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A characterization of holomorphic
germs on compact perfect sets

GRACIELA CARBONI, ANGEL LAROTONDA

Abstract. Let K C C be a perfect compact set, E a quasi-complete locally convex space
over C and f: K — E a map. In this note we give a necessary and sufficient condition
— in terms of differential quotients — for f to have a holomorphic extension on a
neighborhood of K.
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Introduction

Assume that K C R™ is a compact set, E is a locally convex space (briefly:
LC-space) over R or C, and f : K — FE is a map. It is well known that f has a
C™ extension if and only if there exists a (non uniquely determined) sequence of
maps fn : K — FE, with fo = f, such that it satisfies appropriate conditions (see
[5] and [6]).

In this note we propose a similar criterion for the analytic case, that is, we
characterize in terms of an adequate boundedness condition on well specified
differential quotients, those maps f : K — F (where K C C is a compact perfect
set) which admit a holomorphic extension f : U — E to some neighborhood U
of K (Proposition 2.9).

In order to formulate it, we need to fix some notations. Let U C C be an
open set and F a quasi-complete LC-space. We let H (U, E) denote the space
of all holomorphic maps u : U — E, with the topology of uniform convergence
on compact subsets of U (for the definitions and basic properties see [1], [3]). If
V C U is another open set, then there is an obvious restriction map H (U, E) —
H(V,E). For a non-void compact set K C C, we let U(K) denote the directed
set of all open neighborhoods of K. Clearly we obtain a basis (a cofinal subset)
of U(K) by taking the sets W,.(K) = {z € C: d(z,K) < r} for r > 0 (or else
r=2%n> 1). Denote by O(K, FE) the space of holomorphic E-valued germs

no

on K, that is the LC-space lim, H(W;-(K), E).
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1. Assume that K is a compact perfect set. Let C'(K, E) denote the space of all
continuous maps f : K — E, endowed with the topology of uniform convergence.
It is clear that the natural continuous map O(K, E) — C(K, E) is injective. The
main aim of this note is to characterize the image of this map.

In the sequel we use the notations B(a,e) = {z € C : |z —a| < €} and
B(a,e)={z€C:|z—a| <¢€}.

Technical Lemma 1.1. Let K C C be a compact perfect set. Let eg > 0 and
let f: K — E be a map. Then the following assertions are equivalent:
() there exists eg > 0, such that for all a € K, there exists fq € H(B(a,¢p), E)
such that fq(z) = f(2) for all z € K N B(a,€p);

(ii) there exist €1 > 0 and g € H(W¢, (K), E) such that g(z) = f(z) forall z € K.

PROOF: It is clear that (ii)=-(i). Let us see that (i)=-(ii). It suffices to show that
if a,b € K and z € B(a,e9/4) N B(b,eg/4), then fo(z) = fp(2). In fact, in this
case, KNB(a,eq/2)NB(b, e0/2) # B, which implies that KNB(a,ey/2)NB(b,e9/2)
is an infinite set, since K is a perfect set. From this, it follows that fq(2) = fp(2).

O

If K satisfies suitable conditions, then we can replace differential quotients by
ordinary derivatives in the statement of the criterion. For instance this is the
case if K is uniformly C'-regular. Recall the definition: we say that a perfect
set X is C''-connected when for every a,b € X there exists a piecewise C'1-curve
I' C X, such that a,b € T. We can define then the geodesic distance D(a,b) in
the obvious way. We recall that for an open set X this distance is equivalent to
the usual distance d(a,b) = |a — b|. Since this fails for general X we say that
a compact perfect set is uniformly Cl-regular if D is equivalent to d (see [2] for
a similar and more general definition).

On this line of work we use later the following estimate:

Lemma 1.2. Let K C C be a compact set, and I' C K a piecewise C'-curve
which connects the points a,z € K. Then

[ e e gl < g

PROOF: We can assume z = 0. If we parametrize I' by arc length ¢ : [0, L] — K,
then |¢/(s)| = 1. So,

t
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and then
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2. In the sequel we consider an LC-space E and a infinite compact set K C C.
For each r € N we define K(") = {(zq,...,2,_1) € K" : x; # x; for every i # j}.

Definition 2.1. We define “differential quotients” A”: Ef — B indue-
tively for r > 0 by

(i) A9 is the identity map,

Gi) AT () (zo,. .., xry1) = —EL(AT(f) (20, . ., )= AT(f) (21, ..., 2rp1)).

To—Tr+1

For the real case, some of the following properties can be found in [4].

Lemma 2.2. The operator A" has the following properties:

(a) A" is C-linear;

(b) A™(f) (@0, 2r) =11 kg flak) Hj;ék ﬁ ;

(c) AT(f

(d) Let F be a LC-space. If T : E — F is a linear map, then T(A"(f)) =
A"(T o f) for each r > 0;

(e) Let E; (i = 1,2) and F be LC-spaces, and f € Ef, g € EX. If B :
E1 x E; — F is a bilinear map, and B(f,g) : K — F is the map z —
B(f(2),9(=)), then Y75 _o (3) BIA*(f)(xo. ..., 2x), A F(g) (g, .. 7)) =
AT(B(.fv g))(IOa e ax’f‘);

(f) Assume that E is an algebra. Then,

) is symmetric in (zq, ..., Zr);

AT’(fg)(xo7 .. .,:Er) = Z (;) Ak(f)(:po, .. .,Ik)AT—k(g)(xlw N -,IT)-

k=0

PRrROOF: The statements (a)—(e) can be proved by induction on r and (f) is an
immediate consequence of (e). O

Definition 2.3. We define
AT(f)(E D)

r!

={f € EX: for each r > 0 the set A"(f)(K"*Y) is bounded in E}.

B(K,E)={f e EX . for each r > 0 the set is bounded in E}

Proposition 2.4. The following properties hold:

(a) B(K,E) is a vector subspace of EX. Moreover, if E is an algebra, then
B(K, E) is a subalgebra of EX;

(b) If K is a perfect set and f € B(K,E), then each A™(f): Kt — E is
uniformly continuous.
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PROOF: (a) is obvious. For (b), let p be a continuous seminorm in E and let
M, = sup{p(AT(f)(zo, ..., 2r)) : (z0,...,x) € KU} Tt suffices to prove
that

1) Ao wr) = A ()0, yr)) < ;fl’PZm—y]

This is clear when a; # y; for every pair (4, 7). In fact, in this case,

p(A"(F) (o, ... zr) = A™(f)(wo, -, ur))

S ZP(AT(JC)(CU], s Ty Yo, - 7yj—1) - Ar(f)(l'j+1, <o Ty YO - - 7y]))

T
B X5 —Yj +1 Myi1p
_Zip(Ar (f)(‘rja 557’7907---7% r+1 Z' ]

Assume now that z;, = y;, for some (ig, jo). For € > 0 we can select (2o, ..., 2r) €
K(T+1), such that

(a) Xj—olzj — 2l <e,
(b) z; # xj y 2z # yj for all (4, 7).
Then, by the previous case we have
p(A™(f)(@o, - - @r) = A"(f) (Yo, - -, yr))
<p(A"(f) (o, .., zr) = A"(f)(20, - -, 2r))
+ (A" (f)(20, -, 20) = A"(F) (Yo - - yr))

r—i—l,p r—i—l,p
1 ZW G+ =07 ZU

r+1,p
| (26+Z|x]—y])

Since € > 0 is arbitrary, (1) follows. O

In the sequel we assume that K is a perfect compact subset of the complex
plane C, and that F is a quasi-complete LC-space.

Corollary 2.5. If f € B(K,FE), then all differential quotients A"(f) can be
extended to uniformly continuous maps A”(f): K™t! — E.

We remark that all properties of Lemma 2.2 remain valid for these extensions.
Now, we introduce the following notation:

" (a) = A"(f)(a,...,a) = Im A"(f)(zo,...,zy) foreach a€ K.

T;—a
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Remark 2.6. A map f : K — FE is said to be differentiable in K if for every
a € K, there exists f/(a) = ZI%LZZ(G)

From the previous discussion it follows that f has derivatives of any order when
f€B(K,E).

Lemma 2.7. Let ag,aq,...,ar,2 € K. We have:

@ )

" AZ ap,...,a 1 AT+1 ag,...,0ar, 2 7‘
=3 0 ) Ty S0 [ e,
1=0 j=0 7=0

(z € K) (see [2] for instance).

In particular,

A" (f)a,. .., a,z2)

(r+1)! DA

(z—a) +

Il
=)

for all a,z € K. Moreover, if we can connect the points a,z € K by a piecewise
Cl-curveI' C K, then

AT""lf(a,...,a,z)Z_ar_,_li (z=8)"
c-arti= [ EE

(r+1)
(r+1)! 7! JUTIE) de.

(4)

PRrOOF: (2) follows by induction on r and (4) follows by induction on r using
integration by parts. O

Lemma 2.8. Let U be open neighborhood of K. If f:U — E is a holomorphic
map, then f‘K € B(K, E) and there exists R > 0 such that for every continuous
seminorm p in E we have

sup{p(A”(f)(x0, .. .,xm% (@0, 7)€ K™ < oo,

for every r > 0.

PROOF: Since for some 6 > 0 we have Ws(K) C U, we can take an adequate
cycle C C Ws(K) such that

Ar(f)(x07 e 71;7”) _
7! - 2mi /C [Tz — )

for every (zq,...,2,) € K™, If we set R = dist(K,C) and L = length(C) then

dz

3

for every continuous seminorm p in E we have p(A"(f)(zo,...,zr)) < 27’7'r IZ;{,er
where M, = sup{p(f(2)) : = € W5(K)}, which finishes the proof. O

Conversely we have
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Proposition 2.9. Let f : K — E be a map. The following assertions are

equivalent:

(a) there exist R > 0 and a holomorphic map g : Wr(K) — E, such that
9k =1

(b) there exist R > 0 and a bounded set B C E such that WRT eB
for all ¥ > 0 and all (zg, ..., x,) € KU+,

If K is uniformly C'-regular, (a), (b) are equivalent to

(¢) f € B(K,E) and there exists R > 0, such that the sequence %RT (r>0)
is bounded in C(K, E).

PRrROOF: Clearly (a)=(b) by the previous lemma. If (b) holds, then f € B(K, F)
and we can define holomorphic maps f, : B(a,R) — E by setting fq(z) =
225>0 f—({—)(z —a) for each a € K. Now (3) of Lemma 2.7 shows that fa|B(a,R)NK
= f|B(a,R)ﬂK for each a € K, hence Technical Lemma 1.1 gives (a).

On the other hand, it is obvious that always (b)=-(c). Conversely, assume (c)
and that K is uniformly C'-regular, and let p any continuous seminorm in F.
Then, for some My, > 0, the inequality p( (5)) % holds for every £ € K and

r > 0. Hence, if I' is a piecewise Cl-curve in K with origin a and final point z,
then, by Lemma 1.2,

p(/r %ﬂml (€)d¢) < RM+1length(I‘)T+1.

Since this inequality holds for every such T, (4) of Lemma 2.7 gives

A" f(a,. .. a,2) i1 D(a,z)\" ™!
— <M .
ar JEmdT s p( R )

But D(a,z) < Cla — z| for some C > 0. Now, taking Ry < min{R/C, R}, we

obtain » 1
A" f(a,. .., a,z) ra1 |z —al\"
- < M,
P( r+1) Iz —al™" < My Ry :

for all a,z € K and r > 0.

Finally if we define f, : B(a, R1) — F for each a € K, as at the beginning of
the proof, then (3) of Lemma 2.7 shows that f(z) = fu(z) for z € B(a,R;) N K.
Hence the technical lemma applies again. (Il

Definition 2.10. Let K C C be a perfect compact set, £ a quasi-complete
LC-space and R > 0. We define A(R, K, E) as the subspace of B(K, E) of all

maps f : K — FE such that UTZ wﬂ}%r is bounded in E. We also
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define J(R, K, E) as the subspace of B(K, E) of all maps f : K — F such that
Urzo Q@RT is bounded.

Clearly, from Remark 2.6 follows that A(R,K,E) C J(R,K,FE) and if K is
uniformly Cl-regular these subspaces are equal. Furthermore, Proposition 2.9
has the following corollary:

Corollary 2.11. The following assertions are true:
(a) O(K, E) = Up=o AR, K, E);
(b) if K is uniformly C'-regular, then O(K, E) = Jp-o J(R, K, E).

Example 2.12. Let Q = C — K, where C = CU{oo} is the Riemann sphere. We
let H () denote the Fréchet space of all holomorphic maps g :  — C such that
g(00) = 0. It is well known that H(Q) can be identified with the strong dual of
O(K) (3])-

We define ¢ : K — H(Q) by ¢(a)(€) = (€ —a)™! (€ € Q,a € K). Tt is easy to
see that Al(¢)(ag,a1) = ¢(ag)p(a1), and in general we have A" (¢)(ao, . . .,ar) =
r [ Ti—o #(a:)-

Now we define the sequence Hp, (m > 1) of compact sets Hy, = {z € Q :
d(z,K) > %} The seminorms pm,(9) = sup{|g(z)| : 2 € Hp, } form a fundamental
system of seminorms in H(£2). We let E,, denote the Banach space obtained by
completing H(Q) with respect to pp,, so that H(Q) ~ lim E,, via the maps
im : H(Q) — Ep,. Then, we have for each m, r

r r
(5) pm(A (¢)(agla--'aar)) me(H ¢(flz’)) — L
=0

Hence, for a fixed m, the map i, 0 ¢ : K — Ep, can be extended to a holo-
morphic map in a neighborhood K, thanks to Proposition 2.9. Nevertheless, the
same formula (5) and the same argument shows that it is impossible to get an
extension of ¢ : K — H(Q). Consequently, O(K, H(Q?)) # lim O(K, En,), since
¢ € lim O(K, Ep) but ¢ ¢ O(K, H(?)). Note that ¢ is a “virtual holomorphic
map”, in the terminology of [3].
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