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Subloops of sedenions

Benard M. Kivunge, Jonathan D. H Smith

Abstract. This note investigates sedenion multiplication from the standpoint of loop the-
ory. New two-sided loops are obtained within the version of the sedenions introduced by
the second author. Conditions are given for the satisfaction of standard loop-theoretical
identities within these loops.
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1. Introduction

One of the most mature parts of loop theory is the theory of Moufang loops.
Moufang loops trace their origins back to the primal examples given by various
loops of non-zero or unit-norm octonions (Cayley numbers). The octonions furnish
algebra structure on 8-dimensional Euclidean space, the Euclidean norm |x| being
multiplicative in the sense that

(1.1) |xy| = |x|.|y|

under octonion multiplication. For n-dimensional Euclidean space, multiplica-
tivity of the norm reduces to a question that has long been of interest to many
mathematicians: “Can the product of two sums of n squares be expressed as a
sum of n squares?” In other words:

(1.2) (a21 + a22 + · · ·+ a2n)(b
2
1 + b22 + · · ·+ b2n) = A21 +A22 + · · ·+A2n.

A famous 1898 theorem of Hurwitz [2], [3] shows that an algebra (i.e. with both
distributivities) has a multiplicative Euclidean norm only for n = 1, 2, 4 and 8.
In particular, the usual Cayley-Dickson process for starting from the reals R

and successively generating the complex numbers C, Hamilton’s quaternions H,
and the octonions K, each with multiplicative Euclidean norm, does not make
the Euclidean norm on 16-dimensional space multiplicative. In 1967 Pfister [5]

proved that for n = 2k, a product may be defined on Euclidean n-space such
that (1.2) holds. However, Pfister was not concerned with algebraic properties
of the product. Subsequently, there have been various multiplications defined
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on 16-dimensional real space with the intention of rendering the Euclidean norm
multiplicative (cf. [2, §6.11], [10]).
In [7, p. 132], the second author introduced the formula

(1.3)
(a+ bf)(c+ df) = if b = 0 then ac+ da.f

else (ab.cb−1 − bd) + (bc+ db−1.ab)f

for multiplication on 16-dimensional Euclidean space K⊕Kf . This multiplication
is not right distributive, but it is left distributive, and does make the Euclidean
normmultiplicative. Elements of the semi-algebra S obtained are called sedenions .
The octonions K form a subalgebra of S. The non-zero sedenions form a left loop
under multiplication (in the strong sense [8, Chapter I, §4.3] that includes a two-
sided identity).

The intention of the present note is to consider the sedenions from the point of
view of loop theory. Although the sedenions do not directly yield loops in the way
that Moufang loops are obtained from octonions, the left loop of non-zero sede-
nions does contain new two-sided subloops defined in Section 2 below as sedenion
extensions. These loops are constructed abstractly as extensions of subloops L of
the octonions. The paper examines the satisfaction by these extensions of various
standard loop-theoretical identities. For example, it turns out that they are all
flexible (Proposition 2.1) and power-associative (Corollary 4.2), even though the
full left loop of all non-zero sedenions is not itself flexible or power-associative.
Given the current lack of a good conceptual approach to the multiplication in the
sedenion extensions, the verifications of the identities are worked out in careful
detail.

2. Sedenion extensions

Let L be a multiplicative subloop of the non-zero octonions. Then its sedenion
extension L ⋊ S0 is the disjoint union L ∪ Lf within the sedenions. Elements of
this union are encoded as pairs (a, ε), with ε ∈ S0 = {1,−1}, by

a 7→ (a, 1), af 7→ (a,−1)

[7, (5.4)]. Specializing (1.3), the multiplication in the full sedenion extension
K∗ ⋊ S0 of the loop K∗ of all non-zero octonions is given by:

(x, 1)(y, 1) = (xy, 1);(2.1)

(x, 1)(y,−1) = (yx,−1);(2.2)

(x,−1)(y, 1) = (xy,−1);(2.3)

(x,−1)(y,−1) = (−xy, 1)(2.4)
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[7, Proposition 5.2].1 The sedenion extensions are certainly two-sided loops. Their
respective left and right divisions are given by:

(x, 1)\(y, 1) = (x\y, 1), (x, 1)/(y, 1) = (x/y, 1);(2.5)

(x, 1)\(y,−1) = (y/x,−1), (x, 1)/(y,−1) = (−x/y,−1);(2.6)

(x,−1)\(y, 1) = (−y/x,−1), (x,−1)/(y, 1) = (x/y,−1);(2.7)

(x,−1)\(y,−1) = (y/x, 1), (x,−1)/(y,−1) = (y\x, 1).(2.8)

Each sedenion extension L ⋊ S0 appears in an exact sequence

(2.9) 1 −→ L
j

−→ L ⋊ S0
p

−→ S0 −→ 1

of loops with j : x 7→ (x, 1) and p : (x, ε) 7→ ε.
Suppose that the identity

(2.10) a\1 = 1/a

holds in a two-sided loop L. Then the inverse a−1 of an element a of L is defined
to be the common value a−1 = a\1 = 1/a. A loop L is said to have the anti-
automorphic inverse property if (2.10) holds, and then

(2.11) (ab)−1 = b−1a−1

for all elements a, b of L.

Proposition 2.1 ([4]). Let L be a multiplicative subloop of the octonions. Then:

(1) L ⋊ S0 satisfies the flexible law a(ba) = (ab)a;
(2) L ⋊ S0 possesses the anti-automorphic inverse property.

Proof: (1) Since the image of the map j of (2.9) is diassociative, there are just
three cases to check:

(2.12)
[(x, 1)(y,−1)](x, 1) = (yx,−1)(x, 1) = (yxx,−1)

= (yxx,−1) = (x, 1)(yx,−1) = (x, 1)[(y,−1)(x, 1)];

(2.13)
[(x,−1)(y, 1)](x,−1) = (xy,−1)(x,−1) = (−xy x, 1)

= (−x(xy), 1) = (x,−1)(xy,−1) = (x,−1)[(y, 1)(x,−1)];

1Note that (2.2) in [7] contains a typographical error: the second factor should read (y, 1).
To correct a misleading impression created by the wording of [7, Proposition 5.2], we would also
like to point out that the sequence (2.9) does not split.
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(2.14)
[(x,−1)(y,−1)](x,−1) = (−xy, 1)(x,−1) = (−xxy,−1)

= (−x(yx),−1) = (x,−1)(−yx, 1) = (x,−1)[(y,−1)(x,−1)].

(2) In a flexible loop a = 1a = a(a\1).a = a.(a\1)a ⇒ 1 = (a\1)a, so Part (1)
shows that the identity (2.10) holds in the sedenion extension L ⋊ S0. As above,
there are then three non-trivial cases of (2.11) to check, using (2.6) and (2.7):

(2.15)
((x,−1)(y, 1))−1 = (xy,−1)−1 = (−xy/|xy|2,−1)

= (y/|y|2, 1)(−x/|x|2,−1) = (y, 1)−1(x,−1)−1;

(2.16)
((x, 1)(y,−1))−1 = (yx,−1)−1 = (−yx/|xy|2, 1)

= (−y/|y|2,−1)(x/|x|2, 1) = (y,−1)−1(x, 1)−1;

(2.17)
((x,−1)(y,−1))−1 = (−xy, 1)−1 = (−yx/|xy|2, 1)

= (−y/|y|2,−1)(−x/|x|2,−1) = (y,−1)−1(x,−1)−1.
�

3. The main theorem

We begin with a preliminary observation required for the proof of the main
theorem. Recall that a loop is said to be abelian if it is both commutative and
associative, i.e. an abelian group.

Lemma 3.1. Each commutative multiplicative subloop of the octonions is asso-

ciative.

Proof: A commutative multiplicative subloop L of the octonions spans a com-
mutative subalgebra R of the octonions. This subalgebra R is a commutative,
alternative division ring. As such, it is associative [1, Lemma 6, p. 133]. Thus its
subreduct L is also associative. �

Theorem 3.2. Let L be a multiplicative subloop of the octonions. Then the
following statements are equivalent:

(1) L ⋊ S0 is a group;
(2) L ⋊ S0 has the right inverse property;
(3) L ⋊ S0 has the left inverse property;
(4) L ⋊ S0 satisfies the left alternative law a.ab = a2b;
(5) L ⋊ S0 satisfies the right alternative law ba.a = ba2;
(6) L is commutative;
(7) L is abelian.
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Proof: The implications (1) ⇒ (2), (4), (5) are immediate.

• (2) ⇒ (3) is a standard consequence of Proposition 2.1(2):

(a−1b−1)b = a−1 ⇒ a = [(a−1b−1)b]−1 = b−1(a−1b−1)−1 = b−1(ba).

• (3) ⇒ (6): Consider an element x of L. Recall that

(3.1) (x,−1)\(1, 1) = (−x/|x|2,−1).

Then for a further element y of L,

(3.2)
(−x/|x|2,−1)[(x,−1)(y, 1)] = (−x/|x|2,−1)(xy,−1)

= (xyx/|x|2, 1) = (xyx−1, 1).

If the left inverse property holds in L ⋊ S0, the L-component of the final term in
(3.2) has to equal y. Thus L is commutative.

• (4) ⇒ (6): Consider elements x, y of L. Then

(3.3) (x,−1)[(x,−1)(y, 1)] = (x,−1)(xy,−1) = (−xyx, 1),

while

(3.4) [(x,−1)(x,−1)](y, 1) = (−|x|2, 1)(y, 1) = (−|x|2y, 1).

If the left alternative law holds in L ⋊ S0, the L-components of the final terms of
(3.3) and (3.4) have to agree for all x, y in L. Now xyx = |x|2y ⇒ xyx−1 = y, so
that L is commutative.

• (5) ⇒ (6): This is similar to the proof that (4) ⇒ (6).

• (6) ⇒ (7): Apply Lemma 3.1.

• (7) ⇒ (1): Suppose that L is abelian. There are seven non-trivial cases of
associativity to consider in L ⋊ S0, arising whenever an S0-component ε, ζ, η in
the following equation is negative:

(x, ε)[(y, ζ)(z, η)] = [(x, ε)(y, ζ)](z, η).

The computations for these cases are as follows:

(3.5)
[(x, 1)(y, 1)](z,−1) = (xy, 1)(z,−1) = (zxy,−1)

= (zyx,−1) = (x, 1)(zy,−1) = (x, 1)[(y, 1)(z,−1)];
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(3.6)
[(x, 1)(y,−1)](z, 1) = (yx,−1)(z, 1) = (yxz,−1)

= (yzx,−1) = (x, 1)(yz,−1) = (x, 1)[(y,−1)(z, 1)];

(3.7)
[(x, 1)(y,−1)](z,−1) = (yx,−1)(z,−1) = (−yxz, 1)

= (−xyz, 1) = (x, 1)(−yz, 1) = (x, 1)[(y,−1)(z,−1)];

(3.8)
[(x,−1)(y, 1)](z, 1) = (xy,−1)(z, 1) = (xy z,−1)

= (x(yz),−1) = (x,−1)(yz, 1) = (x,−1)[(y, 1)(z, 1)];

(3.9)
[(x,−1)(y, 1)](z,−1) = (xy,−1)(z,−1) = (−xy z, 1)

= (−x(zy), 1) = (x,−1)(zy,−1) = (x,−1)[(y, 1)(z,−1)];

(3.10)
[(x,−1)(y,−1)](z, 1) = (−xy, 1)(z, 1) = (−xy z, 1)

= (−x(yz), 1) = (x,−1)(yz,−1) = (x,−1)[(y,−1)(z, 1)];

(3.11)
[(x,−1)(y,−1)](z,−1) = (−xy, 1)(z,−1) = (−zxy,−1)

= (−x(yz),−1) = (x,−1)(−yz, 1) = (x,−1)[(y,−1)(z,−1)].
�

4. Consequences of the theorem

The first consequence of Theorem 3.2 is negative.

Corollary 4.1. No sedenion extension loop can be a proper Moufang or Bol loop.

Proof: Moufang loops satisfy both inverse properties, while left or right Bol
loops satisfy the respective left or right inverse property [8, Chapter I, §§4.1–2].
Thus a sedenion extension satisfying a Moufang or Bol law would be a group.

�

On the positive side, the following result contrasts with the observation that
the full left loop of non-zero sedenions under (1.3) is not power-associative [7,
Proposition 5.1(i)].

Corollary 4.2. Each sedenion extension loop is power-associative.

Proof: Each element (x, ε) of a sedenion extension loop is an element of the
sedenion extension of the abelian group 〈x〉. By Theorem 3.2, this extension is
associative. �

Since each sedenion extension loop L ⋊ S0 is power-associative, it possesses
an exponent defined in the classical group-theoretical way as either 0 or else
the smallest positive integer n for which L ⋊ S0 satisfies the identity an = 1.
(Recall that a related concept of exponent for a general quasigroup in a variety
of quasigroups was defined in [6, Definition 5.2].) The next result shows how the
exponent of a multiplicative subloop of the octonions determines the exponent of
its sedenion extension.
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Proposition 4.3. Let L be a multiplicative subloop of the octonions.

(1) Suppose L has positive exponent n. Then the sedenion extension L ⋊ S0

has a positive exponent m which is the least common multiple lcm{4, n}
of 4 and n.

(2) Suppose L has exponent 0. Then the sedenion extension L ⋊ S0 also has
exponent 0.

Proof: (1) Suppose L⋊S0 satisfies ak = 1. First note (1,−1)2 = (−1, 1) 6= (1, 1)
and (1,−1)4 = (1, 1), so 4 | k. Also n | k, since L is a subloop of L ⋊ S0. In
other words, the exponent of L⋊S0 is either zero or a multiple of m. Conversely,
consider x ∈ L. Then xn = 1 ⇒ xm = 1 ⇒ |x|m = 1. Now (x, 1)m = (xm, 1) =
(1, 1). Also (x,−1)m = (|x|m, 1) since 4 | m, so (x,−1)m = (1, 1). Thus L ⋊ S0

does satisfy am = 1.

(2) If L has elements of infinite order, then so does L ⋊ S0, since it contains L as
a subloop. �

Remark 4.4. Note that since a sedenion extension L ⋊ S0 always contains an
element (1,−1) of exponent 4, it is never torsion-free. This contrasts with the
conjecture of [2, §7.4] that “the loop generated by n generic real octonions is in
fact the free Moufang loop on n generators”. (A related question of W. Taylor
[9] asks for the position in the interpretability lattice of the clone of continuous
operations on the 7-sphere. The corresponding conjecture would locate this clone
at the theory of Moufang loops.)

The final considerations concern commutativity of sedenion extensions.

Proposition 4.5. Let L be a multiplicative subloop of the octonions. Then the
sedenion extension L ⋊ S0 is commutative if and only if L is a multiplicative
subgroup of the reals.

Proof: If x and y are elements of a multiplicative subgroup L of the reals, then

(x, 1)(y,−1) = (yx,−1) = (yx,−1) = (y,−1)(x, 1)

and

(x,−1)(y,−1) = (−xy, 1) = (−xy, 1) = (−yx, 1) = (y,−1)(x,−1),

so the sedenion extension is commutative. Conversely, if x is an element of a
commutative sedenion extension L ⋊ S0, then

(−x, 1) = (1,−1)(x,−1) = (x,−1)(1,−1) = (−x,−1),

so x is real. �

To conclude, we obtain an analogue of Lemma 3.1.
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Corollary 4.6. A commutative sedenion extension loop is associative.

Proof: Suppose that a sedenion extension loop L ⋊ S0 is commutative. By
Proposition 4.5, L is a subgroup of the reals, and so abelian. The extension L⋊S0

then satisfies the equivalent conditions (1)–(5) of Theorem 3.2. In particular, it
is associative. �

Remark 4.7. Corollary 4.6 would be a more complete analogue of Lemma 3.1
if it were known that the only two-sided subloops of the multiplicative left loop
of non-zero sedenions appear either as subloops of the octonions, or as sedenion
extensions in the sense of this paper. At present, however, this problem is open.
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