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A characterization of holomorphic

germs on compact perfect sets

Graciela Carboni, Angel Larotonda

Abstract. Let K ⊆ C be a perfect compact set, E a quasi-complete locally convex space
over C and f : K → E a map. In this note we give a necessary and sufficient condition
— in terms of differential quotients — for f to have a holomorphic extension on a
neighborhood of K.
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Introduction

Assume that K ⊆ R
n is a compact set, E is a locally convex space (briefly:

LC-space) over R or C, and f : K → E is a map. It is well known that f has a
C∞ extension if and only if there exists a (non uniquely determined) sequence of
maps fn : K → E, with f0 = f , such that it satisfies appropriate conditions (see
[5] and [6]).
In this note we propose a similar criterion for the analytic case, that is, we

characterize in terms of an adequate boundedness condition on well specified
differential quotients, those maps f : K → E (where K ⊆ C is a compact perfect
set) which admit a holomorphic extension f : U → E to some neighborhood U
of K (Proposition 2.9).
In order to formulate it, we need to fix some notations. Let U ⊆ C be an

open set and E a quasi-complete LC-space. We let H(U, E) denote the space
of all holomorphic maps u : U → E, with the topology of uniform convergence
on compact subsets of U (for the definitions and basic properties see [1], [3]). If
V ⊆ U is another open set, then there is an obvious restriction map H(U, E)→
H(V, E). For a non-void compact set K ⊆ C, we let U(K) denote the directed
set of all open neighborhoods of K. Clearly we obtain a basis (a cofinal subset)
of U(K) by taking the sets Wr(K) = {z ∈ C : d(z, K) < r} for r > 0 (or else

r = 1
n , n ≥ 1). Denote by O(K, E) the space of holomorphic E-valued germs

on K, that is the LC-space lim−→r H(Wr(K), E).
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1. Assume that K is a compact perfect set. Let C(K, E) denote the space of all
continuous maps f : K → E, endowed with the topology of uniform convergence.
It is clear that the natural continuous map O(K, E)→ C(K, E) is injective. The
main aim of this note is to characterize the image of this map.

In the sequel we use the notations B(a, ǫ) = {z ∈ C : |z − a| < ǫ} and

B(a, ǫ) = {z ∈ C : |z − a| ≤ ǫ}.

Technical Lemma 1.1. Let K ⊂ C be a compact perfect set. Let ǫ0 > 0 and
let f : K → E be a map. Then the following assertions are equivalent:

(i) there exists ǫ0 > 0, such that for all a ∈ K, there exists fa ∈ H(B(a, ǫ0), E)
such that fa(z) = f(z) for all z ∈ K ∩B(a, ǫ0);

(ii) there exist ǫ1 > 0 and g ∈ H(Wǫ1(K), E) such that g(z) = f(z) for all z ∈ K.

Proof: It is clear that (ii)⇒(i). Let us see that (i)⇒(ii). It suffices to show that
if a, b ∈ K and z ∈ B(a, ǫ0/4) ∩ B(b, ǫ0/4), then fa(z) = fb(z). In fact, in this

case,K∩B(a, ǫ0/2)∩B(b, ǫ0/2) 6= ∅, which implies thatK∩B(a, ǫ0/2)∩B(b, ǫ0/2)
is an infinite set, since K is a perfect set. From this, it follows that fa(z) = fb(z).

�

If K satisfies suitable conditions, then we can replace differential quotients by
ordinary derivatives in the statement of the criterion. For instance this is the
case if K is uniformly C1-regular. Recall the definition: we say that a perfect
set X is C1-connected when for every a, b ∈ X there exists a piecewise C1-curve
Γ ⊆ X , such that a, b ∈ Γ. We can define then the geodesic distance D(a, b) in
the obvious way. We recall that for an open set X this distance is equivalent to
the usual distance d(a, b) = |a − b|. Since this fails for general X we say that
a compact perfect set is uniformly C1-regular if D is equivalent to d (see [2] for
a similar and more general definition).
On this line of work we use later the following estimate:

Lemma 1.2. Let K ⊆ C be a compact set, and Γ ⊆ K a piecewise C1-curve
which connects the points a, z ∈ K. Then

∫

Γ
|ξ − z|r |dξ| ≤

length(Γ)r+1

r + 1
.

Proof: We can assume z = 0. If we parametrize Γ by arc length ϕ : [0, L]→ K,
then |ϕ′(s)| = 1. So,

|ϕ(t)| = |ϕ(t) − ϕ(0)| ≤

∫ t

0
|ϕ′(s)| ds ≤ t,

and then ∫

Γ
|ξ|r |dξ| ≤

∫ L

0
|ϕ(t)|r dt ≤

∫ L

0
tr dt =

Lr+1

r + 1
.

�
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2. In the sequel we consider an LC-space E and a infinite compact set K ⊆ C.

For each r ∈ N we defineK(r) = {(x0, . . . , xr−1) ∈ Kr : xi 6= xj for every i 6= j}.

Definition 2.1. We define “differential quotients” ∆r : EK → EK(r+1) induc-
tively for r ≥ 0 by

(i) ∆0 is the identity map,

(ii) ∆r+1(f)(x0, . . . , xr+1) =
r+1

x0−xr+1
(∆r(f)(x0, . . . , xr)−∆r(f)(x1, . . . , xr+1)).

For the real case, some of the following properties can be found in [4].

Lemma 2.2. The operator ∆r has the following properties:

(a) ∆r is C-linear;

(b) ∆r(f)(x0, . . . , xr) = r!
∑r

k=0 f(xk)
∏

j 6=k
1

xk−xj
;

(c) ∆r(f) is symmetric in (x0, . . . , xr);

(d) Let F be a LC-space. If T : E → F is a linear map, then T (∆r(f)) =
∆r(T ◦ f) for each r ≥ 0;

(e) Let Ei (i = 1, 2) and F be LC-spaces, and f ∈ EK
1 , g ∈ EK

2 . If B :

E1 × E2 → F is a bilinear map, and B̃(f, g) : K → F is the map z →
B(f(z), g(z)), then

∑r
k=0

(r
k

)
B(∆k(f)(x0, . . . , xk),∆

r−k(g)(xk , . . . , xr)) =

∆r(B̃(f, g))(x0, . . . , xr);

(f) Assume that E is an algebra. Then,

∆r(fg)(x0, . . . , xr) =

r∑

k=0

(
r

k

)
∆k(f)(x0, . . . , xk)∆

r−k(g)(xk , . . . , xr).

Proof: The statements (a)–(e) can be proved by induction on r and (f) is an
immediate consequence of (e). �

Definition 2.3. We define

B(K, E) = {f ∈ EK : for each r ≥ 0 the set
∆r(f)(K(r+1))

r!
is bounded in E}

= {f ∈ EK : for each r ≥ 0 the set ∆r(f)(K(r+1)) is bounded in E}.

Proposition 2.4. The following properties hold:

(a) B(K, E) is a vector subspace of EK . Moreover, if E is an algebra, then

B(K, E) is a subalgebra of EK ;

(b) If K is a perfect set and f ∈ B(K, E), then each ∆r(f) : K(r+1) → E is
uniformly continuous.
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Proof: (a) is obvious. For (b), let p be a continuous seminorm in E and let

Mr,p = sup{p(∆r(f)(x0, . . . , xr)) : (x0, . . . , xr) ∈ K(r+1)}. It suffices to prove
that

(1) p(∆r(f)(x0, . . . , xr)−∆
r(f)(y0, . . . , yr)) ≤

Mr+1,p

r + 1

r∑

j=0

|xj − yj |.

This is clear when xi 6= yj for every pair (i, j). In fact, in this case,

p(∆r(f)(x0, . . . , xr)−∆
r(f)(y0, . . . , yr))

≤
r∑

j=0

p(∆r(f)(xj , . . . , xr, y0, . . . , yj−1)−∆
r(f)(xj+1, . . . , xr , y0, . . . , yj))

=
r∑

j=0

xj − yj

r + 1
p(∆r+1(f)(xj , . . . , xr, y0, . . . , yj)) ≤

Mr+1,p

r + 1

r∑

j=0

|xj − yj |.

Assume now that xi0 = yj0 for some (i0, j0). For ǫ > 0 we can select (z0, . . . , zr) ∈

K(r+1), such that

(a)
∑r

j=0 |xj − zj | < ǫ,

(b) zi 6= xj y zi 6= yj for all (i, j).

Then, by the previous case we have

p(∆r(f)(x0, . . . , xr)−∆
r(f)(y0, . . . , yr))

≤ p(∆r(f)(x0, . . . , xr)−∆
r(f)(z0, . . . , zr))

+ p(∆r(f)(z0, . . . , zr)−∆
r(f)(y0, . . . , yr))

≤
Mr+1,p

r + 1

r∑

j=0

|xj − zj |+
Mr+1,p

r + 1

r∑

j=0

|zj − yj |

≤
Mr+1,p

r + 1

(
2ǫ+

r∑

j=0

|xj − yj |
)
.

Since ǫ > 0 is arbitrary, (1) follows. �

In the sequel we assume that K is a perfect compact subset of the complex
plane C, and that E is a quasi-complete LC-space.

Corollary 2.5. If f ∈ B(K, E), then all differential quotients ∆r(f) can be
extended to uniformly continuous maps ∆r(f) : Kr+1 → E.

We remark that all properties of Lemma 2.2 remain valid for these extensions.
Now, we introduce the following notation:

f (r)(a) = ∆r(f)(a, . . . , a) = lim
xi→a

∆r(f)(x0, . . . , xr) for each a ∈ K.
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Remark 2.6. A map f : K → E is said to be differentiable in K if for every

a ∈ K, there exists f ′(a) = lim
z→a

f(z)− f(a)

z − a
(z ∈ K) (see [2] for instance).

From the previous discussion it follows that f has derivatives of any order when
f ∈ B(K, E).

Lemma 2.7. Let a0, a1, . . . , ar, z ∈ K. We have:
(2)

f(z) =

r∑

i=0

∆i(f)(a0, . . . , ai)

i!

i−1∏

j=0

(z−aj)
i+
∆r+1(f)(a0, . . . , ar, z)

(r + 1)!

r∏

j=0

(z−aj)
r+1.

In particular,

(3) f(z) =
r∑

i=0

f (i)(a)

i!
(z − a)i +

∆r+1(f)(a, . . . , a, z)

(r + 1)!
(z − a)r+1,

for all a, z ∈ K. Moreover, if we can connect the points a, z ∈ K by a piecewise
C1-curve Γ ⊆ K, then

(4)
∆r+1f(a, . . . , a, z)

(r + 1)!
(z − a)r+1 =

∫

Γ

(z − ξ)r

r!
f (r+1)(ξ) dξ.

Proof: (2) follows by induction on r and (4) follows by induction on r using
integration by parts. �

Lemma 2.8. Let U be open neighborhood of K. If f : U → E is a holomorphic
map, then f|K ∈ B(K, E) and there exists R > 0 such that for every continuous

seminorm p in E we have

sup{p(∆r(f)(x0, . . . , xr))
Rr

r!
: (x0, . . . , xr) ∈ Kr+1} <∞,

for every r ≥ 0.

Proof: Since for some δ > 0 we have Wδ(K) ⊆ U , we can take an adequate
cycle C ⊆Wδ(K) such that

∆r(f)(x0, . . . , xr)

r!
=
1

2πi

∫

C

f(z)∏r
j=0(z − xj)

dz,

for every (x0, . . . , xr) ∈ Kr+1. If we set R = dist(K, C) and L = length(C) then

for every continuous seminorm p in E we have p(∆r(f)(x0, . . . , xr)) ≤
r!
2π

MpL

Rr+1

where Mp = sup{p(f(z)) : z ∈Wδ(K)}, which finishes the proof. �

Conversely we have
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Proposition 2.9. Let f : K → E be a map. The following assertions are
equivalent:

(a) there exist R > 0 and a holomorphic map g : WR(K) → E, such that
g|K = f .

(b) there exist R > 0 and a bounded set B ⊆ E such that
∆r(f)(x0,...,xr)

r! Rr ∈ B

for all r ≥ 0 and all (x0, . . . , xr) ∈ K(r+1).

If K is uniformly C1-regular, (a), (b) are equivalent to

(c) f ∈ B(K, E) and there exists R > 0, such that the sequence f(r)

r! Rr (r ≥ 0)
is bounded in C(K, E).

Proof: Clearly (a)⇒(b) by the previous lemma. If (b) holds, then f ∈ B(K, E)
and we can define holomorphic maps fa : B(a, R) → E by setting fa(z) =∑

j≥0
f(j)
j! (z−a)j for each a ∈ K. Now (3) of Lemma 2.7 shows that fa|B(a,R)∩K

= f|B(a,R)∩K for each a ∈ K, hence Technical Lemma 1.1 gives (a).

On the other hand, it is obvious that always (b)⇒(c). Conversely, assume (c)
and that K is uniformly C1-regular, and let p any continuous seminorm in E.

Then, for someMp > 0, the inequality p(
f(r)(ξ)

r! ) ≤
Mp

Rr holds for every ξ ∈ K and

r ≥ 0. Hence, if Γ is a piecewise C1-curve in K with origin a and final point z,
then, by Lemma 1.2,

p
(∫

Γ

(ξ − z)r

r!
f (r+1)(ξ) dξ

)
≤

Mp

Rr+1
length(Γ)r+1.

Since this inequality holds for every such Γ, (4) of Lemma 2.7 gives

p
(∆r+1f(a, . . . , a, z)

(r + 1)!

)
|z − a|r+1 ≤Mp

(
D(a, z)

R

)r+1

.

But D(a, z) ≤ C|a − z| for some C > 0. Now, taking R1 < min{R/C, R}, we
obtain

p
(∆r+1f(a, . . . , a, z)

(r + 1)!

)
|z − a|r+1 ≤Mp

(
|z − a|

R1

)r+1

,

for all a, z ∈ K and r ≥ 0.
Finally if we define fa : B(a, R1) → E for each a ∈ K, as at the beginning of

the proof, then (3) of Lemma 2.7 shows that f(z) = fa(z) for z ∈ B(a, R1) ∩K.
Hence the technical lemma applies again. �

Definition 2.10. Let K ⊆ C be a perfect compact set, E a quasi-complete
LC-space and R > 0. We define ∆(R, K, E) as the subspace of B(K, E) of all

maps f : K → E such that
⋃

r≥0
∆r(f)(K(r+1))

r! Rr is bounded in E. We also
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define J(R, K, E) as the subspace of B(K, E) of all maps f : K → E such that
⋃

r≥0
f(r)(K)

r! Rr is bounded.

Clearly, from Remark 2.6 follows that ∆(R, K, E) ⊆ J(R, K, E) and if K is
uniformly C1-regular these subspaces are equal. Furthermore, Proposition 2.9
has the following corollary:

Corollary 2.11. The following assertions are true:

(a) O(K, E) =
⋃

R>0∆(R, K, E);

(b) if K is uniformly C1-regular, then O(K, E) =
⋃

R>0 J(R, K, E).

Example 2.12. Let Ω = Ĉ−K, where Ĉ = C∪{∞} is the Riemann sphere. We
let H(Ω) denote the Fréchet space of all holomorphic maps g : Ω → C such that
g(∞) = 0. It is well known that H(Ω) can be identified with the strong dual of
O(K) ([3]).
We define φ : K → H(Ω) by φ(a)(ξ) = (ξ − a)−1 (ξ ∈ Ω, a ∈ K). It is easy to

see that ∆1(φ)(a0, a1) = φ(a0)φ(a1), and in general we have ∆
r(φ)(a0, . . . , ar) =

r!
∏r

i=0 φ(ai).
Now we define the sequence Hm (m ≥ 1) of compact sets Hm = {z ∈ Ω :

d(z, K) ≥ 1
m}. The seminorms pm(g) = sup{|g(z)| : z ∈ Hm} form a fundamental

system of seminorms in H(Ω). We let Em denote the Banach space obtained by
completing H(Ω) with respect to pm, so that H(Ω) ≃ lim←−Em via the maps
im : H(Ω)→ Em. Then, we have for each m, r

(5) pm

(∆r(φ)(a0, . . . , ar)

r!

)
= pm

( r∏

i=0

φ(ai)
)
= mr+1.

Hence, for a fixed m, the map im ◦ φ : K → Em can be extended to a holo-
morphic map in a neighborhood K, thanks to Proposition 2.9. Nevertheless, the
same formula (5) and the same argument shows that it is impossible to get an
extension of φ : K → H(Ω). Consequently, O(K, H(Ω)) 6= lim←−O(K, Em), since
φ ∈ lim←−O(K, Em) but φ /∈ O(K, H(Ω)). Note that φ is a “virtual holomorphic
map”, in the terminology of [3].
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