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Rings of continuous functions vanishing at infinity

A.R. Aliabad, F. Azarpanah, M. Namdari

Abstract. We prove that a Hausdorff spaceX is locally compact if and only if its topology
coincides with the weak topology induced by C∞(X). It is shown that for a Hausdorff
space X, there exists a locally compact Hausdorff space Y such that C∞(X) ∼= C∞(Y ).
It is also shown that for locally compact spaces X and Y , C∞(X) ∼= C∞(Y ) if and only
if X ∼= Y . Prime ideals in C∞(X) are uniquely represented by a class of prime ideals in
C∗(X). ∞-compact spaces are introduced and it turns out that a locally compact space
X is∞-compact if and only if every prime ideal in C∞(X) is fixed. The existence of the
smallest ∞-compact space in βX containing a given space X is proved. Finally some
relations between topological properties of the space X and algebraic properties of the
ring C∞(X) are investigated. For example we have shown that C∞(X) is a regular ring
if and only if X is an ∞-compact P∞-space.

Keywords: σ-compact, pseudocompact, ∞-compact, ∞-compactification, P∞-space, P-
point, regular ring, fixed and free ideals

Classification: 54C40

1. Introduction

Throughout this article, the space X stands for a nonempty completely regular
Hausdorff space. We denote by C(X) (C∗(X)) the ring of all (bounded) real
valued continuous functions on the space X , ideals are assumed to be proper
ideals and the reader is referred to [7] for undefined terms and notations. Kohls
in [9] has proved that the intersection of all free maximal ideals in C∗(X) is
precisely the set C∞(X) consisting of all continuous functions f in C(X) which

vanish at infinity, in the sense that {x ∈ X : |f(x)| ≥ 1
n} is compact for each

n ∈ N. Kohls has also shown that the set CK(X) of all functions in C(X) with
compact support is the intersection of all the free ideals in C(X) and of all the free
ideals in C∗(X). CK(X) is an ideal of C(X) and it is easy to see that C∞(X) is
an ideal in C∗(X) but not in C(X), see also [4], [9] and 7D in [7]. In fact C∞(X)
is a subring of C(X) and topological spaces X for which C∞(X) is an ideal of
C(X) are characterized in [4]. Our main purpose in this article is the study of
the ring structure of C∞(X) and of the relations between topological properties
of the space X and algebraic properties of the ring C∞(X).
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This article consists of four sections. In Section 2, we will characterize locally
compact spaces X by the structure of the ring C∞(X). We will see that for
studying the ring C∞(X), it suffices to consider the topological space X to be a
locally compact space. It is shown that whenever X and Y are locally compact,
then C∞(X) ∼= C∞(Y ) if and only if X ∼= Y . This part of article is also presented
in ICM 2002, see [11]. Section 3 is devoted to the ideal structure of the ring C∞(X)
and to a new compactness concept, namely the ∞-compactness. In this section
prime ideals of C∞(X) are investigated and using a special class of prime ideals in
C∗(X), a unique representation for prime ideals of C∞(X) is given. ∞-compact
spaces are those spaces X for which CK(X) = C∞(X). We show that for a
locally compact space X , every prime ideal in C∞(X) is fixed if and only if X
is an ∞-compact space. The existence of the smallest ∞-compact space in βX
containing X is also proved in this section. We denote this smallest ∞-compact
space by ∞X and we call it the ∞-compactification of the space X . In the last
results of the Section 3, we have characterized the type of points in ∞X \X . We
have shown that every point in ∞X \ X is a non-P-point in βX . In Section 4,
the relations between algebraic properties of C∞(X) and topological properties
of the space X are studied. We have shown that the ring C∞(X) is regular if
and only if X is an ∞-compact P∞-space (a space X for which Z(f) is open for
every f ∈ C∞(X)). We will also observe that the ring C∞(X) has a finite Goldie
dimension if an only if the only open locally compact subsets of X are finite sets.
Finally, locally compact spaces X are characterized for which the ring C∞(X) is
a Baer ring or a p.p. ring.

The following proposition and its corollary are proved in [4]. They will be used
in the next sections.

Proposition 1.1. C∞(X) is an ideal in C(X) if and only if every open locally
compact subset of X is relatively pseudocompact. (A subset U of X is called
relatively pseudocompact if f(U) is bounded for all f ∈ C(X).)

Corollary 1.2. Let X be a locally compact Hausdorff space. Then C∞(X) is
an ideal in C(X) if and only if X is a pseudocompact space.

We also need the following lemma.

Lemma 1.3. No point of A ⊆ X has a compact neighborhood in X if and only
if f(A) = {0} for all f ∈ C∞(X).

Proof: If a ∈ A and f(a) 6= 0 for some f ∈ C∞(X), then there exists n ∈ N
such that 1n < |f(a)| and hence H = {x ∈ X : |f(x)| ≥ 1

n+1} is a compact
neighborhood of a, a contradiction. Now suppose that the point a has a compact
neighborhood H . Then there exists f ∈ C(X) such that f(a) = 1 and f(X \
intH) = {0}. Since for every n ∈ N we have {x ∈ X : |f(x)| ≥ 1

n} ⊆ H , the

closed set {x ∈ X : |f(x)| ≥ 1
n} is compact and hence f ∈ C∞(X). This proves

the converse. �
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For proof of the following proposition, see Corollary 3.6 in [12].

Proposition 1.4. Let A be a commutative algebra over the rationals with unity.
Let I be an ideal of A. Then an ideal D of I is a maximal ideal of I if and only
if D =M ∩ I for some maximal ideal M in A.

2. Characterization of locally compact spaces X by the ring C∞(X)

We recall that for any topological space X , the set of all continuous real valued
functions which vanish at infinity is a ring, which is denoted by C∞(X). In fact
for every f, g ∈ C∞(X), we have {x ∈ X : |f(x)+g(x)| ≥ 1

n} ⊆ {x ∈ X : |f(x)| ≥
1
2n} ∪ {x ∈ X : |g(x)| ≥ 1

2n} and {x ∈ X : |f(x)g(x)| ≥ 1
n} ⊆ {x ∈ X : |f(x)| ≥

1√
n
} ∪ {x ∈ X : |g(x)| ≥ 1√

n
}. By the following propositions and corollaries, for

studying the ring C∞(X), we may consider the space X to be a locally compact
space.

Proposition 2.1. For a Hausdorff space X , the following statements are equiv-
alent:

(1) X is locally compact;
(2) B = {X \ Z(f) : f ∈ C∞(X)} is a base for open sets in X ;
(3) the collection C∞(X) separates points from closed sets (i.e., whenever F
is a closed set in X and x0 /∈ F , then there exists f ∈ C∞(X) such that
f(x0) = 1 and f(F ) = {0}).

Proof: (1)→(2). Let G be an open set in X and x0 ∈ G. Then there exists
a compact set H such that x0 ∈ intH ⊆ H ⊆ G. Now define f ∈ C(X) with

f(x0) = 1 and f(X \ intH) = {0}. Since {x ∈ X : |f(x)| ≥ 1
n} ⊆ X \ Z(f) ⊆ H ,

{x ∈ X : |f(x)| ≥ 1
n} is compact, ∀n ∈ N, i.e., f ∈ C∞(X) and clearly x0 ∈

X \ Z(f) ⊆ G, i.e., B is a base for open sets in X .

(2)→(3). Is clear.

(3)→(1). For every open set G and x0 ∈ G, there exists f ∈ C∞(X) such that
f(X \G) = {0} and f(x0) = 1. Therefore x0 ∈ {x ∈ X : |f(x)| ≥ 1

n} ⊆ G and by

letting H = {x ∈ X : |f(x)| ≥ 1
2}, H is compact and x0 ∈ intH ⊆ H ⊆ G which

means that X is locally compact. �

Corollary 2.2. If X is a Hausdorff space, then X is locally compact if and only
if its topology coincides with the weak topology induced by C∞(X).

Proposition 2.3. For every Hausdorff space X , whenever C∞(X) 6= (0), then
there exists a locally compact space Y such that C∞(X) ∼= C∞(Y ). In fact the
space Y may be considered as a nonempty open locally compact subspace of X .

Proof: Let Y be the set of all points in X which have a compact neighborhood.
Clearly Y is a locally compact open subspace of X and since C∞(X) 6= (0),
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Y 6= ∅. We may also assume that Y 6= X , for otherwise X itself would be a locally
compact space. Define σ : C∞(X)→ C∞(Y ) by σ(f) = f |Y , ∀f ∈ C∞(X). Since
by Lemma 1.3, f(X \ Y ) = 0, evidently σ is a one to one function. σ is also
onto, for if g ∈ C∞(Y ), then we define g∗ : X → R such that g∗(x) = g(x),
∀x ∈ Y and g∗(x) = 0, ∀x ∈ X \ Y . To see the continuity of g∗, it is enough to
show that g∗ is continuous on the nonempty set X \ Y . Given x ∈ X \ Y and
ǫ > 0, the set {x ∈ Y : |g(x)| ≥ ǫ} is compact in Y and hence in X . Therefore
G = X \ {x ∈ Y : |g(x)| ≥ ǫ} = {x ∈ X : |g∗(x)| < ǫ} is an open set in X
and g∗(G) ⊆ (−ǫ, ǫ), i.e., g∗ is continuous at x ∈ X \ Y . On the other hand,

{x ∈ X : |g∗(x)| ≥ 1
n} = {x ∈ Y : |g(x)| ≥ 1

n} implies that g∗ ∈ C∞(X). Now
σ(g∗) = g, i.e., σ is onto. Finally, for every f, g ∈ C∞(X) it is easy to see that
σ(f + g) = σ(f) + σ(g) and σ(fg) = σ(f)σ(g), i.e., C∞(X) ∼= C∞(Y ). �

Proposition 2.4. If X is a completely regular Hausdorff space, then every max-
imal ideal of C∞(X) is fixed. In fact every maximal ideal of C∞(X) is of the
form Mx ∩ C∞(X), where Mx is a fixed maximal ideal in C(X) and the point x
has a compact neighborhood.

Proof: Since C∞(X) is the intersection of all free maximal ideals in C∗(X),
by Proposition 1.4, every maximal ideal in C∞(X) is of the form M∗

p ∩ C∞(X),
where p ∈ X and C∞(X) * M∗

p . But if C∞(X) ⊆ M∗
p for some p ∈ X , then

f(p) = 0 for all f ∈ C∞(X) and by Lemma 1.3, the point p has no compact
neighborhood. Hence if we consider A to be the set of all points of X which have
no any compact neighborhood, then the collection of all maximal ideals of C∞(X)
is {M∗

x ∩ C∞(X) : x ∈ X \ A}. On the other hand, M∗
x = C∗(X) ∩ Mx, for all

x ∈ X , see 4.7 in [7]. This implies that every maximal ideal of C∞(X) is of the
form Mx ∩ C∞(X), where x ∈ X \ A. �

By the above proposition, whenever X is locally compact, the only maximal
ideals of C∞(X) are of the form Mp ∩ C∞(X), where p ∈ X , i.e., we have a one-
to-one correspondence between X and the setM of all maximal ideals of C∞(X).
If M is equipped with the hull-kernel topology, then using this topological space,
as in [7, Theorem 4.9], we have the following theorem.

Theorem 2.5. Two locally compact spaces X and Y are homeomorphic if and
only if C∞(X) and C∞(Y ) are isomorphic.

We conclude this section by the following proposition which is evident by Corol-
lary 2.2 and the fact that every idempotent of C∞(X) is in CK(X). We recall
that a topological space X is said to be zero-dimensional if it has a base con-
sisting of open-closed sets. We refer the reader to [6] for more facts about the
zero-dimensional spaces.

Proposition 2.6. A Hausdorff space X is a locally compact zero-dimensional
space if and only if its topology coincides with the weak topology induced by the
set of idempotents of C∞(X).
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3. Prime ideals of C∞(X) and ∞-compact spaces

We devote this section to some important ideals related to C∞(X). Prime
ideals in C∞(X), the z-ideal Clσ(X), the ideal CK(X) and the ideal CR(X) =⋂

p∈υX\X Mp are important ideals related to C∞(X). First of all we show that
Clσ(X) is the smallest z-ideal in C(X) containing C∞(X). Next we will charac-
terize topological spaces X for which C∞(X) = CK(X) or C∞(X) = CR(X).
Studying the prime ideals of C∞(X) and characterization of the type of points in
the remainder ∞X \ X are the final parts of this section.

We need the following useful lemma which is also proved in [4].

Lemma 3.1. Let A be an open subset of X . Then A = X \ Z(f) for some
f ∈ C∞(X) if and only if A is a σ-compact locally compact subset of X .

Proof: Let A = X \ Z(f) for some f ∈ C∞(X). Then A =
⋃∞

n=1An, where

An = {x ∈ X : |f(x)| ≥ 1
n}. Since each An is compact, A is σ-compact. If x ∈ A,

there exists n0 ∈ N such that x ∈ {y ∈ X : |f(y)| > 1
n0

} ⊆ An0 . Thus we get

A is a locally compact subset of X and this proves the necessity. For sufficiency,
let A be a σ-compact locally compact subset of X . Then A =

⋃∞
n=1An, where

An is compact and An ⊆ intAn+1 for all n ∈ N, see [6, p. 250]. Now for each
n ∈ N, there exists fn ∈ C(X) such that f(X) ⊆ [0, 1], fn(An) = {1} and
fn(X \ intAn+1) = {0}. Then f =

∑∞
n=1 fn/2n is an element of C(X) by

the Weierstrass M -test. Clearly A = X \ Z(f). We claim that f ∈ C∞(X). Let
x0 /∈ An+1. Then f1(x0) = · · · = fn(x0) = 0 and so f(x0) ≤

1
2n+1

+· · · ≤ 1
2n < 1

n .

Therefore x0 /∈ {x ∈ X : |f(x)| ≥ 1
n}, and hence {x ∈ X : |f(x)| ≥ 1

n} ⊆ An+1

and so we get f ∈ C∞(X). �

In fact the collection of all the complement of σ-compact locally compact sub-
sets of X is a z-filter F in X containing Z[C∞(X)]. By the next proposition,
Z−1[F ] is the smallest z-ideal in C(X) containing C∞(X).

Proposition 3.2. Let

Clσ(X) = {f ∈ C(X) : X \ Z(f) is locally compact σ-compact}.

Then Clσ(X) is the smallest z-ideal in C(X) containing C∞(X) or Clσ(X) is all
of C(X).

Proof: If g ∈ C(X) and f ∈ Clσ(X), then X \ Z(fg) ⊆ X \ Z(f) and clearly
X \ Z(fg) is also locally compact σ-compact, i.e., fg ∈ Clσ(X). Since X \
Z(f + g) ⊆ (X \ Z(f)) ∪ (X \ Z(g)), we have f + g ∈ Clσ(X) for every f, g ∈
Clσ(X). Hence Clσ(X) is an ideal in C(X) and it is evident that Clσ(X) is a
z-ideal containing C∞(X). Now suppose that I is a z-ideal in C(X) such that
C∞(X) ⊆ I. If f ∈ Clσ(X), then X \ Z(f) is locally compact σ-compact and
hence by Lemma 3.1, there exists g ∈ C∞(X) such that Z(f) = Z(g). But
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g ∈ C∞(X) ⊆ I and I is a z-ideal, hence f ∈ I, i.e., Clσ(X) ⊆ I. We note that
Clσ(X) = C(X) if and only if X is a locally compact σ-compact space. �

We recall that CK(X) =
⋂

p∈βX\X O∗p
=

⋂
p∈βX\X Op and C∞(X) =⋂

p∈βX\X M∗p
, see 7E and 7F in [7]. Obviously CK(X) ⊆ C∞(X) and CK(X) =

C∞(X) if and only if every open locally compact σ-compact subset of X is con-
tained in a compact set in X , see [4, Proposition 2.1]. For convenience, whenever
CK(X) = C∞(X) we call X an ∞-compact space. For example, N and Q are
∞-compact spaces. Moreover, if we denote CR(X) =

⋂
p∈υX\X Mp, where υX

is the realcompactification of X , then C∞(X) ⊆ Clσ(X) ⊆ CR(X). To show the

second inclusion, C∞(X) =
⋂

p∈βX\X M∗p
implies that

C∞(X)C(X) = (
⋂

p∈βX\X
M∗p

)C(X) ⊆
⋂

p∈βX\X
M∗p

C(X).

Now by parts b and c of 7.9 in [7], M∗p
C(X) = C(X), ∀p ∈ βX \ υX and

M∗p
C(X) = Mp, ∀p ∈ υX ; hence C∞(X)C(X) ⊆

⋂
p∈υX\X Mp = CR(X).

Since Clσ(X) is the smallest z-ideal containing C∞(X) and CR(X) is also a z-
ideal containing C∞(X), we have Clσ(X) ⊆ CR(X).

The following proposition shows that for a locally compact space X , the equal-
ity C∞(X) = CR(X) is equivalent to pseudocompactness of the space X .

Proposition 3.3. For a locally compact space X , C∞(X) = CR(X) if and only
if X is a pseudocompact space.

Proof: If X is pseudocompact, then υX = βX , see 8A in [7]. Hence

C∞(X) =
⋂

p∈βX\X
M∗p

=
⋂

p∈υX\X
M∗p

=
⋂

p∈υX\X
Mp = CK(X).

Conversely, suppose that C∞(X) =
⋂

p∈υX\X Mp; then C∞(X) is an ideal in
C(X) and hence X should be a pseudocompact space by Corollary 1.2. �

Proposition 3.4. Every locally compact ∞-compact space is a pseudocompact
space.

Proof: Let X be a locally compact ∞-compact space. Then C∞(X) = CK(X),
i.e., C∞(X) is an ideal in C(X). Now by Corollary 1.2, X is a pseudocompact
space. �

Corollary 3.5. Every locally compact∞-compact and realcompact space is com-
pact.

The converse of the Proposition 3.4 is not true, i.e., not every locally compact
pseudocompact space has to be an ∞-compact space.
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Example 3.6. Consider the Tychonoff plank space T . T is a locally compact
pseudocompact space and the ring C(T ) has only one free maximal ideal M t,
where t = (ω1, ω) and M t 6= Ot, see 8.20 in [7]. Now since T is pseudocompact,

M∗t
=M t and C∞(X) =M∗t

6= Ot = CK(X), i.e., T is not ∞-compact.

Next we are going to characterize prime ideals of the subring C∞(X) via prime
ideals of C∗(X). By Spec(C∞(X)), we mean the set of all prime ideals of the
ring C∞(X). For details of spectrum for general rings, see [8]. The spectrum of
C∞(X) might be empty only whenever C∞(X) = (0).

Proposition 3.7. For every completely regular Hausdorff space X , we have

Spec(C∞(X)) = {P ∗ ∩ C∞(X) : P ∗ is a prime ideal in C∗(X)

and C∞(X) * P ∗}.

We have C∞(X) 6= (0) if and only if Spec(C∞(X)) 6= ∅.

Proof: For every prime ideal P ∗ in C∗(X) with C∞(X) * P ∗, clearly P ∗ ∩
C∞(X) is a prime ideal in C∞(X). Conversely, let P∞ be a prime ideal in C∞(X).
Then P∞ is an ideal in C∗(X), for if f ∈ P∞ and g ∈ C∗(X), then fg = f1/3f2/3g

and f2/3g ∈ C∞(X), f1/3 ∈ P∞ imply that fg ∈ P∞. Now suppose that P ∗ is
a prime ideal in C∗(X) minimal over P∞ and disjoint from the multiplicatively
closed set C∞(X) − P∞. It goes without saying that P∞ = P ∗ ∩ C∞(X). To
prove the second part of the proposition, suppose that C∞(X) 6= (0). Then
by Proposition 2.3, there exists a nonempty locally compact space Y such that
C∞(X) ∼= C∞(Y ). Hence it is enough to show that Spec(C∞(Y )) 6= ∅. If Y is
compact, then C∞(X) = C∗(X) and clearly Spec(C∞(X)) 6= ∅. Thus suppose
that Y is not compact. Since Y is locally compact and noncompact, then by 4D
in [7], CK(Y ) is free and hence no fixed prime ideal of C∗(Y ) contains C∞(Y ).
On the other hand, since C∞(Y ) is a free ideal of C∗(X), by Theorem 3.1 in [2],
C∞(Y ) intersects every nonzero ideal in C∗(X) nontrivially. Therefore if P ∗ is a
fixed prime ideal in C∗(Y ), we have C∞(Y ) * P ∗ and P ∗ ∩ C∞(Y ) 6= (0) which
means that Spec(C∞(Y )) contains at least a nonzero prime ideal. The converse
is evident, for C∞(X) = (0) implies that Spec(C∞(X)) = ∅. �

To establish a one-to-one correspondence between prime ideals of C∞(X) and
a subclass of prime ideals of C∗(X), we need the following lemma which will also
be used in Section 4.

Lemma 3.8. Let I be an ideal in a commutative ring R. Suppose that Q and P
are ideals in R and P is prime. If P does not contain I and Q ∩ I ⊆ P ∩ I, then
Q ⊆ P . In particular, if Q is also a prime ideal and Q ∩ I = P ∩ I, then P = Q.

Proof: Q ∩ I ⊆ P ∩ I implies that Q ∩ I ⊆ P . Since P is prime and I * P , we
have Q ⊆ P . �
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The following proposition shows that every prime ideal P∞ of C∞(X) has a
unique representation of the form P∞ = P ∗ ∩ C∞(X), where P ∗ is a prime ideal
in C∗(X).

Proposition 3.9. Let D be the collection of all prime ideals of C∗(X) which
do not contain C∞(X). Then Φ : D → Spec(C∞(X)) defined by Φ(P ∗) =
P ∗ ∩ C∞(X) is a one-to-one correspondence.

Proof: Using Proposition 3.7 and Lemma 3.8 the proof is evident. �

If X has no point with compact neighborhood, then C∞(X) = (0) is contained
in every ideal of C∗(X). Even if the space X is locally compact, many prime
ideals of C∗(X) may contain C∞(X). In the following proposition, we show that
whenever X is a locally compact ∞-compact space, then all free prime ideals of
C∗(X) contain C∞(X).

Proposition 3.10. A locally compact Hausdorff space X is ∞-compact if and
only if every prime ideal in C∞(X) is fixed.

Proof: Let X be an ∞-compact space and P∞ be a prime ideal in C∞(X).
By Proposition 3.7, there exists a prime ideal P ∗ in C∗(X) such that P∞ =
P ∗ ∩ C∞(X), where C∞(X) * P ∗. P ∗ is not free, for otherwise C∞(X) =
CK(X) ⊆ P ∗, by ∞-compactness of X and 4D in [7], a contradiction. Hence
P ∗ is fixed and therefore P∞ is fixed too. Conversely suppose that every prime
ideal in C∞(X) is fixed but X is not ∞-compact, i.e., C∞(X) 6= CK(X). Hence
there exists f ∈ C∞(X) such that f /∈ CK(X). Now consider the prime ideal P

∗

in C∗(X) containing CK(X) but not f . Since X is locally compact, then by 4D
in [7], CK(X) is free, so P ∗ is free. Since C∞(X) * P ∗, P∞ = P ∗ ∩ C∞(X) is
a prime ideal in C∞(X) by Proposition 3.7. Now CK(X) ⊆ P ∗ ∩ C∞(X) = P∞
implies that P∞ is also free which contradicts our hypothesis. �

Remark 3.11. C∞(X) may be contained in no prime ideal of C(X). In fact this
happens if and only if X is a locally compact σ-compact space. To see this, let
P be a prime ideal in C(X) such that C∞(X) ⊆ P . Thus there exists a maximal
ideal M in C(X) such that C∞(X) ⊆ M . Since Clσ(X) is the smallest z-ideal
containing C∞(X), Clσ(X) ⊆ M by Proposition 3.2, which implies that Clσ(X)
is an ideal in C(X). By definition of the ideal Clσ(X), this shows that X is not
locally compact or X is not σ-compact. Conversely, suppose that X is either
not locally compact or not σ-compact. Then Clσ(X) is an ideal of C(X). Now
Clσ(X) is contained in a maximal ideal of C(X). Clearly, that maximal ideal
which is also a prime ideal in C(X) contains C∞(X).

C∞(X) may contain a prime ideal of C∗(X). If P ∗ is a prime ideal in C∗(X)
and P ∗ ⊆ C∞(X), then P ∗ ⊆

⋂
x∈βX\X M∗x

and since every prime ideal in

C∗(X) is contained in a unique maximal ideal in C∗(X), C∞(X) = M∗x
, where

βX \ X = {x}. This shows that C∞(X) contains a prime ideal of C∗(X) if and
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only if the cardinal number of the remainder βX \ X is 1. In this case C∞(X)
itself is a maximal ideal in C∗(X).

It is time to show the existence of the smallest ∞-compact space in βX con-
taining the space X . To avoid the confusion, we denote the ideals Mp and Op

in C(X) by Mp(X) and Op(X), respectively. The corresponding ideals in C∗(X)
are also denoted by M∗p

(X) and O∗p
(X).

Theorem 3.12. Let {Yα}α∈S be a collection of ∞-compact spaces such that
X ⊆ Yα ⊆ βX , ∀α ∈ S. Then Y =

⋂
α∈S Yα is also an ∞-compact space.

Proof: First suppose thatX ⊆ T ⊆ βX and define the map ϕ : C∗(X)→ C∗(T )
by ϕ(f) = fβ |T (denote fβ |T by fT ). It is clear that ϕ is an isomorphism. More-

over, for every p ∈ βX , we have ϕ(O∗p
(X)) = O∗p

(T ) and ϕ(M∗p
(X)) =M∗p

(T ).

To see this let ϕ(f) ∈ ϕ(O∗p
(X)), where f ∈ O∗p

(X). Then p ∈ intβX Z(fβ) =

intβX Z(fT )β and hence fT ∈ O∗p
(T ) implies that ϕ(O∗p

(X)) ⊆ O∗p
(T ). Since

ϕ is an isomorphism, similarly ϕ−1(O∗p
(T )) ⊆ O∗p

(X) and hence ϕ(O∗p
(X)) =

O∗p
(T ). The proof of ϕ(M∗p

(X)) = M∗p
(T ) is similar. More generally, when-

ever A ⊆ βX we have also ϕ(O∗A
(X)) = O∗A

(T ) and ϕ(M∗A
(X)) = M∗A

(T ).
Now for every α ∈ S, let ϕα : C

∗(Y ) → C∗(Yα) be an isomorphism defined by

ϕα(f) = fYα , ∀f ∈ C∗(Y ). By the above argument we have

CK(Y ) = O∗βY \Y

(Y ) = O∗βY \∩Yα
(Y ) = O∗

S
(βYα\Yα)

(Y ) =
⋂

α∈S

O∗βYα\Yα
(Y )

=
⋂

α∈S

ϕ−1
α (O

∗βYα\Yα
(Yα)) =

⋂

α∈S

ϕ−1
α (CK(Yα)) =

⋂

α∈S

ϕ−1
α (C∞(Yα))

=
⋂

α∈S

ϕ−1
α (M

∗βYα\Yα
(Yα)) =

⋂

α∈S

M∗βYα\Yα
(Y ) =M∗

S
(βYα\Yα)

(Y )

=M∗βY \∩Yα
(Y ) = C∞(Y ).

�

Corollary 3.13. For every completely regular Hausdorff space X , there is an
smallest ∞-compact space in βX containing X .

Proof: By Theorem 3.12, this smallest ∞-compact space is the intersection of
all ∞-compact spaces in βX containing X . �

We conclude this section by the following lemmas and proposition which cha-
racterize the type of points in ∞X \X . First we note that, if X ⊆ Y ⊆ βX , then
a point p ∈ βX is said to be a P-point with respect to Y if Op(Y ) = Mp(Y ). In
case Y = X , we apply Op = Mp instead of Op(X) = Mp(X) and briefly we say
that p is a P-point.
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Lemma 3.14. Suppose that p ∈ βX and X ⊆ Y ⊆ βX . Then for every f ∈
C∗(X), f ∈ Op(X) if and only if fY ∈ Op(Y ).

Proof: We consider ϕ
Y
: C∗(X)→ C∗(Y ) defined by ϕ

Y
(f) = fY , ∀f ∈ C∗(X).

As was pointed out in the proof of Theorem 3.12, ϕ
Y
(M∗p

(X)) = M∗p
(Y ) and

ϕ
Y
(O∗p

(X)) = O∗p
(Y ). Hence for every f ∈ C∗(X), ϕ

Y
(f) = fY ∈ Op(Y ) ∩

C∗(Y ) = O∗p
(Y ) if and only if f ∈ ϕ−1

Y
(O∗p

(Y )) = O∗p
(X) which is equivalent

to f ∈ Op(X). �

Lemma 3.15. Suppose that p ∈ βX and X ⊆ Y ⊆ βX . If p is a P-point with
respect to Y , then it is also a P-point with respect to X .

Proof: We suppose that f ∈ Mp(X) and consider g = f2

1+f2
. Hence Z(f) =

Z(g) and therefore g ∈ Mp(X) ∩ C∗(X). Thus p ∈ clβX Z(f) = clβX Z(g) ⊆

clβX (Z(g
Y )) implies that gY ∈ Mp(Y ) = Op(Y ) and by Lemma 3.14, g ∈ Op(X).

Hence f ∈ Op(X), i.e., p is a P-point with respect to X . �

Proposition 3.16. If p◦ ∈ ∞X \ X , then p◦ is a non-P-point with respect to
∞X and hence it is a non-P-point with respect to βX .

Proof: We put Y = ∞X and T = Y \ {p◦}. Thus T is not ∞-compact and
therefore there exists f ∈ C∞(T ) − CK(T ). For every p ∈ βY \ Y = βX \
∞X ⊆ βX \ T = βT \ T we have fβ(p) = 0. However, if we let g = fY , then

gβ(p) = fβ(p) = 0, ∀p ∈ βY \ Y and hence g ∈ C∞(Y ) implies that g ∈ CK(Y ).

Therefore p ∈ intβX Z(gβ) = intβX Z(fβ), ∀p ∈ βY \ Y and hence f ∈ O∗p
(T ),

∀p ∈ (βT \ T ) \ {p◦}. Now f /∈ O∗p◦
(T ) since f /∈ CK(T ), and by Lemma 3.14,

g = fY /∈ Op◦(Y ). But g(p◦) = fβ(p◦) = 0 and hence g ∈ Mp◦(Y ), i.e., p◦ is not
a P-point with respect to Y . Finally, by Lemma 3.15, p◦ is not also a P-point
with respect to βX . �

Corollary 3.17. If for a topological space X , we put

Π = {p ∈ βX \ X : p is a P-point in βX}

then ∞X ⊆ βX \ Π. Moreover if βX \ Π ⊆ Y ⊆ βX , then Y is an ∞-compact
space containing ∞X .

4. Relations between algebraic properties of C∞(X) and topological
properties of X

In this section we present topological characterizations of some algebraic prop-
erties of the ring C∞(X). We will characterize topological spaces X for which
the ring C∞(X) is a regular ring, has a finite Goldie dimension, a p.p. ring and
a Baer ring. First of all we consider C∞(X) to be a regular ring. A ring R is
called regular if for every a ∈ R, there exists b ∈ R with a = a2b. A completely
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regular Hausdorff space X is said to be a P-space if every Gδ-set (zero-set) in X
is an open set. It is well-known that C(X) is a regular ring if and only if X is
a P-space, see Theorem 14.29 and 4J in [7]. Whenever Z(f) is open for every
f ∈ C∞(X), we call X a P∞-space. The following theorem shows that C∞(X)
is a regular ring if and only if X is an ∞-compact P∞-space.

Theorem 4.1. The following statements are equivalent:

(1) C∞(X) is a regular ring;
(2) every open locally compact σ-compact set in X is compact;
(3) ∀f ∈ C∞(X), X \ Z(f) is compact;
(4) X is an ∞-compact P∞-space;
(5) ∀p ∈ X , Mp ∩ C∞(X) = Op ∩ CK(X).

Proof: (1)→(2). By Lemma 3.1, every open locally compact σ-compact set
is of the form X \ Z(f) for some f ∈ C∞(X). Since C∞(X) is regular, there
exists g ∈ C∞(X) such that f2g = f . Now f(fg − 1) = 0 implies that {x :
(fg)(x) 6= 1} = Z(f), i.e., Z(f) is open. On the other hand, g(x) = 1

f(x)
for

every x ∈ X \Z(f) and hence g(x) ≥ 1
N , where N is an upper bound for |f | (note

that every member of C∞(X) is bounded). Therefore

X \ Z(f) ⊆ {x ∈ X : |g(x)| ≥
1

N
} = AN .

Since X \ Z(f) is closed and AN is compact, X \ Z(f) is also compact.

(2)→ (3)→ (4)→ (5). Evident.

(5)→ (1). (5) implies that for every f ∈ C∞(X), Z(f) is open and X \ Z(f)
is compact. Now for every f ∈ C∞(X), we define g(x) = 0 for x ∈ Z(f) and

g(x) = 1
f(x)

for x ∈ X \Z(f). By pasting lemma, g ∈ C(X) and {x ∈ X : |g(x)| ≥
1
n} ⊆ X \ Z(f) implies that {x ∈ X : |g(x)| ≥ 1

n} is compact, i.e., g ∈ C∞(X)
and f2g = f means that C∞(X) is regular. �

Remark 4.2. Clearly every P-space is a P∞-space but every P∞-space is not
necessarily a P-space. For example let S be a P-space and consider the space
X , the free union of spaces S and Q (Q with usual topology). By Lemma 1.3,
for every f ∈ C∞(X), we have f(Q) = 0 and since S is a P-space, Z(f) is open
∀f ∈ C∞(X), i.e., X is a P∞-space. But Q is not a P-space and hence X is not
a P-space either.

Proposition 4.3. Let X be a locally compact Hausdorff space. If X is a P∞-
space, then it is also a P-space.

Proof: If X is a P∞-space, then M∗
x ∩ C∞(X) = O∗

x ∩ C∞(X), ∀x ∈ X . Since
M∗

x is prime in C∗(X), then by Lemma 3.8, either M∗
x = O∗

x or C∞(X) ⊆ O∗
x.

But C∞(X) ⊆ O∗
x does not happen, for if K and H are compact neighborhoods of
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x such that K ⊆ intH , then define g ∈ C(X) with g(K) = {1} and g(X \ intH) =
{0}. Since X \ Z(g) ⊆ H , we have g ∈ CK(X) ⊆ C∞(X) but g /∈ O∗

x. Hence
M∗

x = O∗
x, ∀x ∈ X and therefore X is a P-space. �

Corollary 4.4. Let X be a locally compact Hausdorff space. Then C∞(X) is a
regular ring if and only if X is finite.

Proof: IfX is finite, then clearly C∞(X) is a regular ring. Conversely, if C∞(X)
is a regular ring, then by Theorem 4.1, X is an ∞-compact P∞-space and hence
it is a P-space by Proposition 4.3. Now according to Proposition 3.4, X is a
pseudocompact P-space which should be finite by 4K in [7]. �

Next we characterize spaces X for which the ring C∞(X) has a finite Goldie
dimension. Before doing this, we need to characterize uniform ideals and essential
ideals in C∞(X). A nonzero ideal I in a commutative ring R is called essential if
it intersects every nonzero ideal nontrivially, and it is called uniform if any two
nonzero ideals contained in I intersect nontrivially. In [2, Proposition 1.1], it is
shown that the ideal I in C(X) is uniform if and only if it is minimal, i.e., I is
generated by an idempotent e ∈ C(X) such that X \ Z(e) is singleton. In [2,
Proposition 3.1], it is also shown that an ideal E in C(X) is essential if and only
if intX ∩Z[E] = ∅, i.e.,

⋂
Z[E] is nowhere dense. By the following proposition,

analogous criteria hold for essential ideals and uniform ideals in C∞(X). First we
need the following lemma.

Lemma 4.5. Let f, g ∈ C∞(X).

(a) If there exists n0 ∈ N such that {x ∈ X : |g(x)| < 1
n0

} ⊆ Z(f), then f is

a multiple of g in C∞(X).
(b) If |f | ≤ |g|r for some r > 1, then f is a multiple of g in C∞(X).

Proof: (a) We define h(x) = f(x)/g(x) for |g(x)| ≥ 1
2n0
and h(x) = 0 for

|g(x)| ≤ 1
2n0
. Clearly h ∈ C(X) and f = gh. But for every n ∈ N, we have

{x ∈ X : |h(x)| ≥
1

n
} ⊆ {x ∈ X : |f(x)| ≥

1

2n0n
}

which implies that {x ∈ X : |h(x)| ≥ 1
n} is compact for any n ∈ N, i.e., h ∈

C∞(X).
(b) By problem 1D in [7], there exists h ∈ C(X) such that f = gh. Now

|gh| ≤ |g|r implies that {x ∈ X : |h(x)| ≥ 1
n} ⊆ {x ∈ X : |g(x)|r−1 ≥ 1

n} and
hence h ∈ C∞(X). �

Proposition 4.6. (a) An ideal E in C∞(X) is essential if and only if
⋂

Z[E]
is nowhere compact (i.e.,

⋂
Z[E] does not contain any nonempty compact

neighborhood).
(b) An ideal I in C∞(X) is uniform if and only if I = (f) for some f ∈

C∞(X), where X \ Z(f) is a singleton.
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Proof: (a) Suppose E is an essential ideal in C∞(X) and B =
⋂

Z[E] is not
nowhere compact. Then there exists a compact set A with A ⊆ B and intA 6= ∅.
Let a ∈ intA and define f ∈ C(X) such that f(X \ intA) = {0} and f(a) = 1.

Hence {x ∈ X : |f(x)| ≥ 1
n} ⊆ A implies that {x ∈ X : |f(x)| ≥ 1

n} is compact,
i.e., f ∈ C∞(X). Now if there exists g ∈ C∞(X) such that g ∈ (f) ∩ E, then
Z(f) ⊆ Z(g) implies that X \ Z(g) ⊆ X \ Z(f) ⊆ A ⊆ B ⊆ Z(g) and hence
g = 0 which contradicts the essentiality of E in C∞(X). Conversely, let

⋂
Z[E]

be nowhere compact, 0 6= f ∈ C∞(X) and a ∈ X \Z(f). Then there exists n ∈ N
such that |f(a)| ≥ 1

n and hence a is in the compact set {x ∈ X : |f(x)| ≥ 1
n}.

Since
⋂

Z[E] is nowhere compact, there exists b ∈ {x ∈ X : |f(x)| ≥ 1
n} \

⋂
Z[E]

which implies that there is g ∈ E, such that g(b) 6= 0 and hence 0 6= fg ∈ (f)∩E,
i.e., E is essential in C∞(X).

(b) Let I be a uniform ideal in C∞(X) and f ∈ I. First we show that X \Z(f)
is a singleton. Suppose that x0, y0 ∈ X \ Z(f) and x0 6= y0. By Lemma 3.1,
X \ Z(f) is a locally compact subspace of X and hence there exist two disjoint
compact neighborhoods G and H in X \ Z(f) of points x0 and y0 respectively.
Since X \ Z(f) is open in X , G and H are also compact neighborhoods in X .
Now we define two functions g, h ∈ C(X) such that g(x0) = 1 = h(y0) and

g(X \ intG) = {0} = h(X \ intH). Since {x ∈ X : |g(x)| ≥ 1
n} ⊆ G and G

is compact, {x ∈ X : |g(x)| ≥ 1
n} is also compact, i.e., g ∈ C∞(X). Similarly,

h ∈ C∞(X). Now consider the principal subideals (fg) and (fh) of I. Since I is a
uniform ideal, there exists 0 6= k ∈ (fg)∩(fh) and hence there exists z ∈ X \Z(g)
with k(z) 6= 0. Now kg = 0 contradicts k(z)g(z) 6= 0 and therefore X \ Z(f) is
a singleton, say X \ Z(f) = {x0}. Next we show that for every g ∈ I, we have
also X \ Z(g) = {x0}. Let X \ Z(g) = {y0} and y0 6= x0. For the principal
subideals (f) and (g) of I, we have (f) ∩ (g) = (0), for if h ∈ (f) ∩ (g), then
Z(f) ∪ Z(g) = X ⊆ Z(h) implies that h = 0. This contradicts the uniformity
of I and hence X \ Z(g) = {x0}. Therefore we have shown that there exists an
isolated point x0 ∈ X such that X \ Z(f) = {x0}, ∀f ∈ I. Finally, suppose

that f, g ∈ I and f(x0) = α. Then there exists n ∈ N such that |α| ≥ 1
n and

hence {x ∈ X : |f(x)| < 1
n} ⊆ Z(g) which implies that g is a multiple of f by

Lemma 4.5. This shows that I = (f). The converse is evident. �

It is well-known that if a ring R has a finite Goldie dimension, then there exists
an integer n > 0 such that any direct sum of nonzero ideals in R has always m
terms, where m ≤ n and there is a direct sum of uniform ideals with n terms
which is essential in R, see [8] and [10].

Proposition 4.7. C∞(X) has a finite Goldie dimension if and only if every open
locally compact set in X is finite.

Proof: If C∞(X) = (0), then every locally compact set in X is empty. Now
suppose that C∞(X) 6= (0) has a finite Goldie dimension and let G be a locally
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compact open set in X . Hence there exists n > 0 such that the direct sum
of n uniform ideals I1, I2, . . . , In in C∞(X) is an essential ideal E in C∞(X).
By Proposition 4.6, there is an isolated point xi ∈ X and fi ∈ Ii such that
Ii = (fi), where X \ Z(fi) = {xi}, for i = 1, 2, . . . , n. This implies that

⋂
Z[I] =

X \ {x1, x2, . . . , xn} and again by Proposition 4.6, X \ {x1, x2, . . . , xn} does not
contain any nonempty compact neighborhood. Thus G∩(X\{x1, x2, . . . , xn}) = ∅
and hence G ⊆ {x1, x2, . . . , xn}, i.e., G is finite. The converse is obvious. �

Corollary 4.8. If X is a locally compact Hausdorff space, then C∞(X) has a
finite Goldie dimension if and only if X is finite.

Finally we characterize the locally compact spaces X for which C∞(X) is a
p.p. ring or a Baer ring. A topological space X is called extremally (basically)
disconnected if each open (cozero) set in X has an open closure. A commutative
ring R is a p.p. (Baer) ring if for any a ∈ R (S ⊆ R), Ann(a) (Ann(S)) is the
principal ideal generated by an idempotent. In [1] and [3], it is shown that X is
basically (extremally) disconnected if and only if C(X) is a p.p. (Baer) ring.

Theorem 4.9. Let X be a locally compact space.

(a) C∞(X) is a p.p. ring if and only if X is a basically disconnected compact
space.

(b) C∞(X) is a Baer ring if and only if X is an extremally disconnected
compact space.

Proof: (a) Let C∞(X) be a p.p. ring. Then for every 0 6= f ∈ C∞(X), there
exists an idempotent e ∈ C∞(X) such that Ann(f) = (e). Therefore X \ Z(e) ⊆
intZ(f). We show thatX\Z(e) = intZ(f). Let x ∈ intZ(f) but x /∈ X\Z(e) and
define g ∈ C(X) such that g(X \ intK) = {0} and g(x) = 1, whereK is a compact
neighborhood of x contained in intZ(f)∩Z(e). Hence g ∈ C∞(X) and gf = 0 but
g /∈ (e), for Z(e) * Z(g) (g(x) = 1, e(x) = 0), a contradiction. This implies that
X \Z(e) = intZ(f) and hence Z(e) = clX(X \Z(f)). Now if we take f ∈ CK(X),
then Z(e) and X \Z(e) are compact, i.e., X is compact. We have also shown that
for every f ∈ C∞(X), intZ(f) is closed. Since X is compact, C∞(X) = C(X)
and hence for every f ∈ C(X), intZ(f) is closed, i.e., X is basically disconnected.
Conversely, if X is a compact space, then C∞(X) = C(X) and since X is basically
disconnected, C∞(X) is a p.p. ring by [1, Lemma 3].
(b) If C∞(X) is a Baer ring, then it is p.p. ring and hence by part (a), X is

compact, i.e., C∞(X) = C(X). Now part (b) is well-known for compact spaces,
see [5]. �

Corollary 4.10. Let X be a locally compact non-compact space. Then C∞(X)
is never a p.p. (Baer) ring.
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