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An example of a nonlinear second order

elliptic system in three dimension

Josef Daněček, Marek Nikodým

Abstract. We provide an explicit example of a nonlinear second order elliptic system of
two equations in three dimension to compare two C0,γ -regularity theories. We show that,
for certain range of parameters, the theory developed in Daněček, Nonlinear Differential
Equations Appl. 9 (2002), gives a stronger result than the theory introduced in Koshelev,
Lecture Notes in Mathematics, 1614, 1995. In addition, there is a range of parameters
where the first theory gives Hölder continuity of solution for all γ < 1, while the Koshelev
theory is not applicable at all.
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1. Introduction

In this paper we consider a second-order nonlinear elliptic system of the type

(1) −Dα (A
α
i (Du)) = 0, i = 1, . . . , N, N > 1,

in a bounded open set Ω ⊂ R
n, n ≥ 3. Here x = (x1, . . . , xn), u : Ω → R

N ,

u(x) = (u1(x), . . . , uN (x)), is a vector-valued function, Du = (D1u, . . . , Dnu),
Dα = ∂/∂xα, α ∈ {1, . . . , n}. Let further | · | denote the Euclidean norm in R

m

and Br(x) = {y ∈ R
m :| y − x |< r}, m ≥ 1, r > 0, x ∈ R

m. Throughout the
whole text, we use the summation convention over repeated indices.
The system (1) is considered under the following assumptions:

(H1) Aα
i (p) are continuously differentiable functions in p on R

nN for which
Aα

i (0) = 0 and

∣

∣

∣

∣

∣

∣

∂Aα
i

∂pβ
j

(p)

∣

∣

∣

∣

∣

∣

≤ M, ∀ p ∈ R
nN , M > 0,
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(H2) there exists ν > 0 such that, for every p, ξ ∈ R
nN ,

∂Aα
i

∂p
β
j

(p) ξi
αξj

β ≥ ν|ξ|2.

We will consider a weak solution of Dirichlet problem for (1), with fixed bound-

ary function g ∈ W 1,2(Ω, RN ), i.e. the function u ∈ W 1,2(Ω, RN ), for which

(D)











∫

Ω

Aα
i (Du)Dαϕi dx = 0 , ∀ϕ ∈ W 1,2

0 (Ω, RN ),

u − g ∈ W 1,2
0 (Ω, RN ).

It is well known that, under the conditions (H1) and (H2), the Dirichlet problem

(D) has a unique solution u ∈ W 1,2(Ω, RN ) and it holds

∫

Ω

|Du|2 dx ≤
(

M

ν

)2 ∫

Ω

|Dg|2 dx.

In this paper the regularity of the system means that the weak solutions of (1)

belong to C0,γ(Ω, RN ), 0 < γ < 1.
It is possible to say that the first systematic study of C0,γ -regularity of the

weak solution to (D) can be found in [C2], [Gia] and [Ne], however these results
are applicable to the dimensions n = 2, 3 and 4 only. Other conditions (e.g.
the Liouville condition) guaranteeing smoothness of solutions of nonlinear elliptic
systems were studied in [D1], [Ne], [Gia], and for higher order systems, in [BV].
In this paper we construct an example of a nonlinear elliptic system of type

(1) for n = 3 and N = 2 with coefficients

(2) Aα
i (p) =

(

aδijδαβ + δiαδjβ b arctan(µ+ |p|2)
)

pβ
j ,

where α, β = 1, 2, 3, i, j = 1, 2, the numbers a > 0, b ≥ 0, µ ≥ 0 are parameters
and δij is the Kronecker δ-symbol. In what follows, (Section 2 and 3), we use this
example to compare two different regularity results.
The first approach presented here is due to A.I. Koshelev, see [Ko] for detailed

information. He showed that, if M/ν ≤ K(n) (K(n) ց 1 as n → ∞), then all
weak solutions of (1) are Hölder continuous with an exponent γ(n), n ≥ 3 such
that 0.781 > γ(n)ց 0 as n → ∞.
In [D2] it was showed that if the quotient of the coefficient of boundedness

M to the coefficient of the positiveness ν of the so-called ellipticity matrix A =
(∂Aα

i /∂p
β
j ) (see the conditions (H1) and (H2) of (1)) is less than or equal to an
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arbitrary constant P > 1, then, for a sufficiently big constant of positiveness ν,

the gradient of a weak solution to (1) is from a L2,nloc -space (BMO-space) so that
the weak solution is from the Hölder space C0,γ(Ω, RN ) for every γ < 1. For a
more general result, see [DJS], where the C1,γ-regularity is proved.
It is worth noticing that, even if the results of [Ko] and [D2] are of a similar

nature, they have been proved by different techniques and they do not include
each other. Our system does not satisfy the Koshelev sufficient condition while it
fulfills the condition of [D2]. It is also necessary to remark that the result from
[D2] can be proved in a way simpler than that contained in [Ko].
For our system, we have the following fundamental result.

Proposition 1. Let the coefficients of the system (1) be given by (2). Then the
conditions (H1) and (H2) hold with

(3) M = a
[

1 +
(π

2
+ 3ϑ(µ)

)

r
]

, ν = a [1− 4ϑ(µ)r]

where

r =
b

a
, ϑ(µ) =

1

2
(

µ+
√

1 + µ2
) .

Remark 1. As the matrix of ellipticity A is not symmetric, the weak solution of
(1) with (2) is not the minimiser of any functional.

Proof: In our case, the coefficients of the matrix of ellipticity A are of the
following form

∂Aα
i

∂p
β
j

(p) = Aαβ
ij (p) = a

(

δijδαβ + δiαδjβT (p) + δiαpβ
j L(p)

)

where

T (p) = r arctan
(

µ+ |p|2
)

, L(p) =
2(p11 + p22)

1 + (µ+ |p|2)2
r .

Now we can prove (H2) for all p, ξ ∈ R
6.

A
αβ
ij (p)ξ

i
αξ

j
β = a

[

|ξ|2 + T (p)(ξ11 + ξ22)
2 + L(p)p

β
j ξ

j
β(ξ
1
1 + ξ22)

]

≥ a
[

|ξ|2 + L(p)pβ
j ξj

β(ξ
1
1 + ξ22)

]

≥ a

(

1− 4|p|2
1 + (µ+ |p|2)2 r

)

|ξ|2

≥ a






1− 4

√

1 + µ2

1 +
(

µ+
√

1 + µ2
)2

r






|ξ|2 = a (1− 4ϑ(µ)r) |ξ|2.
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Next, we will prove the boundedness A
αβ
ij for all p ∈ R

6 as follows

|Aαβ
ij (p)| = a

∣

∣

∣
δijδαβ + δiαδjβT (p) + δiαpβ

j L(p)
∣

∣

∣
≤ a (1 + |T (p)|+ |p||L(p)|)

≤ a

(

1 +
π

2
r +

2
√
2|p|2

1 + (µ+ |p|2)2 r
)

< a
[

1 +
(π

2
+ 3ϑ(µ)

)

r
]

=M.

�

2. Koshelev’s approach to regularity

Following the idea of [Ko], we can decompose the ellipticity matrix A =
(

∂Aα
i /∂pβ

j

)

, α, β = 1, 2, 3, i, j = 1, 2 as

A = A+ +A− =
1

2

(

A+AT
)

+
1

2

(

A−AT
)

where A+and A− are symmetric and skew-symmetric parts of A, respectively.
We denote by λi(p) the eigenvalues of the matrix A+ and by σi(p) the eigen-

values of the matrix

Q = A+A− −A−A+ − (A−)2.

Denote

(4) K2 =











σ

λ2 + σ
, σ ≥ 1

2λ (Λ− λ) ,

(Λ− λ)2 + 4σ

(Λ + λ)2
, σ ≤ 1

2λ (Λ− λ)

where λ = infi,p λi(p), Λ = supi,p λi(p) and σ = supi,p σi(p).
We define the function

H(γ) =

√

3 + 2γ

2− γ − 2γ2 , γ ∈ I = (12 ,
√
17−1
4 ).

Remark 2. It is well known that, under the conditions (H1) and (H2), the weak

solutions of (1) belong to W
2,2+η
loc (Ω, RN ) (for some small η > 0) and, in our case

n = 3, we have W
2,2+η
loc →֒ C0,(1+η)/2 (see [C1], [Gia] and [Ne]). We can also

consider γ > 1/2 only.

Now we rewrite Koshelev’s theorem for dimension n = 3. For detailed infor-
mation see [Ko].
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Theorem A (see [Ko], p. 53). Let the nonlinear system (1) satisfy the conditions
(H1) and (H2). If the inequality

K H (γ) < 1

holds for some γ ∈ I, then the weak solution of the system (1) belongs to the
Hölder space C0,γ(Ω0, R

2) where Ω0 ⊂⊂ Ω is arbitrary.
For our system, we have

(

A+(p)
)αβ
ij
= a

(

δijδαβ + δiαδjβT (p) +
1

2
(δiαpβ

j + δjβpα
i )L(p)

)

,

Qαβ
ij (p) =

1

4
a2L2(p)

[

δiα

(

δjβ|p|2 − pβ
j (p
1
1 + p22)

)

+ pα
i

(

2pβ
j − δjβ(p

1
1 + p22)

)]

.

As it is difficult to establish the exact values of the constants Λ, λ, σ, we will
look for their interval estimates. In the following, we will assume that

(5) Λ ∈ [ΛM ,Λ] , λ ∈ [λ, λM ] , σ ∈ [σM , σ]

where 0 < λ ≤ λM ≤ ΛM ≤ Λ and σ ≥ σM ≥ 0. We define the following
constants

K
2
=











(λ
2
+ 1)σ , σM ≥ 1

2λM

(

Λ− λ
)

,

(Λ− λ)2 + 4σ

(ΛM + λ)2
, σ ≤ 1

2λ (ΛM − λM ) .

K2M =















σM

λ2M + σM
, σM ≥ 1

2λM (Λ − λ) ,

(ΛM − λM )
2 + 4σM

(Λ + λM )2
, σ ≤ 1

2λ (ΛM − λM ) .

(6)

Now we can formulate

Corollary A. Let the nonlinear system (1) satisfy the conditions (H1), (H2)
and, for Λ, λ, and σ, the interval estimates (5) hold.
(a) If the inequality

K · H(γ) < 1 ,

holds for some γ ∈ I, then the weak solution of (1) belongs to the Hölder
space C0,γ(Ω0, R

2), Ω0 ⊂ Ω.
(b) If

KM ≥ 1
2

holds, then Theorem A does not guarantee any regularity.

Proof: Let, for λ, Λ and σ, the assumptions (5) be satisfied.
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Let
σM ≥ 1

2λM

(

Λ− λ
)

.

From (5) we have λ(Λ − λ)/2 ≤ λM (Λ − λ)/2 ⇒ σ ≥ σM ≥ λM (Λ − λ)/2 ≥
λ(Λ− λ)/2⇒ σ ≥ λ(Λ− λ)/2. Further

K2M =
σM

λ2M + σM
=

1

1 +
λ2

M
σM

≤ 1

1 + λ2
σ

=
σ

λ2 + σ
= K2.

From KM ≥ 1/2, it follows that KH(γ) ≥ H(γ)/2 ≥ 1 and, by Theorem A, the
regularity a of weak solution is not guaranteed.
We have

K
2
=

σ

λ
2
+ σ

=
1

1 + λ
2

σ

≥ 1

1 + λ2
σ

=
σ

λ2 + σ
= K2.

From KH(γ) < 1 it follows that KH(γ) < 1 and, by Theorem A, the regularity
of a weak solution is guaranteed.
Let

σ ≤ 1
2λ (ΛM − λM ) .

From (5) we have λ(Λ − λ)/2 ≥ λ(ΛM − λM )/2 ⇒ σ ≤ σ ≤ λ(ΛM − λM )/2 ≤
λ(Λ− λ)/2⇒ σ ≤ λ(Λ− λ)/2. Further

K2M =
(ΛM − λM )

2 + 4σM

(Λ + λM )2
≤ (Λ− λ)2 + 4σ

(Λ + λ)2
= K2.

From KM ≥ 1/2, it follows that KH(γ) ≥ H(γ)/2 ≥ 1 and, by Theorem A, the
regularity of a weak solution is not guaranteed.
We have

K
2
=
(Λ− λ)2 + 4σ

(ΛM + λ)2
≥ (Λ− λ)2 + 4σ

(Λ + λ)2
= K2.

From KH(γ) < 1 it follows, that KH(γ) < 1 and by Theorem A the regularity
of a weak solution is guaranteed. �

Proposition 2. The numbers λ, Λ, and σ satisfy the following inequalities

a (1 + 2r arctanµ) = ΛM ≤ Λ ≤ Λ

= a

[

1 +

(

π

2
+ 2ϑ(µ) +

1

2

√

π2 + 8πϑ(µ) + 8s(µ)

)

r

]

,

a

[

1 +

(

arctanµ − 1
2

√

π2 + 8πϑ(µ) + 8s(µ)

)

r

]

= λ ≤ λ ≤ λM = a,

0 = σM ≤ σ ≤ σ = 2b2s(µ)
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where s(µ) = (1 + µ2)/[1 + (µ+
√

1 + µ2)2]2.

Proof: The eigenvalues of the matrices A+ and Q are real because A+ and Q
are symmetric. The eigenvalues of the matrix A+ are λ1,2,3,4 = a and λ5,6

a

(

1 + T (p) +
1

2
(p11 + p22)L(p)±

1

2

√

4T 2(p) + 4(p11 + p22)T (p)L(p) + 2|p|2L2(p)
)

.

Further, we can estimate the eigenvalues λ5,6 by means of the following inequali-
ties

r arctanµ ≤ T (p) ≤ π

2
r , 0 ≤ 1

2
(p11 + p22)L(p) ≤

2|p|2

1 + (µ+ |p|2)2
r ≤ 2rϑ(µ) ,

4(p11 + p22)T (p)L(p) ≤ 8πr2ϑ(µ) , 2|p|2L2(p) ≤ 8|p|4
(1 + (µ+ |p|2)2)2

r2 ≤ 8r2s(µ)

and we get the values λ and Λ.
If we, for simplicity, choose p̃ = (0, 0, 0, 0, 0, 0), we have the matrix A+ depend-

ing on the parameters a, b, µ and we get

(

A+(p̃)
)αβ
ij = a

(

δijδαβ + δiαδjβ r arctanµ
)

.

The eigenvalues of A+(p̃) are λ1,2,3,4,5 = a, λ6 = a (1 + 2r arctanµ) and we have

λM = a, ΛM = a (1 + 2r arctanµ) .

The matrix Q has the eigenvalues λ1,2,3,4 = 0 and

λ5,6 =
a2

4

(

2|p|2 − (p11 + p22)
2
)

L2(p).

Also

σ ≤ sup
i,p

σi(p) = sup
p

a2

4

(

2|p|2 − (p11 + p22)
2
)

L2(p)

≤ 2a2r2 sup
p

|p|4
(1 + (µ+ |p|2)2)2

≤ 2b2s(µ).
�

Proposition 3. We put

M =

{

(r, µ) ∈ [0,∞)× [0,∞) : r <
1

4ϑ(µ)
,

Z1(r, µ) = [1 + (arctanµ − h(µ)) r] arctanµ − 2rs(µ) ≥ 0} ,
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MK = {(r, µ, γ) ∈ M× I :

Z2(r, µ)H(γ) =
r

√

[

π
2 − arctanµ+ 2ϑ(µ) + 2h(µ)

]2
+ 18ϑ2(µ)

2 + [3 arctanµ − h(µ)] r
H(γ) < 1







,

MN =

{

(r, µ) ∈ M : Z3(r, µ) =
r arctanµ

1 + 12
[

π
2 + 2ϑ(µ) + h(µ)

]

r
>
1

2

}

where h(µ) = 12
√

π2 + 8πϑ(µ) + 8s(µ). Then

(a) M 6= ∅,
(b) MK 6= ∅ and, for each (r, µ, γ) ∈ MK , a weak solution of (1) with coeffi-
cients (2) belongs to C0,γ(Ω0, R

2), Ω0 ⊂ Ω,
(c) MN 6= ∅ and, for each (r, µ) ∈ MN , Koshelev’s theorem does not guarantee

any regularity.

Proof: (a) The definition of the setM follows from the condition of ellipticity,
Proposition 2, and the condition (see (6))

σ ≤ 1
2λ (ΛM − λM ) .

The parameters (r, µ) ∈ M for every µ ≥ 0 and arbitrary

0 ≤ r ≤ W (µ) = min

{

1

4ϑ(µ)
,

arctanµ

2s(µ) + [h(µ)− arctanµ] arctanµ

}

.

(b) Taking into account that limµ→∞ ϑ(µ) = limµ→∞ s(µ) = 0, limµ→∞ h(µ) =
π/2 and limµ→∞ W (µ) =∞, we have

lim
µ→∞

Z2(r, µ)H(γ) =
π

2
r + π

H(γ), ∀ γ ∈ I.

Now, for every r < 2
π[H(γ)−1] , there is µ0(r) > 0 such that (r, µ) ∈ MK for every

µ > µ0.

(c) In a way similar to (b) we have

lim
µ→∞

Z3 (r, µ) = lim
µ→∞

2 arctanµ
2
r +

π
2 + 2ϑ(µ) + h(µ)

=
π

2
r + π

.

For each r > 2/π, there is µ1(r) > 0 such that, for each µ > µ1, we get

Z3(r, µ) > 1
2 ⇒ (r, µ) ∈ MN .

�
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3. Another approach to regularity

Now we will study the problem of regularity from [D2] and for more general
result, see [DJS]. In the sequel, we need a slightly stronger version of (H1):

(H1*) includes condition (H1) but, moreover, we assume that the derivatives

∂Aα
i /∂pβ

j are uniformly continuous.

On the basis of assumption (H1*), we can define on [0,∞) a real function ω
(modulus of continuity) as follows

ω(t) = sup
i,j,α,β

sup
|p−q|2≤t
p,q∈RnN

∣

∣

∣

∣

∣

∣

∂Aα
i (p)

∂pβ
j

− ∂Aα
i (q)

∂pβ
j

∣

∣

∣

∣

∣

∣

.

From the assumption (H1*) and the definition of the function ω, it follows that
ω is continuous, nondecreasing, bounded, and ω(0) = 0. We can moreover sup-
pose that the function ω is concave and absolutely continuous on every compact
subinterval of (0,∞).
Theorem B ([D2]). For every P > 1 and L > 0, there exists ν0 = ν0(n, P, L) > 0
such that, for every Ω0 ⊂ Ω, every nonlinear system (1) satisfying the hypotheses
(H1*), (H2) such that ν ≥ ν0, M/ν ≤ P , supt>0(ω(t)ω

′(t)) ≤ Pν and, if every

weak solution u for which ‖Du‖2
L2(Ω,RnN )

/[dist(Ω0, ∂Ω)]
n ≤ L, we have

(a) Du ∈ L2,n(Ω0, RnN ),
(b) the estimate

[Du]L2,n(Ω0,RnN ) ≤ c (n, P, L, dist(Ω0, ∂Ω))

holds.

Corollary B. Let the assumptions of Theorem B be satisfied. Then

u ∈ C0,γ(Ω0, R
N ) for every γ < 1.

Proof: See [C1]. �

To apply Theorem B to our system we need the following two Lemmas.

Lemma 1. For the system (1) with coefficients (2) we have

∣

∣

∣

∣

∣

∣

∂Aα
i (q1)

∂pβ
j

− ∂Aα
i (q2)

∂pβ
j

∣

∣

∣

∣

∣

∣

≤ ω∞ = b
(π

2
− arctanµ+ 6ϑ(µ)

)

, ∀ q1, q2 ∈ R
6 ,

sup
q∈R6

∣

∣

∣DAαβ
ij (q)

∣

∣

∣ ≤ C(b, µ) = 72 b f(µ)
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where

f(µ) =
4

√

√

3 + 4µ2 − µ

9 + (2µ+
√

3 + 4µ2)2
+

(1 + µ)(µ+
√

3 + 4µ2)3/2

(1 + µ2)
[

1 + (2µ+
√

3 + 4µ2)2
] .

Proof: The first inequality follows easily:
∣

∣

∣A
αβ
ij (p)− A

αβ
ij (q)

∣

∣

∣ ≤ a |T (p)− T (q)|+ a
∣

∣

∣p
β
j L(p)− q

β
j L(q)

∣

∣

∣

≤ b

(

arctan
1

µ
+

2
√
2|p|2

1 + (µ+ |p|2)2
+

2
√
2|q|2

1 + (µ+ |q|2)2

)

≤ b
(π

2
− arctanµ+ 6ϑ(µ)

)

.

Now we estimate the second inequality. For α, β = 1, 2, 3, i, j = 1, 2, the vectors

DAαβ
ij (p) = (∂Aαβ

ij /∂pγ
k), γ = 1, 2, 3, k = 1, 2 have the following components

∂A
αβ
ij (p)

∂pγ
k

= aδiα

(

δjβ
2rpγ

k

1 + w2
+ δjkδβγL(p) + 2rpβ

j

δkγ(1 + w2)− 4w(p11 + p22)p
γ
k

(1 + w2)2

)

where w = µ+ |p|2. These components can be estimated as follows:

sup
p

∣

∣

∣

∣

∣

∣

∂A
αβ
ij (p)

∂p
γ
k

∣

∣

∣

∣

∣

∣

≤ 2b
(

sup
p

|p|
1 + w2

+
1

2
sup

p
L(p) + sup

p

|p|(1 + w2) + 4
√
2w|p|3

(1 + w2)2

)

≤ 2b
(

(2 +
√
2) sup

p

|p|
1 + w2

+ 4
√
2 sup

p

w|p|3
(1 + w2)2

)

< 4b

(

2 sup
p

V1(p) + 3 sup
p

V2(p)

)

.

Further

sup
p

V1(p) ≤
3
√
3

√

√

3 + 4µ2 − µ

9 + (2µ+
√

3 + 4µ2)2
,

sup
p

V2(p) ≤
(

sup
p

w

1 + w2

)(

sup
p

|p|3
1 + w2

)

≤ 1 + µ

1 + µ2
(µ+

√

3 + 4µ2)3/2

1 + (2µ+
√

3 + 4µ2)2

and together we obtain

sup
p

∣

∣

∣

∣

∣

∣

∂A
αβ
ij (p)

∂pγ
k

∣

∣

∣

∣

∣

∣

≤ 12b





4

√

√

3 + 4µ2 − µ

9 + (2µ+
√

3 + 4µ2)2
+

(1 + µ)(µ+
√

3 + 4µ2)3/2

(1 + µ2)
[

1 + (2µ+
√

3 + 4µ2)2
]



 .

�
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Lemma 2. We define the function ω̃ as follows:

ω̃(t) =











C
√

t, t ∈ [0,
(

ω∞

C )
2
]

,

ω∞ + δ +
2ω∞δ2

ω2∞ − 2ω∞δ − C2t
, t ∈ [

(

ω∞

C

)2
,∞)

where C, ω∞ are the constants from Lemma 1 and 0 < δ ≤ ω∞ is an arbitrary
real number. Then the function ω̃ has all properties stated before Theorem B,
ω(t) ≤ ω̃(t) for all t ∈ (0,∞) and

(7) sup
t>0
[ω̃(t)ω̃′(t)] ≤ C2(b, µ).

Proof: We will prove only property (7). The other properties easily follow from
the definition of the function ω̃. From Lemma 1 and the mean value theorem, we
get for t ∈ [0, (ω∞/C)2]

ω(t) = sup
i,j,α,β

sup
|p−q|2≤t
p,q∈RnN

|Aαβ
ij (p)− Aαβ

ij (q)| ≤ sup
|p−q|2≤t
p,q∈RnN






sup
ξ∈R6

i,j,α,β

|DAαβ
ij (ξ)||p − q|







≤ C
√

t = ω̃(t)

and, for t > (ω∞/C)2, the inequalities ω(t) ≤ ω̃(t) and (7) follow easily from the
definitions of the functions ω and ω̃. �

Now we can formulate the main result

Theorem. Let Ω0 ⊂ Ω ⊂ R
3 and P > 3, L > 0 be constants. There are

parameters (r, µ) ∈ MN such that the weak solution u ∈ W 1,2(Ω, R2) of Dirichlet
problem (D), ‖Dg‖L2(Ω,R2)/[dist(Ω0, ∂Ω)]

3 ≤ L for (1) with coefficients (2) and

the parameters r, µ, belongs to C0,γ(Ω0, R
2) for every γ < 1.

Proof: It is sufficient to verify the assumptions of Theorem B for some para-
meters (b/a, µ) = (r, µ) ∈ MN . By Proposition 3, we have that (1, µ) ∈ MN for
every µ > µ̃.
From Proposition 1, the assumptions of Theorem B, and Lemma 2, it follows

ν ≥ ν0 ⇐⇒ a ≥ ν0 + 4ϑ(µ) b ,

M

ν
≤ P ⇐⇒ a ≥

π
2 + (3 + 4P )ϑ(µ)

P − 1 b ,

sup
t>0
[ω̃(t)ω̃′(t)] ≤ Pν ⇐⇒ a ≥

(

72f(µ)√
P

)2

b2 + 4ϑ(µ) b.
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Now for each a > ν0, taking into consideration that a = b, there is µ > µ̃ such
that the preceding three inequalities on the right hand sides are satisfied for all
µ > µ. �

Concluding remarks. If Theorems A and B are applicable simultaneously (M 6= ∅
must hold), then Theorem A is giving us only C0,γ-regularity (1/2 < γ < (

√
17−

1)/4 < 0.781, and it is necessary to recall that H(γ) → ∞ as γ → (
√
17 − 1)/4)

while, in the case of Theorem B, we have L2,n-regularity of the gradient from
which follows C0,γ-regularity for all γ < 1 by Corollary B. But it may be useful
to remember that in Theorem B, we need a smallness of the norm of the gradient
of a weak solution opposite to Theorem A.
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