 2 on 16 ele-
ments that have trivial left nucleus. These loops are involutorial, and their left
multiplication groups are 2-groups (and contain only even permutations). In one
of the cases the right multiplication group R is an extension of Alt7×Alt7 by
Z4, and is of index 2 in MltQ [8, Corollary 7]. These loops are solvable, but not
nilpotent.
Nearly nothing seems to be known about nonassociative simple left conjugacy

closed loops. For which orders do they exist?
Does there exist a nontrivial left conjugacy closed loop with trivial right nu-

cleus?
Does there exist a nontrivial left conjugacy closed loop such that no nontrivial

right principal isotope is left conjugacy closed (cf. Proposition 5.7)?
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