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An alternative way to classify some Generalized

Elliptic Curves and their isotopic loops

M. Abou Hashish, L. Bénéteau

Abstract. The Generalized Elliptic Curves (GECs) are pairs (Q, T ), where T is a family
of triples (x, y, z) of “points” from the set Q characterized by equalities of the form
x.y = z, where the law x.y makes Q into a totally symmetric quasigroup. Isotopic loops
arise by setting x ∗ y = u.(x.y). When (x.y).(a.b) = (x.a).(y.b), identically (Q, T ) is
an entropic GEC and (Q, ∗) is an abelian group. Similarly, a terentropic GEC may
be characterized by x2.(a.b) = (x.a)(x.b) and (Q, ∗) is then a Commutative Moufang
Loop (CML). If in addition x2 = x, we have Hall GECs and (Q, ∗) is an exponent 3
CML. Any finite terentropic GEC admits a direct decomposition in primary components
and only the 3-component may eventually be non entropic, in which case its order is
at least 81. It turns out that there are fifteen order 81 terentropic GECs (including
just three non-entropic GECs). In class 2 CMLs the associator enjoys some pseudo-
linearity: (x ∗x′, y, z) = (x, y, z) ∗ (x′, y, z). We are thus led to searching representatives
in the set AT(n, m, K) of image-rank m alternate trilinear mappings from (V (n, K))3

to V (m, K) up to changes of basis in these K-vector spaces. Denote by α(n, m, K)
the cardinal number of the sets of representatives. We establish that α(5, 2, K) ≤ 5
whenever each field-element is quadratic; moreover α(5, 2, F3) = 6 and α(6, 2, F3) ≥ 13.
We obtained a transfer theorem providing a one-to-one correspondence between the
classes from AT(n, m, F3) and the rank n + 1 class 2 Hall GECs of 3-order n + m.
Now α(7, 1,GF(3s)) = 11 for any s. We derive a complete classification and explicit
descriptions of the eleven Hall GECs whose rank and 3-order both equal 8. One of these
has for automorphism group some extension of the Chevalley group G2(F3).

Keywords: totally symmetric quasigroups, terentropic quasigroups, commutative Mo-
ufang loops, generalized elliptic curves, extended triple systems, alternate trilinear map-
pings

Classification: 20N05, 14H52, 46G25

1. Introduction conventions and first examples

Let G be a non-empty set. An “unordered triple” fromG, denoted by ((x, y, z))
or simply ((xyz)), is the equivalence class included in G3 consisting of all the
triples of the form (x′, y′, z′) that one may derive from (x, y, z) by an arbitrary
permutation of the three arguments.
By definition, a Generalized Elliptic Curve (GEC for short) is a pair (G, T ),

where T is a given family of unordered triples from the set G such that any
pair (x, y) not necessarily distinct points of G is contained in exactly one triple
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((x, y, z)) from T . Let us denote then x.y = z and for any fixed element u from G
we set x ⋆u y = u.(x.y). Both these binary laws are commutative. Besides,
u.(x.u) = x, hence (G, ⋆u) is a commutative loop with identity element u; we call
it the related loop of origin u. For any point x fromG its “tangential” is the unique
point t such that ((xxt)) belongs to T . In case t = x one says that x is an inflexion
point. The set I(G) of all the inflexion points is the set of the idempotent elements
in the totally symmetric quasigroup (G, .). The “rank” of a GEC (G, T ) is the
smallest cardinal number r such that G admits a generator subset whose cardinal
is r. The entropic GECs are those in which (x.y).(z.t) = (x.z).(y.t) identically.
When this identity is only assumed to be fulfilled in any subsystem of rank ≤ 3,
one says that (G, T ) is a terentropic GEC (or TGEC). More particularly, the
TGECs in which any point is an inflexion point are the Hall GECs (or HGECs
for short).

Example 1.1. Let P = {a, b, c, d} be a 4-element set. It may be provided in two
ways with a GEC structure whose collection of triples is either
T = {((bcd)), ((bba)), ((cca)), ((dda)), ((aaa))}, or
U = {((bcd)), ((bba)), ((ccc)), ((dda)), ((aac))}. The ranks of (P, T ) and (P, U) are
2 and 1 respectively. Any 4-order GEC need be isomorphic to either (P, T ) or
(P, U).

In fact, (P, T ) is just a special case of “binary GEC”: every elementary abelian
2 group (B,+) may be classically endowed with a GEC structure whose triples
((x, y, z)) are characterized by x+ y + z = 0.

Example 1.2. Consider the direct product Q = Z3 × Z3 × Z9 with typical
element X = (x, y, z). Q may be provided with a CML structure by the law
X ∗X ′ = (x+x′, y+y′, a+a′+3(x−x′)(yz′−y′z)). The set of triples (X, X ′, X ′′)
characterized by X ′′ = −(X ∗ X ′) makes Q into a terentropic GEC. It is one of
the three non entropic terentropic GECs of minimum order (81).

Example 1.3. Let V = V (8, F3) be the 8-dimensional vector space over F3

with typical element X =
∑

1≤i≤8 xiei. For any two points X and Y let us set

X.Y = −X − Y + δ(X, Y )e8 with:

δ(X, Y ) = (x2y3 − x3y2 + x4y7 − x7y4)(y1 − x1) + (x5y7 − x7y5)(y2 − x2)

+ (x6y7 − x7y6)(y3 − x3) + (x5y6 − x6y5)(y4 − x4).

This law makes V into a totally symmetric distributive quasigroup. The triples
of the form (X, Y, X.Y ) provide V with a Hall GEC structure. It is a special
example of the eleven 38-order Hall GECs of maximal rank 8.

It is quite obvious from the preceding examples that some trilinear skew-
symmetric mappings are used to construct examples of terentropic GECs (see
also [4], [8] and [14], [15], [18]). This aspect is to be developed in Section 4.



An alternative way to classify some Generalized Elliptic Curves . . . 239

The GECs arose in combinatorics (where they are called “Extended Triple Sys-
tems”) and in quasigroup theory (where one identifies them with the related
totally symmetric quasigroups (G, .)). Before turning to structure theorems and
classification results, let us recall a few geometrical facts so as to explain the ter-
minology we employ (that comes mainly from Buekenhout [7], Keedwell [13] and
Manin [17]). In the n-dimensional projective space PG(n, K) over some field K
consider P = Sr(K), the set of regular (or non-singular) K-points of some ab-
solutely irreducible cubic hypersurface S defined over K. The points x, y, and z
from P are said to be collinear (notation Col(x, y, z)) if there is a line L containing
x, y and z and such that the intersection L.S is either L or of the form x+ y+ z,
each point turning up equally often as its intersection multiplicity (the addition
notation we use there denotes only an intersection cycle; it has nothing to do with
a binary operation). This three-place relation of collinearity Col(x, y, z) is clearly
invariant under any permutation. Besides, for any pair x, y from P there exists
at least one z such that Col(x, y, z). When n > 2, there are several such z in
general. Nevertheless, z is uniquely determined when n = 2 and one may then
state the well-known following result:

Theorem 1.1 (Lamé [17]). If S is a curve then the collection of the triples
((x, y, z)) of collinear points makes P into an entropic GEC and, for any u from S,
the loop of origin u (P, ∗u) is an abelian group.

Theorem 1.2 (Buekenhout’s classification [7]). There are up to isomorphism
exactly twenty six GECs of order ≤ 8. Only thirteen ones are entropic; and they
are all related to projective elliptic curves except the order 8 binary one.

Remark 1.1. Clearly, elementary abelian groups of order pt with t > 2 may not
occur as groups (P, ∗) arising from finite projective cubic curves S ⊂ PG(2, Fq)
that are generated by at most 2 elements: one knows that these groups (P, ∗) are
direct products of at most two cyclic groups of the form: Zn ×Zd, where n and d
are non negative integers such that d divides both n and q−1. Their orders satisfy
q + 1− 2√q ≤ |P | ≤ q + 1+ 2

√
q (Hasse’s theorem see [16]). The actual value of

|P | may be computed by several algorithms (see for instance Schoof [21]). They
are used for implementing secure public-key cryptosystems, because they contain
large cyclic groups in which the “logarithm problem” (namely the determination
of an integer l such that la = b) is presently considered as intractable (see [16]
and [11]).

For the remainder of this section we restrict ourselves to the case n > 2. Thus
S is an hypersurface of dimension > 1. Assume moreover that S admits a non-
singular point x such that the intersection “hypercurve” Cx = Tx ∩ S of the
tangent hyperplane Tx with S is geometrically irreducible, reduced and that x is
not conical in Cx. Then consider a quotient Q = P/R of P = Sr(K) with respect
to an “admissible relation” R, namely a compatible equivalence relation in P
such that the natural way to factorize the collinearity yields a ternary relation
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ColR(X, Y, Z) such that for any X and Y from Q there is just one class Z such
that Col(x, y, z) holds for 3 suitable representatives. Then:

Theorem 1.3 (Manin and Bel’skii [17]). In the factor set Q = P/R, the collec-
tion T of the triples of classes X, Y, Z such that ColR(X, Y, Z) holds provides Q
with a structure of TGEC in which any tangential is an inflexion point (if (XXZ)
belongs to T so does (ZZZ)). Its inflexion point subset I(Q) is a subsystem, and
it is a HGEC. Moreover, there is some binary subsystem B such that (Q, T ) splits
as a direct product of I(Q) by B.

The difficult problem of constructing eventually an hypersurface S in which
I(Q) is not entropic seems to be still unsolved (see [17], [8] and [3]).

2. The kinship between Terentropic Generalized Elliptic Curves and

CMLs

Our aim is to classify some TGECs up to isomorphism. Any TGEC has an
essentially unique related CML (G, ∗u). But the knowledge of the related loop
(G, ∗u) only determines (G, T ) up to isotopy. Let us be more precise.
First, let us deal briefly with the classical correspondence between entropic

GECs and abelian groups. One may easily check that, if (Q, T ) is a GEC and
u an arbitrary element from Q, then (Q, T ) is entropic if and only if the related
loop (Q, ∗u) is an abelian group whose structure does not depend on the choice
of the “origin” u. Conversely, if (A,+) is an abelian group then for any c from A
the unordered triples ((xyz)) defined by the condition x + y + z = c endow the
underlying set A with an entropic GEC structure. Any entropic GEC(G, T ) may
be constructed in this way from an abelian group that is unique up to isomor-
phism. These assertions are to be subsumed by the two following properties that
establish that the TGECs are similarly related to the CMLs (namely to the loops
(G, ∗) such that (x ∗ x) ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) identically).

Proposition 2.1. Let (G, T ) be a GEC with symmetric law x.y. Let us set
x2 = x.x. Consider an arbitrary fixed element u from G. When (G, T ) satis-
fies one of the following four conditions then it satisfies all of them: (i) (G, T )
is terentropic; (ii) x2.yz = xy.xz identically; (iii) x.yz = x2y.xz identically;
(iv) (G, ∗u) is a CML. Moreover, in this case the loop (G, ∗u) does not depend
on the choice of u up to isomorphism. It admits u2 as an associatively central
element. The triples ((xyz)) from T may be characterized by x ∗u y ∗u z = u2.

Proposition 2.2. Let (G,+) be a CML with identity element e and c an ar-
bitrary central element from G. Then the underlying set G organized with the
family of unordered triples of the form ((x, y, c− x− y)) is a TGEC. Any TGEC
may be obtained in this way. Besides, from the GEC(G, Tc) one may recover the
initial CML by taking the related loop of origin e.
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Recall that the “center” Z = Z(G) of a CML (G,+) is as usual defined as the
set of the elements c whose behaviour is associative with respect to any pair x, y
of elements from G (namely, (x+ y)+ c = x+(y+ c)). A well-known property of
the abelian group Z is that it contains the set θ(G) = {3t | t ∈ G} as a subgroup
(see for instance [8]). We need a sufficient condition for two elements c and d
from Z to give rise to isomorphic GECs.

Proposition 2.3. Under the hypothesis of the previous proposition, if c ∈ Z(G)
then for any ǫ = ±1 and for any t from Z(G) the sum d = ǫc+3t belongs to Z(G)
and the corresponding TGECs (G, Tc) and (G, Td) are isomorphic.

Proof: The mapping f(x) = x′ = ǫx + t is clearly a permutation of G and
f−1(x′) = ǫx′−t. Besides, x+y+z = c implies (ǫx+t)+(ǫy+t)+(ǫz+t) = ǫc+3t,
since t is central. Thus x′ + y′ + z′ = d. Conversely, this relation implies that
x+ y + z = c. This proves that f(Tc) ⊂ Td and f−1(Td) ⊂ Tc as required. �

The foregoing property has some obvious consequences that prove to be very
useful.

Corollary 2.4. The TGECs admitting an inflexion point may be described from
their isotopic CML by a family of triples characterized by x + y + z = 3t, where
t is any element from G.

Proof: One may say then that (G, T3t) is isomorphic to (G, Te), where e is the
identity element. �

Corollary 2.5. A CML (G,+) admits up to isomorphism exactly one isotopic
TGEC if and only if θ(G) = Z(G).

Proof: Otherwise for c ∈ Z and c /∈ θ the TGEC (G, Tc) has no inflexion point
and may not be isomorphic to (G, Te). �

Corollary 2.6. Any finite CML whose order is prime to 3 is an abelian group
and has only one related TGEC.

Proof: Since ω = |G| satisfies 3h + ωk = 1, any x from G obeys 3hx = x, so
that θ(G) = G. �

Any finite CML (G,+) admits a canonical decomposition as a direct product
H × A, where H is a (possibly non associative) 3-power order CML and A is
an abelian group whose order is prime to 3. In view of the previous property
one knows that A admits just one isotopic GEC. One needs just to classify the
elements c from Z(H) that give rise to non isomorphic TGEC (H, Tc) so as to list
all the TGECs related to (G,+). Unfortunately, this classification is not easy in
general.
In the special case of abelian group, Schwenk [24] provided simple represen-

tatives of the TGECs (G, Tc) up to isomorphism. He showed that if the unique
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decomposition of the 3-component H of G as a direct product of 3-power or-
der cyclic groups involves exactly k non isomorphic cyclic factors then there are
exactly k + 1 non isomorphic such TGECs. Let us be more precise:

Theorem 2.7 (Schwenk [24]). Let an abelian group (G,+) be written as a direct
product H × A, where A has an order prime to 3 and H is a 3s-order group
isomorphic to (Z3r1 )

l1 × (Z3r2 )l2 ×· · ·× (Z
3rk
)lk with l1r1+ l2r2+ · · ·+ lkrk = s

and r1 < · · · < rk . Then there are exactly k+ 1 pairwise non isomorphic TGECs
of the form (G, Tc): one with c = e and k TGECs without inflexion point whose
family of triples Tc1 , Tc2, . . . , Tck

arise by taking ci as an arbitrary generator of

an arbitrary 3ri-order cyclic factor subgroup in the decomposition of H .

Proof: If H is a n-order cyclic group spanned by c then each d from H is related
modulo 3H either to ∓c or to the identity element e, so that (H, Td) is isomorphic
to either (H, Tc) or (H, Te). We have already seen that when n is prime to 3 then
(H, Td) is isomorphic to (H, Te). Schwenk proved that if r ≤ t then the two GECs
(Z3r × Z3t , T(0,1)) and (Z3r × Z3t , T(1,1)) are isomorphic by the mapping

(a, b) 7→ ((a+ b) modulo 3r, b).

As a consequence, one may prove that if H is a 3-power order abelian group
admitting a decomposition as a direct sum of subgroups 〈ci,j〉 for j = 1, 2, . . . , k
and i = 1, 2, . . . , lj , whose orders are O(ci,j) = 3

rj with r1 < · · · < rk, then any
GEC without inflexion point related to H is isomorphic to some (H, Tc), where
c ∈ {c1,1, c1,2, . . . , c1,k}. Furthermore, Schwenk checked that in (H, Tci,j ) the
permutation:

x 7→ x2 = c − 2x

is decomposable in disjoint cycles of minimum length 3rj which establishes that
the k possible choices lead to pairwise non isomorphic GECs as required (for more
details see [24]). �

As a consequence of the foregoing statements and taking into account [3], one
may state the:

Theorem 2.8. Any finite TGEC that is not entropic has an order which is
a multiple of 81. There are exactly fifteen order 81 TGECs including twelve
entropic GECs and just three that are not entropic. If L3 and N3 are the non

associative order 81 CMLs with respective exponent 3 and 9 and identity element
u and v and if c is a central element of L3 distinct from u then the correspondence
between the TGECs and the related groups or loops is as follows:
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Groups and CMLs of order 81 Number and explicit descriptions related GECs (G, Tc)

(Z
4

3 ,+) 2 : (Z
4

3 , T(0,0,0,0)) and (Z
4

3 , T(0,0,0,1))

(Z
2

3 × Z9,+) 3 : (Z
2

3 × Z9, T(0,0,0)), (Z
2

3 × Z9, T(1,0,0)) and (Z
2

3 × Z9, T(0,0,1))

(Z
2

9 ,+) 2 : (Z
2

9 , T(0,0)) and (Z
2

9 , T(0,1))

(Z3 × Z27,+) 3 : (Z3 × Z27, T(0,0)), (Z3 × Z27, T(1,0)) and (Z3 × Z27, T(0,1))

(Z81,+) 2 : (Z81, T0) and (Z81, T1)

(L3, ⋆) 2 : (L3, Tu) and (L3, Tc)

(N3, ⋆) 1 : (N3, Tv)

Table 1: The fifteen order 81 TGECs

Proof: One knows already from [6] that any finite CML (G,+) has an order n
such that 34 divides n. If n = 81, then G ≃ L3 or G ≃ N3. Since θ(N3) = Z(N3),
there is just one GEC related to (N3). The rest follows easily from the foregoing
properties. �

3. The classification of alternate trilinear mappings

Let us turn now to the determination of the orbits of the alternate trilinear
mappings from V 3 toW under the natural action of the linear groups GL(V ) and
GL(W ) of the K-vector spaces V andW . We deal with the general problem so as
to state the classification results at their natural level of generality. Afterwards
we focus on the special case K = F3 in view of by-products concerning the Hall
GECs.
First a few conventions. Let K be a commutative field. Denote by V (n, K)

the n-dimensional K-vector space. If V = V (n, K) and W = V (m, K), we desig-
nate as AT(n, m, K) the set of all the alternate (or symplectic, skew-symmetric)
trilinear mappings t from V 3 to W whose image has rank m. Any pair of linear
mappings g and h from GL(V ) and GL(W ) has a natural action on the elements t
from AT(n, m, K), since the mapping t′(x, y, z) = ht(g(x), g(y), g(z)) also belongs
to AT(n, m, K). One says then that t′ and t are “projectively equivalent” and in
case h = id, that t′ and t are “equivalent”. We want to classify AT(n, m, K) in
orbits under the action of GL(V ) × GL(W ), or under the action of GL(V ). Let
α(n, m, K) and α(n, m, K) be the cardinal numbers of any set of representatives.
The “classes” are the orbits under the action of GL(V ), their cardinal number is
α(n, m, K).
Let t be a given element AT(n, m, K), where t : V 3 → W . For any subspace U

of V we define its “orthogonal” U⊥ as the subset of the elements x from V satisfy-
ing t(x, y, z) = 0 for any y and z from U . When U⊥∩U 6= {0} (resp. U⊥ ⊃ U), we

say that U is “singular” (resp. “totally isotropic”). In case V ⊥ 6= {0}, the trilin-
ear mapping itself is said to be singular. Designate as τ(n, m, K) and τ (n, m, K)
the cardinal numbers of the family of the orbits of non singular mappings from
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AT(n, m, K) under the action of GL(V ) and GL(V )×GL(W ), respectively. The
“rank” rg(t) is the codimension of V ⊥ in the departure space V = V (n, K) (we
call it sometimes the “departure-rank” when some confusion with the rank of
t(V 3) is to be avoided). Thus t is singular if and only if rg(t) < n. Observe that
the following obvious equality holds: α(n,

(n
3

)

, K) = 1 = τ(n,
(n
3

)

, K). One may
also check that:

Proposition 3.1 (Cases of vanishing). Let K be any field. If n < 2 or if
m >

(n
3

)

then α(n, m, K) = 0 = τ(n, m, K). But for n ≥ 3, whenever m ≤
(n
3

)

then both cardinal numbers α(n, m, K) and τ(n, m, K) differ from 0, except for:
τ(4, 1, K) = 0.

Theorem 3.2 (Starting values). For any field K, we have the following additive
formula: α(n, m, K) = α(n − 1, m, K) + τ(n, m, K). Furthermore, α(4, 1, K) =
1 = α(4, m, K) = τ(4, m, K) for m = 2, 3, 4; besides, τ(5, 1, K) = 1, so that
α(5, 1, K) = 2.

Let us sum up what we know about the classification if m = 1. The elements
from AT(n, 1, K) are just the non-vanishing trilinear alternate forms. Their classi-
fication reduces to determining the orbits of 1-linear forms of the exterior product
Λ3V , and by duality this is equivalent to classifying non-vanishing “trivectors”
from Λ3V in orbits under the natural action of GL(V ).

Theorem 3.3 (Gurevitch [12]). If K is algebraically closed then α(n, 1, K) and
τ(n, 1, K) are finite if and only if n ≤ 8.

Property 3.4 (Sum formula). If n ≥ 6 then α(n, 1, K) = 2+
∑

6≤d≤n τ(d, 1, K),

where τ(d, 1, K) are non vanishing cardinal numbers depending on the field K.

The next two partial classifications have been proved in [20].

Proposition 3.5. The trilinear alternate forms of departure V 3, where V =

V (n, K) admits a totally isotropic hyperplane, make up k =
⌊

(n−1)
2

⌋

classes,

where k is the largest integer such that 2k < n. If n is even then all these forms
are singular, while if n is odd then one and only one of the k classes consists of
non singular forms.

Proposition 3.6. In AT(6, 1, K), the forms admitting a singular hyperplane
make up exactly four classes. If K is quadratically closed, these four classes cover
entirely AT(6, 1, K), so that α(6, 1, K) = 4.

Theorem 3.7 (Number of non equivalent forms). Let K be an algebraically

closed field and Fq = GF(q) the q-element finite field. The maximum number of

pairwise non equivalent forms of departure V 3, where V = V (n, K) or V (n, Fq),
are given by the following table:
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dimension n n ≤ 2 3 4 5 6 7 8 ≥ 9

τ(n, 1, K) 0 1 0 1 2 5 ? ∞

α(n, 1, K) 0 1 1 2 4 9 ? ∞

τ(n, 1, Fq) 0 1 0 1 3 5 + gcd(q − 1, 3) ? ?

α(n, 1, Fq) 0 1 1 2 5 10 + gcd(q − 1, 3) ? ?

Table 2: Number of forms when the field is either algebraically closed or finite

Proof: The fact that τ(7, 1, K) = 5 and that therefore α(7, 1, K) = τ(7, 1, K) +
4 = 9 is due to Schouten (see [23]). The values of α(n, 1, Fq) for n ≤ 7 may
be derived from Cohen and Helminck [9] that concerns the more general case
where the base field is perfect and of cohomogical dimension at most 1. One
may also refer to Revoy [21] and Noui [19]. These works provide among other
results the numbers of projectively non equivalent forms starting from any finite
7-dimensional vector space: τ (7, 1, F3) = 6 and α(7, 1, F3) = 11.
For the dimension 8 or ≥ 9, the cells with a question mark “?” contain finite

numbers that are still unknown without some additional specification for the field.
�

Remark 3.1. More special classifications were obtained by Vinberg [26] for
AT(9, 1, C) and by Djokovic (cf. [10]) for AT(8, 1, R), where C and R are re-
spectively the field of complex numbers and the field of real numbers. Besides,
for K algebraically closed of characteristic 0 one knows that α(8, 1, K) = 22 and
τ(8, 1, K) = 13 (see Gurevitch [12]).

Let us turn now to an explicit description of some “simple” sets of representa-
tives with respect to a canonical basis ei, i = 1, 2, . . . , n, of V = V (n, K).
The vectors from V are considered as column-vectors with coefficients from K.

The 1-form from the dual V ∗ are identified with line-vectors u⊺ with coefficients
from K. Any alternate trilinear form t from V 3 to K gives rise to an element
t∗ of the dual (Λ3V )∗ that is classically isomorphic to Λ3V ∗. Any trivector
u⊺

1Λu⊺

2Λu⊺

3 of Λ
3V ∗ is thereby identified with the alternate trilinear mapping

defined as follows:

u⊺

1Λu⊺

2Λu⊺

3(x1, x2, x3) =
∑

σ∈S3
sign(σ)

∏3
i=1 u⊺

i (xσ(i)).

So the e∗ijk = e⊺

i Λe⊺

jΛe⊺

k
, where 1 ≤ i < j < k ≤ n, make up a basis of Λ3V ∗.

For any K in AT(6, 1, K), any form of rank ≤ 5 is equivalent to f1 = e∗123
or to f2 = e∗123 + e∗145 whose ranks are 3 and 5, respectively. Any rank 6 form
admitting a 5-dimensional singular subspace is equivalent to one and only one of
the two following forms: f3 = e∗123 + e∗456 or f4 = e∗162 + e∗243 + e∗135.
If K is quadratically closed then any t form AT(6, 1, K) is equivalent to one

and only one of the previously defined forms f1, f2, f3 and f4.
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Convention: Assume now that K is a characteristic k commutative field and
that λ is a scalar from K such that:

(i) either k > 2 and λ is not a square in K;
(ii) or k = 2 et x2 + λx+ 1 is an irreducible polynomial in K[x].

Let us set:
gλ = e∗123 + λ(e∗156 + e∗345 + e∗426) if k 6= 2,
gλ = e∗126 + e∗153 + e∗234 + λ(e∗156 + e∗345 + e∗426) + (λ

2 + 1)e∗456 if k = 2.

In AT(7, 1, K) there are always at least 5 pairwise non equivalent rank 7 alter-
nate trilinear forms, namely: f5 = e∗123+e∗456+e∗147; f6 = e∗152+e∗147+e∗163+e∗243 ;
f7 = e∗146 + e∗157 + e∗245 + e∗367; f8 = e∗123 + e∗145 + e∗167;
f9 = e∗123 + e∗456 + e∗147 + e∗257 + e∗367.
When K is algebraically closed, Schouten [23] established that any t from

AT(7, 1, K) is equivalent to one of the 9 forms fi, i = 1, 2, . . . , 9.

Theorem 3.8 (Cohen and Helminck [9]). Let K be a perfect field such that the
Galois group of its algebraic closure has cohomogical dimension at most 1. Then
any form t from AT(7, 1, K) that is not equivalent to one of the fi for i = 1, 2, . . . 9,
has rank r = 6 or 7, and:

(i) if r = 6 and t is equivalent to one of the foregoing defined gλ;

(ii) if r = 7 then t is equivalent to either one of the forms: e∗147 + gλ, or to a

form of type µf9, where µ is an element of K that is not cubic in K.

In the case of a finite field Fq, the preceding theorem applies, since Fq is then
a perfect field of cohomogical dimension ≤ 1. One may say that τ(7, 1, Fq) = 6
and α(7, 1, Fq) = 11, whenever q − 1 is prime to 3; otherwise τ(7, 1, Fq) = 8 and
α(7, 1, Fq) = 13 (see [9] and also [19]). Both cases occur if q = 2

m; more precisely,
either m is odd and τ(7, 1,GF(2m)) = 6, or m is even and τ(7, 1,GF(2m)) = 8.
On the opposite, in the characteristic 3 case we always have τ(7, 1,GF(3s)) = 6
and α(7, 1,GF(3s)) = 11.

Corollary 3.9. Any form t from AT(7, 1,GF(3s)) can be conveniently repre-
sented by:

(i) either by f1, f2, f3, f4 and g(−1) when t has rank at most 6;

(ii) or by f5, f6, f7, f8, f9 and (e
∗
147 + g(−1)) when t is non singular.

In the remainder of this section, we investigate the classification of alternate
trilinear mappings whose image-rank m is at least 2. As far as we know, there has
never been any systematic attempt to classify AT(n, m, K) for m > 1 apart from
the very first step n = 4. We shall assume that some basis B = {ei; i = 1, 2, . . . , n}
is chosen in the departure space V = V (n, K). Designate by eijk the image
t(ei, ej , ek) in W = V (m, K). Our first task is to make a suitable choice of B so
as to maximize the total number of zero-image triples (ei, ej , ek).
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Theorem 3.10 (Simplified basis). Suppose there exists a t in AT(n, m, K) whose
image-rank m is at least 2. Then n ≥ 4 and V contains a 4-rank system S =
{e1, e2, e3, e4} such that:
(a) e123 and e234 are independent,
(b) e124 = 0 = e134.

If, furthermore,m = 2 then one may complete S in a basis obeying the following
properties:

(c) e23i = 0 = e12l = e13h holds for any i ≥ 5, l ≥ 6 and h ≥ 7 with i, j, k ≤ n;
(d) there exists β and γ from {0, 1} with the following equalities: e125 =

βe234 = e136 and e135 = γe234.

Proof: See [1]. �

Any t in AT(n, 2, K) may be conveniently represented by defining relations of
the form (eijk; epqr) or (eijk = euvw; epqr) in which we mean that:

(i) the images eijk and epqr are non collinear;
(ii) exyz = 0 for any triple of subscripts x, y, z such that x < y < z that do
not appear in the defining relation;

(iii) eventually some explicitly stated equalities are obeyed (as eijk = euvw in
the second defining set).

Theorem 3.11. If K is a field in which any element is a square then there are at
most five pairwise non equivalent alternate trilinear forms in AT(5, 2, K), namely

t1 = (e125; e234),
t2 = (e123 = e145; e234),
t3 = (e123 = e245; e234),
t4 = (e123; e145),
t5 = (e123 = e245; e145 = e234).

Proof: See [1]. �

Theorem 3.12 (Razafimanantsoa [20]). AT(5, 2, F3) splits into 6 classes whose
representatives are t1, t2, t3, t4, t5 and t6 = (e123 = e245; e234 = e125). Moreover,
AT(5, 3, F3) contains at least 17 classes.

We established by a computational approach that:

Theorem 3.13. There are at least 7 pairwise non equivalent non singular forms
in AT(6, 2, F3), namely:

t7 = (e
∗
123 = e∗346 = e∗145; e

∗
234),

t8 = (e
∗
123 = e∗245 = e∗346; e

∗
234 = e∗145),

t9 = (e
∗
123 = e∗145; e

∗
234 = e∗456),

t10 = (e
∗
123; e

∗
145 = e∗456),

t11 = (e
∗
123 = e∗245 = e∗346; e

∗
234 = e∗125 = e∗456),
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t12 = (e
∗
123 = e∗346; e

∗
145),

t13 = (e
∗
123; e

∗
145 and e∗345 = e∗123 + e∗234).

Hence α(6, 2, F3) ≥ 7 + 6 = 13.
Proof: We already know that the singular mappings t from AT(6, 2, F3) make
up 6 distinct classes whose representatives are the previously defined t1, t2, t3,
t4, t5 and t6. It remained to check that the seven remaining ones were pairwise
non equivalent and non singular. We computed for each t = ti the number nk(t)
of hyperplanes H such that restriction of t to H has an image-rank equal to k
where k = 0, 1, 2. It turns out that n1(ti) 6= n1(tj) for every two i 6= j, except for
t6 and t11 that we may distinguish by remarking that n0(t6) = 1 6= 0 = n0(t11).
So the couple of invariants (n0, n1) shows that any two distinct ti and tj are not
equivalent which validates our lower bound 13 for α(6, 2, F3), since α(6, 2, F3) =
τ(6, 2, F3) + α(5, 2, F3) ≥ 7 + 6. For more details see [1]. �

Let us turn now to combinational by-products for Hall GECs and exponent
3 CMLs. Concerning the classification of exponent 3 CMLs of small orders, one
knows already that there are exactly 12 such loops of order ≤ 36 and also 13
such loops of order 37. Among the 38-order ones that differ from the elementary
abelian 3-group, we know that their rank r obeys 4 ≤ r ≤ 7, and that r = 4
corresponds to exactly four such loops. As a consequence of α(7, 1, F3) = 11, we
are presently able to establish the:

Theorem 3.14. There are up to isomorphism exactly 11 rank 7 exponent 3 CMLs
of order 81, and their related GECs make up 22 isomoprhy classes, including 11
GECs without inflexion point and 11 Hall GECs.

This new result is less important for future investigations than the process we
use to translate classification problems concerning class 2 exponent 3 finite CMLs
into a search of representatives in some suitable AT(n, m, F3).

Let (E, T ) be a HGEC of order 3n+m and of rank n + 1. Designate by:
u, e1, e2, . . . , en a generator subset of E and by (E,+) the exponent 3 CML related
to the origin u. We may endowE with an external law (λ, x) 7−→ λx whose domain
of operators λ is F3. Now Moufang loops are classically di-associative, thus any
subloop generated by two elements is isomorphic to some vector space V (s, F3)
with s≤ 2. Assume that (E, T ) is not entropic, which means that (E,+) is not
associative, so that the associator: ∆(x, y, z) = ((x+y)+z)−(x+(y+z)) does not
vanish identically. Designate as D(E) the “derived subloop”, namely the subloop
spanned by all the associators. The abelian quotient A = q(E) = E/D(E) may
be viewed as a F3-space isomorphic to V (n, F3). If one denotes by x the coset of
any element x modulo D(E) then a basis of A is provided by ei, i = 1, 2, . . . , n.
By convention, in case any associator is central (namely when D(E) ⊂ Z(E)),

(E, T ) and (E,+) are said to be centrally nilpotent of class 2 (we shall say “of
class 2” for short). For more details about the nilpotent properties for CMLs we
refer the reader to [8], [6] and [2].
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Theorem 3.15 (Associator-factorization). If (E, T ) is of class 2, of rank n and
3-order n+m, then:

(i) D(E) is a m-dimensional F3-vector space admitting as a generator set the
collection of the

(

n
3

)

associators: ∆(ei, ej , ek) for 1 ≤ i < j < k ≤ n;

(ii) there exists a unique alternate trilinear mapping δ from A3 to D(E), so
that δ(x, y, z) = A(x, y, z) holds for any x, y and z from E; and δ ∈
AT(n, m, F3);

(iii) the unique linear mapping δ from Λ3A onto D(E) satisfying δ(xΛyΛz) =
A(x, y, z) has a kernel R that determines completely (E, T ) and (E,+) up
to isomorphism.

Proof: See [1] for details. The mapping δ has an image of rank m, and δ is
clearly surjective onto D(E) ≃ V (m, F3). Its kernel R = Ker(δ) may be naturally
identified with the set of defining relations of the loop (E,+), which completes
the justification. �

By definition, δ is then said to be the “factorized associator” of (E, T ) and
(E,+).

Let us now reverse the process, from a given alternate trilinear mapping from
AT(n, m, F3) we want to recover corresponding HGECs and exponent 3 CMLs of
class 2.
Consider an arbitrary codimension m subspace R in Λ3V , where V = V (n, F3),

vector space with a fixed basis ei, i = 1, 2, . . . , n. The quotient W = Λ3V/R is
trivially generated by the

(n
3

)

cosets of the trivectors: eijk = (eiΛejΛek + R)
where 1 ≤ i < j < k ≤ n.
Every vector x from the direct sum E = V ⊕ W may be written as a linear

combination, say

x =
∑

i=1,2,..,n

xiei +
∑

1≤i<j<k≤n

xijkeijk,

where xi and xijk belong to F3.
One may define an exponent 3 CML binary law by setting

x ∗ y = x+ y +
∑

1≤i<j<k≤n

(xiyj − yixj)(xk − yk)eijk,

The so-determined sum x∗y is well-defined, though the xijk’s are not uniquely
determined from x. A straightforward verification proves that (E, ∗) has class 2.
The family of unordered triples ((x, y, z)) characterized by x ∗ y ∗ z = 0 endows
the set E with a structure of HGEC of class 2 whose factorized associator is

δ(x, , z) = ∆(x, y, z) =
∑

1≤i<j<k≤n

e∗ijk(x, y, z)eijk.
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Proposition 3.16. Among the rank n+1 HGECs of 3-order n+m, the foregoing
process allows the explicit construction of:

(i) all those obeying m = 1, 2 or 3;
(ii) the class 2 ones satisfying 4 ≤ m ≤

(

n
3

)

.

Proof: The basic fact is that rank n exponent 3 CML of order 3n+m can reach
a nilpotency class > 2 only in case m ≥ 4 (see [6], [2]). Now it is quite clear
from the preceding theorem that we may obtain any class 2 exponent 3 CML.
As a matter of fact, the free object Ln,2 spanned by n elements in the variety of

exponent 3 CML is known as a loop whose order is 3n+(
n

3), and our process of
construction describes explicitly any factor-loop Ln,2/R where R is an arbitrary

(normal) subloop contained in D(Ln,2) = Z(Ln,2), which is a
(

n
3

)

-order elemen-
tary 3-group.

�

In our explicit-recovering process we established in particular that any non-
vanishing alternate F3− trilinear mapping δ arises as a factorized associator of
an exponent 3 CML of class 2. Moreover, δ is singular if and only if (E, ∗) is
decomposable as a direct product F × C of a non trivial central factor ({0} 6=
C ⊂ Z(E, ∗)) by a smaller loop. One says then that (E, ∗) and its related HGEC
are “centrally reducible”.

Theorem 3.17 (Number of isomorphy classes). For any n ≥ 3 and m ≥ 1, the
integer α(n, m, F3) coincides with the maximum number of pairwise non isomor-
phic rank (n + 1) HGECs of 3− order n +m and of class 2. There are exactly
τ(n, m, F3) such HGEC that are centrally irreducible.

By counting every time the only entropic HGEC, one recovers the following
previously known facts: there are up to isomorphism:
- just two 34-order HGECs, since 1 + α(3, 1, F3) = 2,
- also just two 35-order HGECs, since 1+α(4, 1, F3) = 2 (recall that τ(4, 1, F3) =
0),
- exactly four 36-order HGECs, since 1+α(4, 2, F3)+α(5, 1, F3) = 1+1+2 = 4;
this follows from τ(4, 2, F3) + τ(5, 1, F3) = 1 + 1 = 2.

More generally, we are in a position to state:

Theorem 3.18. For any s ≥ 4 the number H2(s) of non isomorphic 3
s-order

class 2 HGECs (or: class 2 exponent 3 CMLs) satisfies the following equality:

H2(s) = 1 +
∑

4≤n≤s−1

α(n, s − n, F3).

The total number of 3s-order HGECs coincides with H2(s) for s ≤ 7, but other-
wise it is bounded from below by 3 +H2(s).
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Proof: The sum-decomposition of H2(s) is nothing else than an easy conse-
quence of a counting principle, each term α(n, s − n, F3) representing the sub-
family of the HGECs whose rank is n+ 1. The rest follows from [6].

�

Corollary 3.19. There are at least forty six HGECs of order 38.

Proof: There are three class 3 exponent 3 CMLs, see [6] and H2(8) = 1 +
α(4, 4, F3)+α(5, 3, F3)+α(6, 2, F3)+α(7, 1, F3) ≥ 1+1+17+13+11 = 43, since
we just know lower bounds for: α(5, 3, F3) ≥ 17 and for α(6, 2, F3) ≥ 13. �exp CMLs & HGECs n order 34 35 36 37 38rank 3 exp.3 CMLorrank 4 HGECs �=1�0=0�(3,1)=1 0 0 0 0rank 4 exp.3 CMLsorrank 5 HGECs �=0�0=1�(4,0)=1 & �=1�0=0�(4,1)=1 & �=1�0=0�(4,2)=1 & �=1�0=0�(4,3)=1 & �=1+ n 3 of lass 3�0=0�(4,4)+3=4rank 5 exp.3 CMLsorrank 6 HGECs 0 & �=0�0=1�(5,0)=1 & �=1�0=1�(5,1)=2 & �=5�0=1�(5,2)=6 & � � 16�0=1�(4,3) � 17rank 6 exp.3 CMLsorrank 7 HGECs 0 0 & �=0�0=1�(6,0)=1 & �=3�0=2�(6,1)=5 & �=7�0=6�(6,2) � 13rank 7 exp.3 CMLsorrank 8 HGECs 0 0 0 & �=0�0=1�(7,0)=1 & �=6�0=5�(7,1)=11rank 8 exp.3 CMLsorrank 9 HGECs 0 0 0 0 & �=0�0=1�(8,0)=1Total number of isom . lasses 2 2 4 13 at least 46

Table 3: The number of isomorphism classes

The known cardinal number of isomorphism classes of 3s-order rank n exponent
3 CMLs (or 3s-order rank (n + 1) HGECs) may be summarized in the table 3.
Each cell corresponds to α(n, s − n, F3) (abbreviated in α(n, s − n)) except for
38− order rank 5 HGECs, in which one must add three class 3 HGECs (see [2],
[6], [8]). From our Theorem 3.1, each α is the sum α(n, s − n) = τ + α′, where
τ = τ(n, s − n, F3) is the number of centrally irreducible CMLs or HGECs and
α′ = α(n − 1, s − 1) which coincides with the value of α in the cell in position
north-west. It is easier to determine first α′ that represents the number of centrally

reductible HGECs or CMLs. If one knows already all the 3(s−1)− order HGECs,
then one needs only to determine the centrally irreducible 3s-order HGECs whose
number is:

H2(s)− H2(s − 1) =
∑

4≤n≤s−1 τ(n, s − n, F3).

This sum represents the number of those that are authentically new among the 3s-
order HGECs. Furthermore, our “alternative approach” is more than a counting
device; it may be employed to provide explicit descriptions of small order HGECs.
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For instance, we may say that there are up to isomorphism exactly thirteen order
37 HGECs (including the entropic one and twelve ones that are not entropic),
since: α(6, 1, F3)+α(5, 2, F3)+α(4, 3, F3) = 5+6+1 = 12. If we want to describe
explicitly the rank 6 ones (whose number is α(5, 2, F3) = 6), we must start from
any representative of AT(5, 2, F3). As a case in point, let us construct the HGEC
whose factorized associator is t2 = (e123 = e145; e245). Consider V = V (5, F3)
and the subspace W of Λ3V spanned by e123 − e145 and by all the eijk such that
i < j < k with (i, j, k) 6= (2, 4, 5), (1, 2, 3) and (1, 4, 5).
Thus W = Λ3V/R is generated by u = e123 and v = e245. The sum E =

V
⊕

W is 7-dimensional.
Our process yields a rank 5 exponent 3 CML of order 37 whose factorized

associator is

δ(x, y, z) = (e∗123 + e∗145)(x, y, z).u + e∗234(x, y, z).v,

For any two vectors x and y from E, the binary law of the loop is defined by

x ∗ y = x+ y+(x2y3−x3y2+x4y5−x5y4)(x1− y1).u+(x3y4−x4y3)(x2− y2).v.

Besides, (E(t2), ∗) can be viewed as the free exponent 3 CML on five genera-
tors submitted only to the following relations: (∆(e1, e2, e3)−∆(e1, e4, e5)) = e =
∆(ei, ej , ek) for any i < j < k with (i, j, k) 6= (2, 4, 5), (1, 2, 3) and (1, 4, 5). The
other CMLs (E(ti), ∗) can be similarly described in terms of generators and rela-
tions. Now, since τ(7, 1, F3) = 6 and α(6, 1, F3) = 5, we may derive the following
new classification result:

Theorem 3.20. There are exactly eleven rank 8 HGECs whose 3-order is 8, and
among them only 6 are centrally irreducible and admit as factorized associators
one of the previously defined alternate trilinear forms: f5, f6, f7, f8, f9 and (e

∗
147+

g(−1)).

Several papers have been devoted to descriptions of important and somewhat
complicated finite groups by using their connection with some Moufang loops (see
[11] and its bibliography). Now we have already described as the third example in
Section 1 the HGEC and the exponent 3 CML whose factorized associator is f9.
The subgroups of the linear groups preserving all the forms fi are known (see
Cohen and Helminck [9]). We deduce the following fact:

Theorem 3.21. The GEC E(f9) has an automorphism group Γ that is an ex-
tension of G2(F3) (Chevalley’s group of type G2 over F3). The related CML has
rank 7 and exponent 3; it has an automorphism group A = Aut(E(f9), ∗) such
that there exists a splitting exact sequence of the form

0→ Z
7
3 7−→ A = Aut(E(f9), ∗)

Ψ
։ G(f9) −→ 0.

Here Ψ is the canonical morphism from A onto the stabilizer G(f9) of f9 in the
linear group GL(7, F3). Besides, G(f9) is isomorphic to some product of the form
{±1}.G2(F2); and we have kerΨ ≃ Z73 and |Γ| = 38. |A| = 2.315. |G2(F3)|.
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Concluding remarks:

Our transfer theorem provides a link between two classification problems. Any
advance in the classification of finite HGECs or exponent 3 CMLs is thereby
related to an eventual progress in the classification of alternate trilinear mappings
up to changes of basis. This last problem is understandable by anyone who has an
elementary mathematical background. But it is not altogether easy to continue
the classification. The determination of α(8, 1, Fq) seems to be rather difficult,
even in case q = 3. Likewise, exact estimations of α(6, 2, Fq) and α(5, 3, Fq) cannot
be obtained as long as significative invariants are not found. Another direction
for further investigations concerns the class 3 exponent 3 CMLs. Though we were
able to describe completely all these loops when their order is minimum (38), we
did not provide a general exterior algebra description for them (see nevertheless
[8] and [4] for the free objects L(n,3)).

It would be nice also to extend Schwenk’s correspondence theorem so as to get
a classification up to isomorphism of the GECs related to a given 3-power order
CML (G,+). The number of non isomorphic GECs of the form (G, Tc) depends
obviously on the action of Aut(G,+) on the center Z, since (G, Tc) is isomorphic
to (G, Td), as soon as d = f(c) + 3t with f ∈ Aut(G,+) and t ∈ Z. Anyway the
situation is doubtless more complicated than for abelian 3-groups.

Besides, an exhaustive classification of the order 9 GECs seems to be a rather
tedious task. Of course, there are only four such terentropic (or entropic) GECs,
and one may find elliptic curves whose related groups are Z9 or Z3 ×Z3. But an
algebraic approach of the non entropic one is not so easy.

We have already mentioned that the groups (P, ∗) arising from finite ellip-
tic curves are used for implementing public-key cryptosystems. The best-know
protocol that is used then for coding secret messages m from P is the ElGa-
mal protocol that consists in sending pairs of elements from P of the form
C(m) = (m∗Br; gr) = (µ; δ) where B and g, as well as the initial group (P, ∗) are
made public by the owner of the mailbox, while r is an arbitrary integer whose
choice is made at random by the sender (S). Clearly, µ = m ∗ Br is a masked
message that S sends with a key δ = gr. The recipient R is supposed to know
a secret function σ such that σ(gr) = (Br)−1. Thus R may decrypt and recover
the initial message by: µ ∗ σ(δ) = m, since (m ∗ Br) ∗ (Br)−1 = m.

Usually, σ has the form: σ(gr) = grl, where the exponent l is a secret integer,
and the elements from the cyclic group 〈g〉 are written so that a computation of
l such that gl = B be infeasible. This has been the case for large cyclic group
〈g〉 in the multiplicative group F∗

q , considering the Zp-vector representation of
its elements, where p is the characteristic. But subexponential algorithms are
available by now for computing l, so one employs elliptic curve groups in order
to recover the same level of security. An alternative would be to use large cyclic
subgroups contained in di-associative loops (E, ∗), since the recovering of the
initial message by: (m ∗ Br) ∗ (Br)−1 = m is still valid.
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