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Note on countable unions of

Corson countably compact spaces

Ondřej F.K. Kalenda

Abstract. We show that a compact space K has a dense set of Gδ points if it can be
covered by countably many Corson countably compact spaces. If these Corson countably
compact spaces may be chosen to be dense in K, then K is even Corson.
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Introduction

Corson compact and countably compact spaces, i.e. compact and countably
compact subsets of the space

Σ(Γ) = {x ∈ RΓ : suppx = {γ ∈ Γ: x(γ) 6= 0} is countable}

equipped with the pointwise topology play an important role in theory of nonsep-
arable Banach spaces. Functional analytic properties of Corson compacta were
studied for example in [AM], [AMN], [O] or [V1]. In the present paper we study
certain topological properties of these classes of spaces.

It is well known that any Corson compact space has a dense set of Gδ points
(an easy proof is given in [K4, Theorem 3.3]). As Corson compact spaces are
stable to continuous images (by [MR] or [G]), the same obviously holds for con-
tinuous images of Corson compact spaces. On the other hand, there are Corson
countably compact spaces with no Gδ points (take for example [0, 1]

Γ ∩ Σ(Γ) for
Γ uncountable). Corson countably compact spaces are stable to quotient images
by [G] but not to general continuous images (an easy example is the space [0, ω1]
which is a continuous image of the Corson countably compact space [0, ω1) but is
not itself Corson — for a more general formulation see [K5, Theorem 2.5]). Hence
the following problem [K5, Question 1] seems to be quite natural.
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Problem 1. Let K be a compact space which is a continuous image of a Corson
countably compact space. Does K have a dense set of Gδ points?

We do not know the general answer to this problem but our Theorem 1 gives
a partial positive answer for compact spaces which are finite unions of Corson
countably compact spaces. The stated question is natural in itself but moreover
it is related to problems concerning the structure of open continuous images of
Valdivia compacta. Let us recall the definition of Valdivia compacta.
Let K be a compact space and A ⊂ K. We say that A is a Σ-subset of K if

there is a homeomorphic injection h : K → RΓ for a set Γ with A = h−1(Σ(Γ)).
A compact K is Valdivia if it has a dense Σ-subset. Recall also that a dense set
A ⊂ K is a Σ-subset if and only if A is a Corson countably compact space and K
is the Čech-Stone compactification of A (i.e., K = βA), see [K4, Proposition 1.9].
Valdivia compact spaces are not stable to continuous images (see [V2], [K1] or
[K4, Section 3.3]). However, the following question remained open until recently.

Problem 2. Let ϕ : K → L be an open continuous surjection between compact
spaces. Suppose K is Valdivia. Is L Valdivia as well?

A counterexample was recently found in [KU]. A partial positive answer is
given in [K2, Theorem 4.5] (see also [K4, Theorem 3.24]). It is proved there that
the answer is positive provided L has a dense set of Gδ points. In fact, it is
proved slightly more — if L has a dense set of Gδ points and A ⊂ K is a dense
Σ-subset of K, then ϕ(A) is a dense Σ-subset of L. This more general result does
not hold without the assumption on L (an easy example is given in Remark after
Theorem 4.5 in [K2], see also [K4, Remark 3.25]). It follows that the positive
answer to Problem 1 would give positive answer to the following question.

Problem 3. Let ϕ : K → L be an open continuous surjection between compact
spaces. Suppose A is a dense Σ-subset of K such that ϕ(A) = L. Is L Corson?

This problem may look a bit artificially in itself but the answer to it may help
to better understand Problem 2. (Note that the counterexample of [KU] uses
cohomology theory.)

Main results

Our main results are the following two theorems.

Theorem 1. Let K be a compact space such that K =
⋃

∞
i=1Bi where Bi is a

Corson countably compact space for each i ∈ N. Then K has a dense set of Gδ

points.

Theorem 2. Let K be a compact space such that K =
⋃

∞
i=1Bi where Bi is a

Corson countably compact space dense in K for each i ∈ N. Then K is a Corson
compact space.
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Note that Theorem 1 yields a partial positive answer to Problem 1. Compact
spaces which are finite unions of Corson countably compact spaces form a subclass
of continuous images of Corson countably compact spaces (as finite union is a
continuous image of a finite topological sum; cf. [K5, Lemma 2.2]). It follows
from [S] that a compact space from Theorem 1 need not be a continuous image of
Corson countably compact space. (In fact, the quoted paper contains an example
of a compact space which is a countable union of Corson (even Eberlein) compact
subspaces without being Corson. It is easy to check that this space is not even a
continuous image of a Valdivia compact space.)
The author knows no example of a concrete compact space for which Theorem 1

would yield a non-trivial result. The assumptions are satisfied for example by
Corson compact spaces, by the spaces [0, α] for α < ω1 · ω1 or by the space from
[S]. In all these examples it is easy to check they have a dense set of Gδ points.
However, the real meaning of Theorem 1 is different. Its purpose is to show that
there are no non-trivial spaces satisfying its assumptions.
Remark also that Theorem 2 gives a positive answer to Problem 3 for the

case K = L × C where C is a countable compact space and ϕ being the natural
projection of K onto L. (The answer to Problem 2 in this case is trivial as L is
homemomorphic to a clopen subset of K.)
Another consequence of Theorem 2 is the following. If K is a super-Valdivia

compact space (i.e. the family of dense Σ-subsets of K covers K), then either K
is Corson or K cannot be covered by countably many Corson countably compact
subspaces.
Theorems 1 and 2 are easily seen to be equivalent. Indeed, suppose Theorem 1

holds and let K and Bi, i ∈ N, be as in Theorem 2. Then K has, by Theorem 1, a
dense set of Gδ points. Each Bi contains all Gδ points of K (by Lemma 3 below)
and so for any pair i, j ∈ N the set Bi ∩Bj is dense in K, and hence Bi = Bj (by
Lemma 2). Hence K = B1 = B2 = . . . and thus K is Corson.
Conversely, suppose that Theorem 2 holds and let K and Bi, i ∈ N, be as in

Theorem 1. Let U ⊂ K be a nonempty open set. We can construct by induction
nonempty open sets Vi, i ∈ N such that

U ⊃ V1 ⊃ V1 ⊃ V2 ⊃ . . .

and that for each i ∈ N the set Vi ∩ Bi is either empty or dense in Vi. Further,
put H =

⋂

i∈N
Vi. This is clearly a nonempty closed Gδ subset of K. Moreover,

H ∩ Bi is dense in H whenever H ∩ Bi 6= ∅ (by Lemma 3). Hence H is Corson
by Theorem 2. It follows that H has a Gδ point. Such a point is also a Gδ point
of K. This completes the proof.

Auxiliary results

In this section we collect some auxiliary results needed to prove Theorems 1
and 2. Most of them are known but we recall their formulation.
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Lemma 1. Let X be a Corson countably compact space. Then the following

holds.

(a) X is Fréchet-Urysohn, i.e. whenever x ∈ X and A ⊂ X are such that

x ∈ A there is a sequence xn ∈ A with xn → x.
(b) C is compact for any C ⊂ X countable. In particular, if Y is a space con-
taining X , then C ⊂ X whenever C ⊂ X is countable, i.e. X is countably
closed in Y .

The point (a) follows from [N, Theorem 2.1], see also [K4, Lemma 1.6]. The
point (b) is obvious.

Lemma 2. Let K be a space, A and B two Corson countably compact subsets of
K andM be any subset of K. If M ∩A∩B is dense inM , then M ∩A =M ∩B.

This is an easy consequence of Lemma 1. It was observed in [K2, Lemma 2.15].

Lemma 3. Let K be a regular space and A ⊂ K a dense countably compact

subset. Then G ∩ A is dense in G for each Gδ set G ⊂ K.

This well-known result is proved for example in [K4, Lemma 1.11].

Lemma 4. Let K be a regular space, G a Gδ subset of K and x ∈ G. Then
there is a closed Gδ subset H ⊂ K such that x ∈ H ⊂ G.

This lemma is an easy consequence of the definition of regular spaces.

Lemma 5. Let K be a compact space containing no copy of [0, ω2] and B ⊂ K
a dense subset which is a continuous image of a Corson countably compact space.

Then for each x ∈ K there is C ⊂ B with cardinality at most ℵ1 such that x ∈ C.

Proof: We will use ideas of the proof of [K3, Theorem 1]. Let f : A → B be a
continuous surjection where A ⊂ Σ(Γ) is a Corson countably compact space. As,
due to [K4, Lemma 1.8 and Proposition 1.9], A = βA (the closure is taken in RΓ),
there is a continuous extension g : A → K of f . For any uncountable cardinal
number κ put

Aκ = {x ∈ A : card suppx < κ}.

Then Aℵ1
= A. We will prove that g(Aℵ2

) = K.
Suppose on the contrary that g(Aℵ2

) $ K. Then we can put

τ̃ = min{κ : g(Aℵ2
) $ g(Aκ)}.

Obviously such a τ̃ exists, τ̃ > ℵ2 and τ̃ is not a limit cardinal. Hence τ̃ = τ+ for
some cardinal τ ≥ ℵ2. Let x ∈ g(Aτ+) \ g(Aℵ2

) and y ∈ Aτ+ satisfy g(y) = x.

Then clearly y ∈ Aτ+ \Aτ , i.e. card supp y = τ . Let ϕ : [0, τ ]→ A be a continuous
injection satisfying conditions

(i) card suppϕ(α) ≤ max{cardα,ℵ0} for all α ≤ τ ;
(ii) ϕ(τ) = y.
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Such a mapping exists due to [K3, Theorem 2].
If τ is singular, then there is an infinite cardinal λ < τ and cardinals (θγ)γ<λ

with θγ < τ for γ < λ and τ = sup
γ<λ

θγ . By the definition of τ we have g(ϕ(θγ)) ∈

g(Aℵ2
). Hence there are zγ ∈ Aℵ2

, γ < λ with g(zγ) = g(ϕ(θγ)). Then clearly

{zγ : γ < λ} ⊂ Aλ+ .

The image by g of the set on the left-hand side is compact and hence

x ∈ {g(ϕ(θγ)) : γ < λ} ⊂ g
(

{zγ : γ < λ}
)

⊂ g(Aλ+).

Moreover, g(Aλ+) = g(Aℵ2
), hence x ∈ g(Aℵ2

), a contradiction.
Hence τ is a regular cardinal. Put h = g◦ϕ. At first let us note that x = h(τ) /∈

h([0, τ)). Hence h−1(k) is bounded in [0, τ) for each k ∈ h([0, τ)). Therefore, by
regularity of τ , the set h−1(h([0, η])) is bounded in [0, τ) for each η < τ . So we
can choose by transfinite induction ordinals ηα < τ for α < τ such that

(a) ηα+1 > suph−1(h([0, ηα]));
(b) ηα = sup

β<α
ηβ for α < τ limit.

Now it is clear that K contains a homeomorphic copy of [0, τ ] and thus also
that of [0, ω2]. But this contradicts our assumptions.
Therefore g(Aℵ2

) = K. Choose x ∈ K arbitrarily and find y ∈ Aℵ2
with

g(y) = x. If supp y is countable then y ∈ A, thus x ∈ B and we can take
C = {x}. If card supp y = ℵ1 then there is (by [K1, Proposition 2.7] or also by
[K3, Theorem 2]) a continuous injection φ : [0, ω1] → A with φ([0, ω1)) ⊂ A and
φ(ω1) = y. Therefore we can take C = g(φ([0, ω1))). �

Proof of Theorem 2

Let K be a compact space such that K =
⋃

∞
i=1Bi where Bi is, for each i ∈ N,

a dense subset of K which is a Corson countably compact space. If all the Bi’s
are equal, K is Corson by definition. Hence suppose that at least two of them are
different, say B1 6= B2. The proof will be done is several steps.

Step 1. K contains no copy of [0, ω2].

Suppose, on the contrary, that there is a homeomorphic copy L of [0, ω2]
such that L ⊂ K. As K =

⋃

∞
i=1Bi, there is some i with the cardinality of

Bi ∩ L being ℵ2. But Bi ∩ L is homeomorphic to a Corson countably com-
pact subspace of [0, ω2] and hence, by [K5, Theorem 2.5], it has cardinality at
most ℵ1, a contradiction. (Recall the basic idea of the proof of the quoted theo-
rem: Suppose that M ⊂ [0, ω2] is a Corson countably compact subset of cardina-
lity ℵ2. Then it is easy to show that M contains a closed subset homeomorphic
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to M ′ = {α < ω2; α is either isolated or of countable cofinality}. Hence M ′ is
Corson. But this can be easily led to a contradiction.)

Step 2. We can suppose without loss of generality that K has weight ℵ1.

Put M1 = {x}, where x ∈ B2 \ B1. As K contains no copy of [0, ω2], we can,
due to Lemma 5, construct by induction a sequence of setsMk ⊂ K such that each
Mk has cardinality at most ℵ1 and Mk ⊂ Bi ∩ Mk+1 for all i, k ∈ N. Put H =
⋃

∞
k=1Mk. ThenH∩Bi is dense inH for all i ∈ N andH∩B1 6= H∩B2. Moreover,

H has weight ℵ1. Indeed, H ∩B1 is a Corson countably compact space of density

at most ℵ1. Hence it is homeomorphic to some C ⊂ Σ([0, ω1))∩ [0, 1]
[0,ω1). Then

clearly C has weight at most ℵ1. Further C = βC by [K4, Proposition 1.9].
Therefore H is a continuous image of C and thus the weight of H is at most ℵ1.
On the other hand, the weight of H cannot be countable, otherwise H would be
metrizable and hence H ∩ B1 = H ∩ B2 = H .

Step 3. We can suppose without loss of generality that for any pair i, j ∈ N
either Bi = Bj or Bi ∩ Bj = ∅.

Let η = (η1, η2) : N → N2 be a bijection. Due to Lemma 2 we can construct
by induction nonempty open sets Vk, k ∈ N such that

• Vk+1 ⊂ Vk for all k ∈ N;
• B1 ∩ B2 ∩ V1 = ∅;
• Bη1(k) ∩ Vk = Bη2(k) ∩ Vk or Bη1(k) ∩ Bη2(k) ∩ Vk = ∅ for all k ∈ N.

As B1 6= B2, it follows from Lemma 2 that B1 ∩B2 is not dense in K. Hence we
can choose V1 satisfying the appropriate condition. We continue by the obvious
induction using Lemma 2.

Put H =
⋂

k∈N
Vk. Then H is clearly a nonempty closed Gδ subset of K. Then

Bi ∩H is dense in H for every i ∈ N (by Lemma 3). Moreover, H is the union of
these Corson countably compact spaces, any two of them are either identical or
disjoint and at least two of them are different.

As H ⊂ K, the weight of H is at most ℵ1. As B1 ∩ B2 ∩ H = ∅, H cannot be
metrizable and hence the weight of H is equal to ℵ1.

Step 4. Assume that K has weight ℵ1 and B1, B2, . . . are pairwise disjoint
dense Corson countably compact spaces. Then K \

⋃

∞
i=1Bi 6= ∅.

For i ∈ N let Ai ⊂ Σ([0, ω1)) be homeomorphic to Bi and let Li denote the

closure of Ai in RΓ. Then Li is compact and Li = βAi (see [K4, Lemma 1.8
and Proposition 1.9]). So there is a continuous surjection gi : Li → K such that
gi ↾ Ai is a homeomorphism of Ai onto Bi. Then it clearly holds gi(Ai) = Bi and
gi(Li \ Ai) = K \ Bi.

We put F0 = K. Further we will construct points xi
γ ∈ Ai, nonempty closed

Gδ sets Gi
γ ⊂ Li, Hi

γ ⊂ K and Fγ ⊂ K for 1 ≤ γ < ω1 and i ∈ N and points
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yi
γ ∈ Li for 1 ≤ γ < ω1 isolated and i ∈ N in the following way.

(i) y1γ+1 ∈ g−11 (Fγ) \ A1 for all γ < ω1.

(ii) G1γ+1 = {x ∈ g−11 (Fγ) : x ↾ [0, γ] = y1γ+1 ↾ [0, γ]

& ∀δ ∈ (0, γ] : x ↾ suppx1δ = y1γ+1 ↾ suppx1δ} for all γ < ω1.

(iii) xi
γ+1 ∈ Gi

γ+1 ∩ Ai \ {x
i
δ : 0 < δ ≤ γ} for all γ < ω1 and i ∈ N.

(iv) gi(x
i
γ+1) ∈ Hi

γ+1 ⊂ K \ gi(Li \ Gi
γ+1) for all γ < ω1 and i ∈ N.

(v) yi+1
γ+1 ∈ g−1i+1(gi(x

i
γ+1)) for all γ < ω1 and i ∈ N.

(vi) Gi+1
γ+1 = {x ∈ g−1i+1(H

i
γ+1) : x ↾ [0, γ] = yi+1

γ+1 ↾ [0, γ] & ∀δ ∈ (0, γ] :

x ↾ suppxi+1
δ
= yi+1

γ+1 ↾ suppxi+1
δ

} for all γ < ω1 and i ∈ N.

(vii) Fγ+1 =
⋂

∞
i=1Hi

γ+1 for all γ < ω1.

(viii) xi
λ = limγ<λ xi

γ for all λ < ω1 limit and i ∈ N.
(ix) Gi

λ =
⋂

γ<λ Gi
γ for all λ < ω1 limit and i ∈ N.

(x) Fλ = Hi
λ =

⋂

γ<λ Hi
γ =

⋂

γ<λ Fγ for all λ < ω1 limit and i ∈ N.

Let us show that the construction may be done. We can surely put F0 = K.
This is a nonempty closed Gδ subset of K.

Suppose that γ < ω1 and we have already constructed xi
δ , G

i
δ , H

i
δ and Fδ for

δ ∈ (0, γ] and i ∈ N; yi
δ for δ ∈ (0, γ] isolated and i ∈ N.

Choose y1γ+1 as in (i). This is possible, as Fγ is a nonempty Gδ set and hence

(by Lemma 3) we have Fγ ∩ B2 6= ∅, so Fγ \ B1 6= ∅ and thus g−11 (Fγ) \ A1 6= ∅.

Define G1γ+1 as in (ii). Then G1γ+1 is closed and Gδ in L1 as it is of the form

{x ∈ g−11 (Fγ) : x ↾ C = y1γ+1 ↾ C} for a countable set C and g−11 (Fγ) is closed

and Gδ.

Further suppose that k ∈ N and we have constructed xi
γ+1 and Hi

γ+1 for

1 ≤ i < k and yi
γ+1 and Gi

γ+1 for 1 ≤ i ≤ k.

By Lemma 3 the set Gk
γ+1 ∩ Ak is dense in Gk

γ+1. If this intersection were

countable, we would have Gk
γ+1 ⊂ Ak (by Lemma 1(b)). But yk

γ+1 ∈ Gk
γ+1 \ Ak

(this follows from (i) in case k = 1 and from (v) in case k > 1). Therefore

Gk
γ+1 ∩ Ak is uncountable and we can choose xk

γ+1 as in (iii).

As Gk
γ+1 is Gδ and Lk compact, the set K \ gk(Lk \ Gk

γ+1) is a Gδ subset

of K. Moreover, this set contains g(xk
γ+1) as xk

γ+1 ∈ Gk
γ+1 ∩ Ak. Hence, due to

Lemma 4, we can choose a closed Gδ set Hk
γ+1 satisfying (iv). Further, choose

yk+1
γ+1 as in (v) and define Gk+1

γ+1 by (vi). Again Gk+1
γ+1 is a closed Gδ subset of Lk+1

containing yk+1
γ+1.

We have already constructed xk
γ+1, yk

γ+1, Gk
γ+1 and Hk

γ+1 for all k ∈ N.
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Remark that we have

(*) Fγ ⊃ H1γ+1 ⊃ H2γ+1 ⊃ . . . .

Next define Fγ+1 according to (vii). This is clearly a nonempty closed Gδ subset
of K.
Next suppose that λ < ω1 is a limit ordinal and we have constructed xi

γ , G
i
γ ,

Hi
γ and Fγ for all γ ∈ (0, λ) and i ∈ n and yi

γ for γ ∈ (0, λ) isolated and i ∈ N.
Fix i ∈ N. Let us show that the net {xi

γ : γ < λ} converges. Let δ < ω1 be

arbitrary. If δ /∈
⋃

0<γ<λ suppxi
γ , then xi

γ(δ) = 0 for γ ∈ (0, λ) and hence the

net xi
γ(δ) converges to 0. Next suppose δ ∈ suppxi

γ0 for some γ0 ∈ (0, λ). Then

for each γ ∈ (γ0, λ) we have xi
γ ∈ Gi

γ ⊂ Gi
γ0+1
, and hence xi

γ(δ) = yk
γ0+1
(δ).

Thus the net xi
γ(δ), γ ∈ (γ0, λ) is constant and so convergent. This completes

the proof that (viii) can be fulfilled. Moreover, xi
λ ∈ Ai as Ai is countably closed

in Li (Lemma 1(b)). Further, define Gi
λ as in (ix). It is obviously a closed Gδ

set. Further, as xi
γ ∈ Gi

γ for all γ ∈ (0, λ) and the family (Gi
γ : γ ∈ (0, λ)) is a

decreasing family of closed sets, we get xi
λ ∈ Gi

λ.

Finally define Hi
λ and Fλ as in (x). The definition is correct due to (*). More-

over, we have

g−1i (Fλ) =
⋂

γ<λ

g−1i (H
i
γ) ⊂

⋂

γ<λ

Gi
γ = Gi

λ

for all i ∈ N.
This completes the construction.

Fix i ∈ N. In the same way as we proved the existence of xi
λ for λ limit, we

can prove that the net xi
γ , γ < ω1 converges to some xi ∈ Li. This time we

have xi /∈ Ai. Indeed, the mapping φ : [1, ω1] → Li defined by φ(α) = xi
α for

α ∈ [1, ω1) and φ(ω1) = xi is continuous and φ ↾ [1, ω1) is one-to-one due to
condition (iii). Thus, there is α < ω1 such that φ is one-to-one on [α, ω1]. Then
φ([α, ω1]) is homeomorphic to [0, ω1] and therefore it cannot be contained in Ai.
As φ([α, ω1)) ⊂ Ai, we get xi = φ(ω1) /∈ Ai.

Let us show that the net yi
γ , γ ∈ (0, ω1) isolated, converges also to xi. Fix

arbitrary δ < ω1. For any γ ≥ δ we have xi
γ+1 ∈ Gi

γ+1 and hence xi
γ+1(δ) =

yi
γ+1(δ). Therefore xi(δ) = limγ xi

γ+1(δ) = limγ yi
γ+1(δ).

Further, we claim that g1(x
1) = g2(x

2) = . . . . Indeed, let i ∈ N be arbitrary.
Then

gi+1(x
i+1) = lim

γ
gi+1(y

i+1
γ+1) = limγ

gi(x
i
γ) = gi(x

i).

We conclude by noting that gi(x
i) /∈ Bi (as xi /∈ Ai) for all i ∈ N.
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Step 5. Assume that K has weight ℵ1, n > 1 and B1, . . . , Bn are pairwise

disjoint dense Corson countably compact spaces. Then K \ (B1 ∪ · · · ∪ Bn) 6= ∅.

We can perform the same construction as in Step 4 with the obvious changes
— we replace the set N by {1, . . . , n} (in (iii), (iv), (vii)–(x)) or by {1, . . . , n− 1}
(in (v) and (vi)). In this way we obtain the same result.

The proof is now completed. By Step 2 and Step 3 we can suppose that K has
weight ℵ1, B1 6= B2 and that for any i, j ∈ N we have Bi ∩ Bj = ∅ or Bi = Bj .
Step 5 shows that K cannot be covered by finitely many of Bi’s. Therefore we can
suppose that all the Bi’s are pairwise disjoint. Step 4 then yields a contradiction.
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