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Non-autonomous implicit integral equations

with discontinuous right-hand side

Giovanni Anello, Paolo Cubiotti

Abstract. We deal with the implicit integral equation

h(u(t)) = f( t ,

Z
I

g(t, z)u(z) dz) for a.a. t ∈ I,

where I := [0, 1] and where f : I × [0, λ]→ R, g : I × I → [0,+∞[ and h : ] 0,+∞ [→ R.
We prove an existence theorem for solutions u ∈ Ls(I) where the contituity of f with
respect to the second variable is not assumed.
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1. Introduction

Let I := [0, 1] and J := [0, λ], with λ > 0. Let us first consider the implicit
integral equation

(1) h(u(t)) = f
(

∫

I

g(t, z)u(z) dz
)

for a.a. t ∈ I,

where f : J → R, g : I × I → [0,+∞ [ and h : ]0,+∞ [→ R. Recently, in [4],
an existence theorem for solutions u ∈ L∞(I) of equation (1) has been proved,
where, unlike other recent results in the field, the continuity of the function f is not
assumed. More precisely, f is assumed to be a.e. equal to a function f∗ : J → R

such that the set
{x ∈ J : f∗ is discontinuous at x}

has null Lebesgue measure. It is immediate to check that such a function f can
be discontinuous at each point of the set J .
For the special case where h is the identity mapping, the latter result has

been later extended to the non-autonomous version of problem (1), that is to the
equation

(2) u(t) = f
(

t ,

∫

I
g(t, z)u(z) dz

)

for a.a. t ∈ I,
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where f : I × J → R (see Theorem 1 of [6]). For this latter problem, the above
assumption (which specifies what kind of discontinuity is allowed for f) has the
following form: there exists a function f∗ : I × J → R and a set E ⊆ J , with
null Lebesgue measure, such that f( · , x) is measurable for each x in a countable
dense subset of J and, for a.a. t ∈ I, one has

(3)
{

x ∈ J : f∗(t, · ) is discontinuous at x
}

∪
{

x ∈ J : f∗(t, x) 6= f(t, x)
}

⊆ E.

It was also proved that none of the two sets on the left hand side of (3) can depend
on t.
At this point, it is natural to consider the implicit non-autonomous integral

equation

(4) h(u(t)) = f
(

t ,

∫

I

g(t, z)u(z) dz
)

for a.a. t ∈ I,

(which contains equations (1) and (2) as special cases), and to ask whether it is
possible to extend to this latter problem the existence results of [4] and [6]. Our
effort in this paper goes exactly in such a direction. Indeed, our aim is to prove
the following result (where m denotes the Lebesgue measure on the real line and
“int” stands for “interior”).

Theorem 1. Let I := [0, 1] and J := [0, λ], with λ > 0. Let s ∈ ]1,+∞],
A ⊆ ]0,+∞[ an interval, h : A → R a continuous functions. Let f : I × J → R,

g : I × I → [0,+∞[ , β ∈ Ls(I), φ0 ∈ Lj(I), with j ≥ s′ and j > 1, φ1 ∈ Ls′(I),
and let P be a countable dense subset of J . Assume that:

(i) there exist a function f∗ : I × J → R and two sets E1, E2 ⊆ J , with E2
closed and m(E1∪E2) = 0, such that for each x ∈ P the function f∗( · , x)
is measurable and for a.a. t ∈ I one has

(5)
{

x ∈ J : f∗(t, x) 6= f(t, x)
}

⊆ E1

and

(6)
{

x ∈ J : f∗(t, · ) is discontinuous at x
}

⊆ E2 ;

(ii) inth−1(z) = ∅ for all z ∈ inth(A);
(iii) if one puts

v(t) := ess infx∈J f(t, x), z(t) := ess supx∈J f(t, x),

then for a.a. t ∈ I one has

(7) [v(t), z(t)] ⊆ h(A) and sup h−1([v(t), z(t)]) ≤ β(t);
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(iv) one has

0 < ‖φ0‖Ls′ (I) ≤
λ

‖β‖Ls(I)
;

(v) for each t ∈ I, the function g(t, ·) is measurable;
(vi) for a.a. z ∈ I, the function g(· , z) is continuous in I, differentiable in ]0, 1[

and

g(t, z) ≤ φ0(z), 0 <
∂g

∂t
(t, z) ≤ φ1(z) for all t ∈ ]0, 1[ .

Then there exists a solution û ∈ Ls(I) to equation (4).

Theorem 1 partially extends the main results of [4] and [6] to problem (4). Such
an extension is not full since it is assumed, in addition, that the set E2 is closed.
The reader can easily check that such a function f can be discontinuous (with
respect to the second variable) at each point x ∈ J . In particular, our assumption
is weaker than the usual Carathéodory condition assumed in the literature (in
this connection, the reader can see for instance [3], [7], [8], [10] and the references
therein; in particular, we refer to [10] and to the references therein for motivations
for studying equation (4)). The proof of Theorem 1 will be given in Section 3,
while in Section 2 we shall fix some notations and give some preliminary technical
results.

2. Notations and preliminary results

As before, m denotes the usual Lebesgue measure over the real line R. More-
over, we denote by L(A) (resp., B(A)) the family of all Lebesgue (resp., Borel)
measurable subsets of the set A. In the sequel, the word “measurable” will stand
for “Lebesgue measurable”. Also, we denote by A and coA the closure and the
closed convex hull of the set A, respectively.
If p ∈ [1,+∞], we denote by p′ the conjugate exponent of p. As usual, we

denote by Lp(I) the space of all (equivalence classes of) measurable functions
u : I → R such that

∫

I
|u(t)|p dt < +∞ if p < +∞,

ess supt∈I |u(t)| < +∞ if p = +∞,

with the usual norm

‖u‖Lp(I) :=

(
∫

I

|u(t)|p dt

)
1

p

if p < +∞,

‖u‖L∞(I) := ess supt∈I |u(t)| if p = +∞.
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Moreover, we denote by C0(I) the space of all continuous functions v : I → R.

From now on, we denote by X the space {0, 1}N endowed with the product
topology, and we put

D :=
{

{an} ∈ X : an = 0 for infinitely many n
}

∪
{

{1n}
}

({1n} denoting the sequence which has each term equal to 1),

C :=
{

{an} ∈ X : {a2n} ∈ D and {a2n−1} ∈ D
}

,

H :=
{

s ∈ [0, 1] : s =
p

2m
, with p,m ∈ N and p ≤ 2m

}

∪
{

0
}

,

Ω := (I \H)× (J \ λH).

Finally, let ϕ : X → I × J be the function defined by putting, for each {an} ∈ X ,

ϕ ({an}) =
(

∞
∑

n=1

a2n
2n

, λ
∞
∑

n=1

a2n−1
2n

)

.

The following lemma follows easily by well-known facts and can be checked directly
by the reader.

Lemma 2. The function ϕ is continuous in X and its restriction ϕ|C : C → I×J
is a bijection. Moreover, the function (ϕ|C )

−1 : I × J → C is continuous at each
point (t, x) ∈ Ω.

For the definitions and the basic facts about multifunctions, we refer the reader
to [2], [14]. Here we only recall that if Y and S are nonempty sets and F : Y →
2S is a multifunction, then a function f : Y → S is called a selection of F if
f(x) ∈ F (x) for all x ∈ Y . The following result comes directly from the proof
of Lemma 2 of [19] (for the definition and the basic properties of 0-dimensional
spaces, the reader is referred to [9]).

Lemma 3. Let Y and S be two metric spaces, and assume that Y is 0-dimen-
sional. Let G : Y → 2S be a multifunction with nonempty and complete values,
and let M ⊆ Y a given set. If G is lower semicontinuous at each point of Y \M ,
then there exists a selection s : Y → S of G which is continuous at each point of
Y \M .

Lemma 4. Let S be a metric space, let V ⊆ I × J and B ⊆ I × J be two
given sets (with B 6= ∅), and F : B → 2S be a multifunction with nonempty and
complete values. Assume that F is lower semicontinuous at each point of B \ V .
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Then there exists a selection g : B → S of F which is continuous at each point
of the set (B ∩ Ω) \ V .

Proof: Let us put for simplicity ϕC := ϕ|C , and let Y := ϕ−1C (B). Then the

space Y is 0-dimensional. Let G : Y → 2S be the multifunction defined by
putting, for each {an} ∈ Y ,

G({an}) = F (ϕ({an})).

Since ϕ is continuous in X , G is lower semicontinuous at each point of Y \ϕ−1(V ).
By Lemma 3, there exists a selection s : Y → S of G which is continuous at each
point of Y \ ϕ−1(V ). For each (t, x) ∈ B, let us put

g(t, x) := s (ϕ−1C (t, x)).

At this point, it is immediate to check that g satisfies the conclusion. �

The following lemma follows at once from the proof of Lemma 2.3 of [1].

Lemma 5. Let Y and S be metric spaces, with S separable, F : Y → 2S a
multifunction with nonempty values, {un} a dense sequence in S, and y0 ∈ Y .
Let d denotes the distance in S. Then one has:

(a) if F is lower semicontinuous at y0, then for each u ∈ S the function
y ∈ Y → d(u, F (y)) is upper semicontinuous at y0;

(b) if for each n ∈ N the function y ∈ Y → d(un, F (y)) is upper semicontin-
uous at y0, then F is lower semicontinuous at y0.

Lemma 6. Let T ∈ L(I), let f : T × J → R be a function and E ⊆ J a given
set. Assume that:

(i) f is L(T )⊗ B(J)-measurable;
(ii) for each t ∈ T one has

{

x ∈ J : f(t, · ) is not lower semicontinuous at x
}

⊆ E ;

(iii) infT×J f > −∞.

Then, for each ε > 0 there exists K ∈ L(T ) such that m(T \ K) ≤ ε and the
function f |K×J is lower semicontinuous at each point (t, x) ∈ K × (J \ E).

Proof: Without loss of generality we can assume that f(t, x) ≥ 0 for all (t, x) ∈
T × J . For each n ∈ N, let fn : T × J → [0,+∞[ be the function defined by
putting, for each (t, x) ∈ T × J ,

fn(t, x) := inf
y∈J

[

n |x− y|+ f(t, y)
]

.



422 G.Anello, P.Cubiotti

Of course, for each n ∈ N and each (t, x) ∈ T × J one has fn(t, x) ≤ f(t, x).
Consequently, the function f∗ : T × J → [0,+∞[ defined by

f∗(t, x) := sup
n∈N

fn(t, x)

satisfies the inequality

(8) f∗(t, x) ≤ f(t, x) for all (t, x) ∈ T × J.

Now, let us observe the following facts.

(a) For each n ∈ N and each x ∈ J , the function fn( · , x) is measurable. This
follows from Lemma III.39 of [5], since the function

(t, y)→ n |x− y|+ f(t, y)

is L(T )⊗ B(J)-measurable.

(b) For each n ∈ N and each t ∈ T , the function fn(t, · ) is n-Lipschitzian
over J . Indeed, for each x, z ∈ J one has

fn(t, x) ≤ inf
y∈J

[

n |x− z|+ n |z − y|+ f(t, y)
]

= n |x− z|+ fn(t, z),

hence the claim follows easily.

(c) One has

(9) f∗(t, x) = f(t, x) for all (t, x) ∈ T × (J \ E).

To see this, choose any (t, x) ∈ T × (J \ E) and η > 0. Since the function f(t, · )
is lower semicontinuous at x, there exists δ > 0 such that for each y ∈ J with
|x− y| < δ one has

f(t, y) > β := f(t, x)− η.

Fix n∗ > β/δ. Then, for each y ∈ J one has

{

n∗ |x− y|+ f(t, y) ≥ f(t, y) > β if |x− y| < δ

n∗ |x− y|+ f(t, y) ≥ n∗ δ + f(t, y) > β + f(t, y) ≥ β if |x− y| ≥ δ.

It follows that fn∗(t, x) ≥ β, hence the claim follows.
Now, choose any ε > 0. By Theorem 2 of [15], for each n ∈ N there exists a

set Kn ∈ L(T ) such that

m(T \Kn) ≤
ε

2n
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and the function fn|Kn×J is continuous. If we put K :=
⋂

n∈N
Kn, then K ∈

L(T ), m(T \K) ≤ ε and the function f∗|K×J is lower semicontinuous. Fix any
point (t∗, x∗) ∈ K × (J \ E), and let us show that the function f |K×J is lower
semicontinuous at (t∗, x∗). To this aim, let γ > 0. By the lower semicontinuity of
f∗|K×J , there exists a neighborhood U of (t

∗, x∗) in K × J such that

f∗(t∗, x∗)− γ < f∗(t, x) for all (t, x) ∈ U.

By (8) and (9), it follows that

f(t, x) ≥ f∗(t, x) > f∗(t∗, x∗)− γ = f(t∗, x∗)− γ for all (t, x) ∈ U,

as desired. �

Lemma 7. Let T ∈ L(I), let S be a separable metric space, F : T × J → 2S a
multifunction with nonempty values and E ⊆ J a given set. Assume that:

(i) F is L(T )⊗ B(J)-measurable;
(ii) for each t ∈ T one has

{

x ∈ J : F (t, · ) is not lower semicontinuous at x
}

⊆ E.

Then, for each ε > 0 there exists a set K ∈ L(T ) such that m(T \K) ≤ ε and the
multifunction F |K×J is lower semicontinuous at each point (t, x) ∈ K × (J \E).

Proof: Let ρ be an equivalent distance over S such that ρ ≤ 1, and let {yn} be
a dense sequence in S. By Proposition 13.2.2 of [14], for each y ∈ S the function
ρ(y, F (·, ·)) is L(T ) ⊗ B(J)-measurable. Moreover, by Lemma 5, for each t ∈ T
and each y ∈ S one has that

{

x ∈ J : ρ(y, F (t, · )) is not upper semicontinuous at x
}

⊆ E.

Fix ε > 0. For each n ∈ N, applying Lemma 6 to the function −ρ(yn, F (·, ·)), we
have that there exists Kn ∈ L(T ) such that

m(T \Kn) ≤
ε

2n

and the function
ρ(yn, F (·, ·))|Kn×J

is upper semicontinuous at each point (t, x) ∈ Kn × (J \ E). Putting K :=
⋂

n∈N
Kn, we have that m(T \K) ≤ ε and for each n ∈ N the function

ρ(yn, F (·, ·))|K×J

is upper semicontinuous at each point (t, x) ∈ K × (J \ E). By Lemma 5 our
claim follows. �
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Lemma 8. Let S be a separable metric space, F : I × J → 2S a multifunction
with nonempty complete values, E ⊆ J a given set. Assume that:

(i) F is L(I) ⊗ B(J)-measurable;
(ii) for each t ∈ I one has

{

x ∈ J : F (t, · ) is not lower semicontinuous at x
}

⊆ E.

Then, there exists a selection φ : I × J → S of F such that:

(a) for a.a. t ∈ I, one has

{

x ∈ J : φ(t, · ) is discontinuous at x
}

⊆ E ∪ λH ;

(b) for each x ∈ J \ (E ∪ λH), the function φ( · , x) is measurable.

Proof: By Lemma 7, the interval I can be partitioned into a sequence of mea-
surable sets {Kn} and in one negligible set Y such that for each n ∈ N the multi-
function F |Kn×J is lower semicontinuous at each point (t, x) ∈ Kn × (J \E). By
Lemma 4, for each n ∈ N there exists a function gn : Kn × J → S such that

gn(t, x) ∈ F (t, x) for all (t, x) ∈ Kn × J

and gn is continuous at each point (t, x) ∈
[

Kn × (J \ E)
]

∩ Ω. For each t ∈ Y ,
let ht : J → S be any selection of the multifunction F (t, · ). Now, let the function
φ : I × J → S be defined by putting, for each (t, x) ∈ I × J ,

φ(t, x) =

{

gn(t, x) if t ∈ Kn

ht(x) if t ∈ Y.

Of course, φ is a selection of F . To show conclusion (a), choose t∗ ∈ I \ (Y ∪H),
and let n ∈ N be such that t∗ ∈ Kn. Since t

∗ /∈ H , we have that gn : Kn ×J → S
is continuous at each point (t∗, x) with x ∈ J \ (E ∪ λH). Hence, we have that

{

x ∈ J : gn(t
∗, · ) is discontinuous at x

}

⊆ E ∪ λH.

Since one has φ(t∗, · ) = gn(t∗, · ), (a) follows. To show (b), fix x̂ ∈ J \ (E ∪ λH ).
Observe that for each n ∈ N the function gn : Kn × J → S is continuous at each
point (t, x̂) such that t ∈ Kn \H . It follows that gn( · , x̂) : Kn → S is continuous
at each point t ∈ Kn \H , hence the function gn( · , x̂)|Kn\H , being continuous, is

measurable. Since H and Y are negligible, the conclusion follows. �
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3. Proof of Theorem 1

Without loss of generality we can assume that (5), (6) and (7) hold for all t ∈ I.
Moreover, we can assume j < +∞.
Firstly, let us show that v(t) and z(t) are measurable in I. Indeed, by assump-

tion (i) it is not difficult to check that for each t ∈ I one has

(10) v(t) = inf
x∈J\E2

f∗(t, x) , z(t) = sup
x∈J\E2

f∗(t, x) .

Again by (i), the set P ∩ (J \ E2) is dense in J \ E2 and countable. Hence, the
function f∗|I×(J\E2) is L(I)⊗ B(J \ E2)-measurable by the Lemma at p. 198 of

[15]. By Lemma III.39 of [5] our claim follows.
Let l : I → R be any measurable function such that

(11) v(t) ≤ l(t) ≤ z(t) for all t ∈ I ,

and let f̂ : I × J → R be defined by

f̂(t, x) =

{

f∗(t, x) if x /∈ E2

l(t) if x ∈ E2.

Since E2 is closed, (6) implies that for each t ∈ I one has

(12)
{

x ∈ J : f̂(t, · ) is discontinuous at x
}

⊆ E2.

Moreover, the function f̂ is L(I) ⊗ B(J)-measurable and by (10) and (11), one
has

(13) v(t) ≤ f̂(t, x) ≤ z(t) for all (t, x) ∈ I × J.

Now, observe that by (ii) and by Theorem 2.4 of [18] the function h is induc-
tively open. That is, there exists a set Y ∈ B(A) such that h|Y is open and
h(Y ) = h(A). It follows that the multifunction T : h(A)→ 2Y defined by

T (s) = h−1(s) ∩ Y

is lower semicontinuous in h(A) with nonempty values. Let G : I × J → 2Y be
defined by

G(t, x) = T (f̂(t, x)) = h−1(f̂(t, x)) ∩ Y

(G is well defined by (7) and (13)). Then G is L(I) ⊗ B(J)-measurable and, by
(12), for all t ∈ I one has

{

x ∈ J : G(t, · ) is not lower semicontinuous at x
}

⊆ E2.
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Consequently, the multifunction

(14) (t, x) ∈ I × J → G(t, x)

is L(I)⊗ B(J)-measurable and for each t ∈ I one has

{

x ∈ J : G(t, · ) is not lower semicontinuous at x
}

⊆ E2.

By Lemma 8, there exists a selection k : I×J → R of the multifunction (14) such
that for a.a. t ∈ I one has

(15)
{

x ∈ J : k(t, · ) is discontinuous at x
}

⊆ E2 ∪ λH,

and for each x ∈ J \ (E2∪λH) the function k( · , x) is measurable. For each t ∈ I,
let us put

α(t) := inf h−1([v(t), z(t)]).

By the continuity of h and by (7) and (13) we get

(16) k(t, x) ∈ h−1(f̂(t, x)) for all (t, x) ∈ I × J

and
0 < α(t) ≤ k(t, x) ≤ β(t) for all (t, x) ∈ I × J.

Let T1 ⊆ I be such that m(T1) = 0 and (15) holds for all t ∈ I \ T1. Let
ψ : I × R → R be defined by

ψ(t, x) =

{

k(t, x) if (t, x) ∈ (I \ T1)× (J \ E2)

β(t) otherwise.

Then, for each t ∈ I \ T1 one has

(17)
{

x ∈ R : ψ(t, · ) is discontinuous at x
}

⊆ E2 ∪ λH.

Let P ′ := λ ((Q∩I)\H) (where Q denotes the set of rational real numbers). Then
P ′ is countable and dense in J . If P ′′ is any countable dense subset of R\J , then
the set P ∗ := P ′∪P ′′ is countable and dense in R, and by the above construction
the function ψ(·, x) is measurable for all x ∈ P ∗.
Thus, all the assumptions of Proposition 2 of [6] are satisfied. Consequently,

the multifunction F : I × R → R defined by

F (t, x) :=
⋂

m∈N

co
(

⋃

y∈P ′′

|y−x|≤ 1m

{ψ(t, y)}
)
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satisfies the conclusion of the same proposition. Moreover, by the above construc-
tion it follows that

(18) F (t, x) ⊆ [α(t), β(t)] for all (t, x) ∈ I × R.

Now we want to apply Theorem 1 of [17], with T = I, X = Y = R, p = s, q = j′,
V = Ls(I), Ψ(u) = u, r = ‖β‖Ls(I), ϕ ≡ +∞,

Φ(u)(t) =

∫

I

g(t, z)u(z) dz,

and F : I ×R → 2R as defined above. To this aim, we argue as in [6] and observe
the following facts.

(a) Φ(Ls(I)) ⊆ C0(I). This follows from our assumptions (v) and (vi) and the
Lebesgue’s dominated convergence theorem.

(b) If v ∈ Ls(I) and {vk} is a sequence in Ls(I), weakly convergent to v in

Lj′(I), then the sequence {Φ(vk)} converges to Φ(v) strongly in L1(I). This
follows by Theorem 2 at p. 359 of [13], since g is j-th power summable in I × I
(note that g is measurable on I× I by the classical Scorza-Dragoni’s theorem; see
[20] or also [12]).

(c) By (18), the function

ω : t ∈ I → sup
x∈R

d(0, F (t, x))

belongs to Ls(I) and ‖ω‖Ls(I) ≤ ‖β‖Ls(I) (for what concerns the measurability

of ω, we refer to [17]).

Thus, all the assumptions of Theorem 1 of [17] are satisfied. Consequently
there exist û ∈ Ls(I) and a set T2 ⊆ I, with m(T2) = 0, such that

(19) û(t) ∈ F ( t ,Φ(û)(t)) for all t ∈ I \ T2.

We now want to prove that û(t) is a solution of equation (4). To this aim, we
argue as in [6]. Firstly, let us observe that by (18) we have

(20) û(t) ∈ [α(t), β(t)] for all t ∈ I \ (T1 ∪ T2).

For each t ∈ I, put

γ(t) := Φ(û)(t) =

∫

I
g(t, z) û(z) dz.
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By assumptions (iv) and (v), taking into account (20), for each t ∈ I we get

0 ≤ γ(t) ≤ ‖φ0‖Ls′(I) · ‖û‖Ls(I) ≤
λ

‖β‖Ls(I)
· ‖β‖Ls(I) = λ,

hence γ(I) ⊆ J . By assumptions (v) and (vi), by (20) and by Lemma 2.2 at p. 226
of [16], we get

γ′(t) =

∫

I

∂g

∂t
(t, z) û(z) dz > 0 for all t ∈ ]0, 1[ .

In particular, the continuous function γ is strictly increasing in I. Hence, by
Theorem 2 of [21] the function γ−1 is absolutely continuous. Let us put

S := γ−1
[

(E1 ∪ E2 ∪ λH) ∩ γ(I)
]

.

By assumption (i) and by Theorem 18.25 of [11] we have that m(S) = 0. Let

S∗ := S ∪ T1 ∪ T2.

For each t ∈ I \S∗, since γ(t) ∈ J \ (E1 ∪E2 ∪ λH) and taking into account (17),
(19) and Proposition 2 of [6], we get

û(t) ∈ F ( t , γ(t)) = {ψ( t , γ(t))} = {k( t , γ(t))}.

Consequently, taking into account (5) and (16), for each t ∈ I \ S∗ we get

h(û(t)) = f̂( t , γ(t)) = f∗( t , γ(t)) = f( t , γ(t)) = f( t ,

∫

I

g(t, z) û(z) dz).

This ends our proof. �

Remark. The example at p. 245 of [4] shows that in the assumption (vi) of
Theorem 1 one cannot assume that

0 ≤
∂g

∂t
(t, z) ≤ φ1(z).

Moreover, the Example at the end of [6] shows that none of the sets E1, E2 in
the statement of Theorem 1 can depend on t.
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