Monotonicity of the maximum of inner product norms

Boris Lavrič

Abstract. Let \mathbb{K} be the field of real or complex numbers. In this note we characterize all inner product norms p_1, \ldots, p_m on \mathbb{K}^n for which the norm $x \mapsto \max\{p_1(x), \ldots, p_m(x)\}$ on \mathbb{K}^n is monotonic.

 $Keywords\colon$ finite dimensional vector space, monotonic norm, absolute norm, inner product norm

Classification: 52A21

1. Introduction

Let \mathbb{K}^n be the *n*-dimensional real or complex vector space of column vectors $x = (x_1, \ldots, x_n)^T$, and let $\mathbb{K}^{n,n}$ be the space of all $n \times n$ matrices with entries in \mathbb{K} . The space \mathbb{K}^n is endowed with the standard inner product $(x, y) \mapsto y^* x$, where y^* is the conjugate transpose of y, and with the standard vector space topology. If C is a positive definite matrix, the functional $p_C : x \longmapsto (x^* C x)^{1/2}$ is an inner product norm on \mathbb{K}^n . As is well known, each norm on \mathbb{K}^n generated by an inner product is of the form p_C for some positive definite matrix $C \in \mathbb{K}^{n,n}$.

A norm p on \mathbb{K}^n is called *monotonic* if $|x| \leq |y|$ (componentwise) implies $p(x) \leq p(y)$ for all $x, y \in \mathbb{K}^n$, and *absolute* if p(x) = p(|x|) for all $x \in \mathbb{K}^n$. Monotonic norms were introduced in [1] and have been extensively studied. It is well known that monotonicity and absoluteness are equivalent, and easy to see that a norm p is absolute if and only if $p(Dx) \leq p(x)$ for all $x \in \mathbb{K}^n$ and all $D \in \Delta_n(\mathbb{K})$, where $\Delta_n(\mathbb{K})$ denotes the set of all diagonal matrices $D = \text{diag}(d_1, \ldots, d_n) \in \mathbb{K}^{n,n}$ such that $|d_i| = 1$ for all i. A list of characterizations of monotonic norms is contained in [2] and [3].

Let p_1, \ldots, p_m be norms on \mathbb{K}^n . If all p_i are monotonic, then the norm $\max\{p_1, \ldots, p_m\}$ is monotonic as well. The converse fails even in case when all p_i are inner product norms. In this paper we characterize all inner product norms p_1, \ldots, p_m for which the norm $p = \max\{p_1, \ldots, p_m\}$ is monotonic. More precisely, if $p_i = p_{A_i}$ with $A_i \in \mathbb{K}^{n,n}$ positive definite, then we describe all A_i for which p is monotonic. The special case m = 2 is considered in [4, Theorem 7], where a similar characterization is obtained with a completely different method that is not applicable to the case m > 2.

Research supported by the Ministry of Education, Science and Sport of Slovenia, Research program: Analysis and Geometry P1–0291.

2. Results

From now on let $p_i = p_{A_i} : x \mapsto (x^*A_ix)^{1/2}, i = 1, \ldots, m$, be given inner product norms on \mathbb{K}^n defined by positive definite matrices $A_i \in \mathbb{K}^{n,n}$, and let p be the norm $p = \max\{p_1, \ldots, p_m\}$. For every nonempty $X \subseteq \mathbb{K}^n$ let

$$I(X) = \{ i \in \{1, \dots, m\} : p_i(x) = p(x) \text{ for all } x \in X \},\$$

and for each $x \in \mathbb{K}^n$ denote $I(x) = I(\{x\})$. It is clear that the sets I(x) are nonempty. The following auxiliary result gives a useful information about the sets I(X).

Lemma 1. Let $p = \max\{p_1, \ldots, p_m\}$, and let \mathcal{V} be the collection of all nonempty open subsets $V \subseteq \mathbb{K}^n$.

- (a) For every $U \in \mathcal{V}$ there exists a $V \in \mathcal{V}$ such that $V \subseteq U$ and I(V) is nonempty.
- (b) If $J = \bigcup_{V \in \mathcal{V}} I(V)$, then $p = \max\{p_j : j \in J\}$.

PROOF: (a) First, let us show that for every $x_0 \in \mathbb{K}^n$ there exists a neighborhood U_0 of x_0 such that

(1)
$$I(x) \subseteq I(x_0)$$
 for all $x \in U_0$.

If $i \in \{1, \ldots, m\} \setminus I(x_0)$, then $p_i(x_0) < p(x_0)$. The continuity of norms implies that there is a neighborhood U_0 of x_0 such that $p_i(x) < p(x)$ for all $x \in U_0$. Therefore $i \notin I(x)$ for every $x \in U_0$, and hence (1) follows.

Suppose $U \in \mathcal{V}$ does not satisfy (a). Take any $x_1 \in U$ and choose an open neighborhood U_1 of x_1 such that $U_1 \subseteq U$ and

$$I(x) \subseteq I(x_1)$$
 for all $x \in U_1$.

If $I(x) = I(x_1)$ for all $x \in U_1$, then $I(U_1) = I(x_1)$, and hence $V = U_1$ satisfies (a). Since by assumption this is not the case, there exists an $x_2 \in U_1$ such that $I(x_2) \subsetneq I(x_1)$. Choose an open neighborhood U_2 of x_2 such that $U_2 \subseteq U_1$ and

$$I(x) \subseteq I(x_2)$$
 for all $x \in U_2$.

Proceeding like before we get an infinite sequence $I(x_1) \supseteq I(x_2) \supseteq \dots$ Since $I(x_1)$ is finite, this is impossible, hence (a) follows.

(b) Suppose $p(x_0) > \max\{p_j(x_0) : j \in J\}$ for some $x_0 \in \mathbb{K}^n$. Then there exists a $U \in \mathcal{V}$ such that $p(x) > \max\{p_j(x) : j \in J\}$ for all $x \in U$. It follows that $I(V) = \emptyset$ for every $V \in \mathcal{V}$ such that $V \subseteq U$. This contradicts (a), thus $p = \max\{p_j : j \in J\}$.

The set J in Lemma 1 can be replaced by any minimal subset $M \subseteq \{1, \ldots, m\}$ for which $p = \max\{p_i : i \in M\}$. For the proof it suffices to apply Lemma 1 with M instead of $\{1, \ldots, m\}$.

If $A \in \mathbb{K}^{n,n}$ is positive definite, let from now on

$$\mathcal{F}_A = \{ D^* A D : D \in \Delta_n(\mathbb{K}) \}.$$

Lemma 2. Let $p = \max\{p_1, \ldots, p_m\}$, and let J be as in Lemma 1. Then the following statements are equivalent:

- (a) *p* is monotonic;
- (b) $\mathcal{F}_{A_i} \subseteq \{A_1, \ldots, A_m\}$ for each $j \in J$.

PROOF: (a) \Rightarrow (b). Suppose (a), and let $j \in J$, $D \in \Delta_n(\mathbb{K})$. Lemma 1 ensures the existence of a nonempty open subset $U_0 \subseteq \mathbb{K}^n$ such that $p_j(x) = p(x)$ for all $x \in U_0$. Since p is monotonic, $p_j(Dx) = p(Dx) = p(x)$ for every $x \in U = D^*(U_0)$. The set U is nonempty and open, hence by Lemma 1 there exists a nonempty open subset $V \subseteq U$ and a $k \in J$ such that $p(x) = p_k(x)$ for all $x \in V$. It follows that $p_j(Dx) = p_k(x)$ and therefore

$$x^*D^*A_jDx = x^*A_kx$$
 for all $x \in V$.

Let us prove that this implies $A_k = D^*A_jD$. Put $A = D^*A_jD - A_k$, notice that $A^* = A$, and take any $x_0 \in V$, $y \in \mathbb{K}^n$. Then there exists a $\delta > 0$ such that for every positive $\epsilon < \delta$ we have $x_0 + \epsilon y \in V$, and therefore $(x_0 + \epsilon y)^*A(x_0 + \epsilon y) = 0$. It is clear that $x_0^*Ax_0 = 0$, and hence $x_0^*Ay + y^*Ax_0 + \epsilon y^*Ay = 0$ for every positive $\epsilon < \delta$. It follows that $y^*Ay = 0$ for all $y \in \mathbb{K}^n$, thus A = 0 and therefore $A_k = D^*A_jD$.

(b) \Rightarrow (a). Suppose (b) and let $x \in \mathbb{K}^n$, $D \in \Delta_n(\mathbb{K})$. Lemma 1(b) ensures that there is some $j \in J$ such that $p(Dx) = p_j(Dx)$. It follows from (b) that there exists a $k \in J$ such that $A_k = D^*A_jD$, hence

$$p_j(Dx) = ((Dx)^* A_j Dx)^{1/2} = (x^* A_k x)^{1/2} = p_k(x) \le p(x).$$

Therefore, $p(Dx) \leq p(x)$ for all $x \in \mathbb{K}^n$ and all $D \in \Delta_n(\mathbb{K})$, and hence p is monotonic.

Lemma 3. Let $A \in \mathbb{K}^{n,n}$ be positive definite.

- (a) If $\mathbb{K} = \mathbb{C}$, then \mathcal{F}_A is finite if and only if A is diagonal. Both conditions are equivalent to $\mathcal{F}_A = \{A\}$.
- (b) If $\mathbb{K} = \mathbb{R}$, then \mathcal{F}_A has $2^{n-\kappa(A)}$ elements, where $\kappa(A)$ is the number of connected components of the directed graph $\Gamma(A)$.

PROOF: (a) If A is diagonal, then $D^*AD = A$ for all $D \in \Delta_n(\mathbb{C})$, and hence $\mathcal{F}_A = \{A\}.$

Suppose that A is not diagonal, and take a nonzero entry a_{ij} of A such that $i \neq j$. Let $(\delta_k)_{k=1}^{\infty}$ be a sequence of different complex numbers of absolute value 1, and let

 $D_k = I_n + (\delta_k - 1)E_{jj} \in \mathbb{C}^{n,n}, \ k = 1, 2, \dots,$

where I_n is the identity and E_{ii} is an elementary matrix. Then $D_k \in \Delta_n(\mathbb{C})$ and

$$(D_k^*AD_k)_{ij} = \delta_k a_{ij}, \quad k = 1, 2, \dots,$$

hence \mathcal{F}_A contains an infinite number of different matrices $D_k^*AD_k$.

(b) We shall prove first that the subset

$$\Delta_A = \{ D \in \Delta_n(\mathbb{R}) : D^* A D = A \}$$

of $\Delta_n(\mathbb{R})$ has $2^{\kappa(A)}$ elements.

It is clear that a $D = \text{diag}(d_1, \ldots, d_n) \in \Delta_n(\mathbb{R})$ satisfies $D^*AD = A$ if and only if $d_i d_j a_{ij} = a_{ij}$ for all $i, j \in \{1, \ldots, n\}$. This implies that $D \in \Delta_n(\mathbb{R})$ belongs to Δ_A if and only if

 $d_i = d_j$ for all i, j such that $a_{ij} \neq 0$.

It follows that $d_i \in \{1, -1\}$ depends only on the connected component of $\Gamma(A)$, and that therefore Δ_A has $2^{\kappa(A)}$ elements.

Observe now that Δ_A is a subgroup of the multiplicative group $\Delta_n(\mathbb{R})$. Since for each $D_1, D_2 \in \Delta_n(\mathbb{R})$ we have the equivalence

$$D_1^*AD_1 = D_2^*AD_2 \iff D_1D_2^{-1} \in \Delta_A,$$

the map $\phi : D \longrightarrow D^*AD$ is constant on equivalence classes from the quotient group $\Delta_n(\mathbb{R})/\Delta_A$. It may be easily verified that ϕ generates a bijection $\Delta_n(\mathbb{R})/\Delta_A \longrightarrow \mathcal{F}_A$, hence \mathcal{F}_A has $2^{n-\kappa(A)}$ elements.

Theorem 4. The norm $p = \max\{p_1, \ldots, p_m\}$ is monotonic if and only if there exists a subset $J \subseteq \{1, \ldots, m\}$ such that $p = \max\{p_j : j \in J\}$ and one of the following conditions is satisfied.

- (a) If $\mathbb{K} = \mathbb{C}$, then A_j is diagonal for every $j \in J$;
- (b) If $\mathbb{K} = \mathbb{R}$, then $\{A_j : j \in J\}$ is a union of a pairwise disjoint sets of the form $\mathcal{F}_A = \{D^*AD : D \in \Delta_n(\mathbb{R})\}$ each consisting of $2^{n-\kappa(A)}$ elements.

PROOF: Suppose that p is monotonic and put $J = \bigcup_{V \in \mathcal{V}} I(V)$. Then Lemma 2 ensures that $\{A_j : j \in J\}$ is a union of sets of the form \mathcal{F}_A , $A \in \{A_1, \ldots, A_m\}$. If $\mathbb{K} = \mathbb{C}$, then by Lemma 3(a) each A_j , $j \in J$, is diagonal. If $\mathbb{K} = \mathbb{R}$, then by Lemma 3(b) each \mathcal{F}_A has $2^{n-\kappa(A)}$ elements. It can be easily verified that the sets \mathcal{F}_{A_i} and \mathcal{F}_{A_j} are either equal or disjoint (they are the equivalence classes of $\{A_j : j \in J\}$ for the equivalence relation $B \sim A$ if $B \in \mathcal{F}_A$).

The converse is clear.

Theorem 4 shows how to form all monotonic norms that are maximum of inner product norms. In the case $\mathbb{K} = \mathbb{C}$ such norms are exactly the norms $p = \max\{p_1, \ldots, p_m\}$ with diagonal positive definite A_1, \ldots, A_m , while in the case $\mathbb{K} = \mathbb{R}$ such norm are the norms $q = \max\{q_1, \ldots, q_m\}$ with each q_i of the form $q_i = \max\{p_A : A \in \mathcal{F}_{A_i}\}$ for some positive definite $A_i \in \mathbb{R}^{n,n}$. To prove this observation it suffices to apply Theorem 4 and use the fact that all norms p_i and q_i are monotonic.

The following characterization facilitates to check the monotonicity of the maximum of inner product norms. **Theorem 5.** Let $p = \max\{p_1, \ldots, p_m\}$, and let K be the set of all indices $k \in \{1, \ldots, m\}$ for which $\mathcal{F}_{A_k} \subseteq \{A_1, \ldots, A_m\}$ (if $\mathbb{K} = \mathbb{C}$, then K consists of all indices k for which A_k is diagonal). Then p is monotonic if and only if K is nonempty and

(2)
$$p_i \leq \max\{p_k : k \in K\}$$
 for each $i \in \{1, \dots, m\} \setminus K$.

PROOF: First, notice that if $K \neq \emptyset$, then (2) is equivalent to $p = \max\{p_k : k \in K\}$.

Now, suppose that p is monotonic. Then by Lemma 2 $J \subseteq K$, thus K is nonempty. If (2) is not satisfied, take an $x_0 \in \mathbb{K}^n$ such that $p(x_0) > \max\{p_k(x_0) : k \in K\}$. A continuity argument gives an open neighborhood U of x_0 such that

$$p(x) > \max\{p_k(x) : k \in K\}$$
 for all $x \in U$.

Lemma 1 ensures that there exists a nonempty open $V \subseteq U$ such that $I(V) \neq \emptyset$. It follows that each $j \in I(V)$ satisfies

$$p_i(x) = p(x) > \max\{p_k(x) : k \in K\}$$
 for all $x \in V$.

Therefore $j \notin K$, and hence $\mathcal{F}_{A_j} \not\subseteq \{A_1, \ldots, A_m\}$. By Lemma 2 this contradicts the monotonicity of p, hence (2) follows.

To show the converse suppose K is nonempty. Then (2) gives $p = \max\{p_k : k \in K\}$, hence Lemma 2 ensures that p is monotonic.

It follows from Theorem 5 that if $\mathbb{K} = \mathbb{C}$, then A_k is diagonal for each $k \in K$, and that if $\mathbb{K} = \mathbb{R}$, then $2^{n-\kappa(A_k)} \leq m$ for each $k \in K$. If $m \leq 3$ and $k \in K$, then $\kappa(A_k)$ equals n or n-1. In the first case A_k is diagonal, while in the second case A_k is of the form D + E, where D is diagonal, and

(3)
$$E = \lambda(E_{rs} + E_{sr}), \quad \lambda \in \mathbb{R} \setminus \{0\}, \quad r \neq s.$$

For m = 2 this implies [4, Theorem 7], while for m = 3 we get the following result.

Corollary 6. The norm $p = \max\{p_1, p_2, p_3\}$ is monotonic if and only if one of the following conditions in which $\{i, j, k\} = \{1, 2, 3\}$ is satisfied:

- (a) A_1, A_2, A_3 are diagonal;
- (b) A_i , A_j are diagonal, and $p_k \leq \max\{p_i, p_j\}$;
- (c) A_i is diagonal, $A_i A_j$ and $A_i A_k$ are positive semidefinite;
- (d) $\mathbb{K} = \mathbb{R}, A_i = D + E, A_j = D E$ with D diagonal, E of the form (3), and A_k is diagonal or $p_k \leq \max\{p_i, p_j\}$.

B. Lavrič

References

- Bauer F.L., Stoer J., Witzgall C., Absolute and monotonic norms, Numer. Math. 3 (1961), 257–264.
- [2] Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, New York, 1985.
- [3] Johnson C.R., Nylen P., Monotonicity properties of norms, Linear Algebra Appl. 148 (1991), 43–58.
- [4] Lavrič B., Monotonicity and *orthant-monotonicity of certain maximum norms, Linear Algebra Appl. 367 (2003), 29–36.

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

E-mail: Boris.Lavric@fmf.uni-lj.si

(Received February 28, 2004)