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Axioms for trimedial quasigroups

Michael K. Kinyon, J.D. Phillips

Abstract. We give new equations that axiomatize the variety of trimedial quasigroups.
We also improve a standard characterization by showing that right semimedial, left
F-quasigroups are trimedial.
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1. Introduction

A quasigroup Q = (Q; ·, \, /) is a set Q with three binary operations ·, \, / :
Q × Q → Q satisfying the equations:

x\(x · y) = y (x · y)/y = x

x · (x\y) = y (x/y) · y = x.

Basic references for quasigroup theory are [1], [5], [6], [14].
A quasigroup is medial if it satisfies the identity

(M) xy · uv = xu · yv.

A quasigroup is trimedial if every subquasigroup generated by three elements is
medial. Medial quasigroups have also been called abelian, entropic, and other
names, while trimedial quasigroups have also been called triabelian, terentropic,
etc. (See Chapter IV of [6], especially p. 120, for further background.) The
classic Toyoda-Bruck theorem asserts that every medial quasigroup is isotopic to
an abelian group [15], [4]. This result was generalized by Kepka to trimedial
quasigroups: every trimedial quasigroup is isotopic to a commutative Moufang
loop [7].
There are two distinct, but related, generalizations of trimedial quasigroups.

The variety of semimedial quasigroups (also known as weakly abelian, weakly
medial, etc.) is defined by the equations

xx · yz = xy · xz(Sl)

zy · xx = zx · yx.(Sr)
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A quasigroup satisfying (Sl) (resp. (Sr)) is said to be left (resp. right) semimedial .
Every semimedial quasigroup is isotopic to a commutative Moufang loop [7]. (In
the trimedial case, the isotopy has a more restrictive form; see the cited references
for details.)
The variety of F-quasigroups was introduced by Murdoch in [13], the same

paper in which he introduced what we now call medial quasigroups. F-quasigroups
are defined by the equations

x · yz = xy · (x\x)z(Fl)

zy · x = z(x/x) · yx.(Fr)

A quasigroup satisfying (Fl) (resp. (Fr)) is said to be a left (resp. right) F-
quasigroup. Murdoch did not actually name the variety of F-quasigroups. We
thank one of the referees for suggesting that the earliest use of the name might
be in [2].
One among many links between these two generalizations of trimedial quasi-

groups is the following ([9, Proposition 6.2]).

Proposition 1.1. A quasigroup is trimedial if and only if it is a semimedial, left

(or right) F-quasigroup.

Together with Kepka, we have been investigating the structure of F-quasi-
groups, and have shown that every loop isotopic to an F-quasigroup is Moufang.
Full details will appear elsewhere [10]. As part of that investigation, we were led
to consider the following equations, which are similar in form to (Fl), (Fr):

x · yz = (x/x)y · xz(El)

zy · x = zx · y(x\x).(Er)

The main result of the present paper is the following.

Theorem 1.2. A quasigroup is trimedial if and only if it satisfies (El) and (Er).

Kepka [7], [8] showed that the variety of trimedial quasigroups is axiomatized
by the semimedial laws (Sl), (Sr), and by the equation (x ·xx) ·uv = xu · (xx · v).
Later [11] we showed that (Sl) is redundant. Theorem 1.2 offers a more symmetric
alternative.
As an auxiliary result, we will also use (El) and (Er) to obtain the following

improvement of Proposition 1.1.

Theorem 1.3. Let Q be a quasigroup. The following are equivalent:

1. Q is trimedial;
2. Q is a right semimedial, left F-quasigroup;
3. Q is a left semimedial, right F-quasigroup.

Our investigations were aided by the equational reasoning tool OTTER devel-
oped by McCune [12]. We thank T. Kepka for suggesting that (El), (Er) might
axiomatize an interesting variety of quasigroups; he was certainly correct.
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2. Proofs

Our strategy for proving Theorem 1.2 is to use Proposition 1.1: we will show
that a quasigroup satisfying (El), (Er) is a semimedial, F-quasigroup. First we
introduce some notation for local right and left unit elements in a quasigroup:

e(x) := x\x f(x) := x/x.

If Q = (Q; ·, \, /) is a quasigroup, then so are the left parastrophe Ql :=
(Q; \, ·, /op), the right parastrophe Qr := (Q; /, ·, \op), and the opposite para-
strophe Qop := (Q; ·op, /, \), where for a binary operation ∗, we use ∗op to de-
note the opposite operation. Note that (Ql)l = Q, (Qr)r = Q, (Qop)op = Q,
(Qop)l = (Qr)op, and (Qop)r = (Ql)op. For a more complete discussion of para-
strophes, including alternative notation conventions, see [1], [14].

We state the following obvious result formally for later ease of reference.

Lemma 2.1. Let Q = (Q; ·, \, /) be a quasigroup.

1. Q satisfies (Fl) if and only if Qop satisfies (Fr).
2. Q satisfies (Sl) if and only if Qop satisfies (Sr).
3. Q satisfies (El) if and only if Qop satisfies (Er).

Parts (1) and (2) of the following lemma are well-known, although the authors
have not been able to find a specific reference.

Lemma 2.2. Let Q = (Q; ·, \, /) be a quasigroup.

1. Q is a left F-quasigroup if and only if Ql is left semimedial.

2. Q is a right F-quasigroup if and only if Qr is right semimedial.

3. Q satisfies (El) if and only if Ql satisfies (El).
4. Q satisfies (Er) if and only if Qr satisfies (Er).

Proof: For (1): In Ql, (Sl) is e(x)\(y\z) = (x\y)\(x\z). Multiply on the left by
e(x), replace y with xy, and z with xz to get (xy)\(xz) = e(x)(y\z). Now replace
z with yz and multiply on the left by xy to get x · yz = xy · e(x)z, which is (Fl)
in Q. Since (Ql)l = Q, the converse also holds.

For (2): By part (1), (Fl) holds in Qop iff (Sl) holds in (Qop)l = (Ql)op. The
desired result now follows from Lemma 2.1.

For (3): In Ql, (El) is ((x/opx)\y)\(x\z) = x\(y\z). Multiply on the left by
f(x)\y, and replace z with yz to get x\(yz) = (f(x)\y)(x\z). Multiply on the
left by x, replace y with f(x)y, and z with xz to get f(x)y · xz = x · yz, which is
(El) in Q. Since (Ql)l = Q, the converse also holds.

For (4): By part (3), (El) holds in Qop iff (El) holds in (Qop)l = (Qr)op. The
desired result now follows from Lemma 2.1. �
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Lemma 2.3. Let Q be a quasigroup.

1. If Q satisfies (El), then f : Q → Q is an endomorphism of Q.
2. If Q satisfies (Er), then e : Q → Q is an endomorphism of Q.
3. If Q is a left F-quasigroup, then e : Q → Q is an endomorphism of Q.
4. If Q is a right F-quasigroup, then f : Q → Q is an endomorphism of Q.

Proof: In each case, it is enough to show that the multiplication is preserved.
For (1): f(x)f(y) · xy = f(x)x · f(y)y = xy, and so f(x)f(y) = (xy)/(xy) =

f(xy).
For (2): Since f : Q → Q is an endomorphism of Q iff e : Q → Q is an

endomorphism of Qop, this follows from part (1) and Lemma 2.1(3).
For (3): if (Fl) holds, then xy · e(x)e(y) = x · ye(y) = xy, and so e(x)e(y) =

(xy)\(xy) = e(xy) ([2, p. 38, equation (32)], [9, Lemma 4.2], [3]).
For (4): This follows from part (3) and Lemma 2.1(1). �

Lemma 2.4. Let Q be a quasigroup. If e : Q → Q or f : Q → Q is an
endomorphism of Q, then f(e(x)) = e(f(x)) for all x ∈ Q.

Proof: If f is an endomorphism, then f(e(x)) = f(x)\f(x) = e(f(x)), and the
case where e is an endomorphism is similar. �

Lemma 2.5. Let Q be a quasigroup.

1. If Q satisfies (El), then Q is a left F-quasigroup if and only if it is left
semimedial.

2. If Q satisfies (Er), then Q is a right F-quasigroup if and only if it is right
semimedial.

Proof: For (1): Assume Q satisfies (El). By Lemma 2.2(3), (El) holds in Ql.
We will prove the implication (Sl) =⇒ (Fl). Since this will also hold in Ql, it
will follow from Lemma 2.2(1) that the implication (Fl) =⇒ (Sl) will hold in Q.
Now if Q is left semimedial, then

xx · yz = xy · xz by (Sl)

= f(xy)x · (xy · z) by (El)

= (f(x)f(y) · x) · (xy · z) by Lemma 2.3

= (x · f(y)e(x)) · (xy · z) by (El)

= xx · (f(y)e(x) · (x\(xy · z))) by (Sl).

Cancelling and replacing z with e(x)z, we have

f(y)e(x) · (x\(xy · e(x)z)) = y · e(x)z

= f(y)e(x) · yz by (El).
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Cancelling, we obtain yz = x\(xy · e(x)z) or x · yz = xy · e(x)z, which is (Fl).
For (2): If Q satisfies (Er), then Qop satisfies (El) by Lemma 2.1(3). By part

(1), (Fl) and (Sl) are equivalent in Qop, and so (Fr) and (Sr) are equivalent in
Q by Lemma 2.1(1), (2). �

Lemma 2.6. A quasigroup satisfying (El), (Er) is an F-quasigroup.

Proof: We will show (El), (Er) =⇒ (Fl). Since this implication will also hold in
the opposite parastrophe (by Lemma 2.1(3)), (Fr) will follow from Lemma 2.1(1).
Thus we compute

x · yz = f(x)y · xz by (El)

= [f(x)e(f(x)) · x(x\y)] · xz

= [x · e(f(x))(x\y)] · xz by (El)

= [x · xz] · [e(f(x))(x\y) · e(xz)] by (Er)

= [x · xz] · [f(e(x))(x\y) · e(x)e(z)] by Lemmas 2.3 and 2.4

= [x · xz] · [e(x) · (x\y)e(z)] by (El).

Now xz · (x\y)e(z) = yz by (Er), and so

x · yz = [x · xz] · e(x)[(xz)\(yz)].

Now replace y with (xz · y)/z to obtain

x(xz · y) = [x · xz] · e(x)y.

Finally replace z with x\z to get

x · zy = xz · e(x)y,

which is (Fl). �

We can now prove our main result.

Proof of Theorem 1.2: Suppose Q is trimedial. Since each of (El) and (Er)
is a special case in three variables of the medial identity (M), these identities will
hold in Q. Indeed, fix a, b, c ∈ Q. Then the subquasigroup 〈a, b, c〉 generated by
{a, b, c} is medial. Taking x = f(a), y = a, u = b, v = c in (M), we obtain
a · bc = f(a)b · ac, while taking x = c, y = b, u = a, v = e(a) in (M) gives
cb · a = ca · (b · e(a)). Since a, b, c ∈ Q were chosen arbitrarily, we have (El)
and (Er).
Conversely, if Q satisfies (El) and (Er), then by Lemma 2.6, Q is an F-

quasigroup, and by Lemma 2.5, Q is semimedial. Proposition 1.1 completes the
proof. �
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Lemma 2.7. 1. A right semimedial, left F-quasigroup satisfies (Er).
2. A left semimedial, right F-quasigroup satisfies (El).

Proof: For (1): Suppose Q satisfies (Sr) and (Fl). Then

(xz · y) · e(xz)z = xz · yz by (Fl)

= xy · zz by (Sr)

= ((xy)/e(xz))e(xz) · zz

= ((xy)/e(xz))z · e(xz)z by (Sr).

Cancelling and using Lemma 2.3(3), we have xz · y = ((xy)/e(x)e(z))z. Now
x(y/e(z)) · e(x)e(z) = xy by (Fl), and so xz · y = x(y/e(z)) · z. Replacing y with
ye(z), we obtain xz · ye(z) = xy · z, which is (Er).
For (2): If (Sl) and (Fr) hold in Q, then (Sr) and (Fl) hold in Qop

(Lemma 2.1(1), (2)), and so (Er) holds in Qop by part (1). By Lemma 2.1(3),
(El) holds in Q. �

We now turn to our auxiliary result.

Proof of Theorem 1.3: Let Q be a right semimedial, left F-quasigroup. By
Lemma 2.7(1), (Er) holds. By Lemma 2.5(2), Q is an F-quasigroup. We will now
show that (Sl) holds. First, using (Sr), (Fl), and (Sr) again, we have

((xy)/z)e(x) · z2 = xy · e(x)z = x · yz = (x/z)y · z2.

Cancelling and dividing on the right by e(x), we obtain

(*) (xy)/z = ((x/z)y)/e(x).

Next we use (Sr), (Er), and (Sr) again to compute

((xy)/e(z))z · e(z)2 = xy · z = xz · ye(z) = ((xz)/e(z))y · e(z)2.

Cancelling, we obtain

(**) ((xy)/e(z))z = ((xz)/e(z))y.

Finally, we verify (Sl) as follows:

xy · xz = ((xy)/z)x · z2 by (Sr)

= [((x/z)y)/e(x)]x · z2 by (∗)

= [((x/z)x)/e(x)]y · z2 by (∗∗)

= (x2/z)y · z2 by (∗)

= x2 · yz by (Sr).
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Since we have shown that Q is a semimedial, F-quasigroup, it follows from Propo-
sition 1.1 that Q is trimedial.

On the other hand, if Q is a right semimedial, left F-quasigroup, then Qop
satisfies (Sl) and (Fr) by Lemma 2.1(1), (2). By the preceding argument, Qop is
a semimedial, F-quasigroup, and thus so is Q by Lemma 2.1(1), (2). Once again,
Proposition 1.1 completes the proof. �

In closing, we note that further investigations suggest themselves. For example,
it would be of interest to determine the structure of quasigroups that are only
assumed to satisfy (El), or, in view of Lemma 2.5, those satisfying (El), (Sl) and
(Fl). In this line we pose a couple of problems.

Problem 2.8. 1. Characterize the loop isotopes of quasigroups satisfying (El).
2. Characterize the loop isotopes of quasigroups satisfying (El), (Sl), and
(Fl).
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