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Monotonicity of the maximum of inner product norms

BoRIS LAVRIC

Abstract. Let K be the field of real or complex numbers. In this note we characterize all
inner product norms p1, ... , pm on K" for which the norm  — max{pi(z),... ,pm(x)}
on K" is monotonic.
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1. Introduction

Let K™ be the n-dimensional real or complex vector space of column vectors
z = (z1,...,2,)T, and let K™" be the space of all n x n matrices with entries
in K. The space K" is endowed with the standard inner product (z,y) — y*z,
where y* is the conjugate transpose of y, and with the standard vector space
topology. If C' is a positive definite matrix, the functional pg : x — (x*Cx)1/2
is an inner product norm on K". As is well known, each norm on K" generated
by an inner product is of the form po for some positive definite matrix C' € K™".

A norm p on K" is called monotonic if || < |y| (componentwise) implies p(z) <
p(y) for all z,y € K", and absolute if p(x) = p(|z|) for all x € K”. Monotonic
norms were introduced in [1] and have been extensively studied. It is well known
that monotonicity and absoluteness are equivalent, and easy to see that a norm p
is absolute if and only if p(Dz) < p(z) for all x € K" and all D € A, (K), where
Ay (K) denotes the set of all diagonal matrices D = diag(dy,... ,dn) € K™ such
that |d;| = 1 for all 4. A list of characterizations of monotonic norms is contained
in [2] and [3].

Let p1,...,pm be norms on K". If all p; are monotonic, then the norm
max{pi,... ,pm} is monotonic as well. The converse fails even in case when
all p; are inner product norms. In this paper we characterize all inner product
norms pi, ... ,Pm for which the norm p = max{pi,... ,pm} is monotonic. More

precisely, if p; = pa, with A; € K™" positive definite, then we describe all A; for
which p is monotonic. The special case m = 2 is considered in [4, Theorem 7],
where a similar characterization is obtained with a completely different method
that is not applicable to the case m > 2.
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2. Results

From now on let p; = py, : © +— (:C*Ai:v)lﬂ, i =1,...,m, be given inner
product norms on K™ defined by positive definite matrices A; € K™, and let p
be the norm p = max{pi,... ,pm}. For every nonempty X C K" let

I(X)={ie{l,... ,m}:pj(x) =p(z) forall e X},

and for each z € K" denote I(z) = I({z}). It is clear that the sets I(x) are
nonempty. The following auxiliary result gives a useful information about the
sets I(X).
Lemma 1. Let p = max{pi,... ,pm}, and let V be the collection of all nonempty
open subsets V' C K".

(a) For every U € V there exists a V € V such that V. C U and I(V) is

nonempty.
(b) If J=UyepI(V), then p=max{p;:j € J}.

PROOF: (a) First, let us show that for every xg € K™ there exists a neighborhood
Up of zg such that

(1) I(z) C I(xg) for all z € Uyp.

Ifie{l,...,m}\I(xg), then p;(xg) < p(xg). The continuity of norms implies
that there is a neighborhood Uy of zg such that p;(x) < p(x) for all z € Uy.
Therefore ¢ ¢ I(x) for every = € Up, and hence (1) follows.

Suppose U € V does not satisfy (a). Take any x; € U and choose an open
neighborhood Uj of x1 such that Uy C U and

I(x) C I(x1) for all z € Uy.

If I(x) = I(xq1) for all x € Uy, then I(Uy) = I(x1), and hence V = Uj satisfies (a).
Since by assumption this is not the case, there exists an xo € U; such that
I(x2) S I(21). Choose an open neighborhood Uz of 2 such that Uz C Uy and

I(x) C I(xz2) for all z € Us.
Proceeding like before we get an infinite sequence I(z1) 2 I(z2) 2 ... Since I(z1)
is finite, this is impossible, hence (a) follows.

(b) Suppose p(xg) > max{pj(xg) : j € J} for some zg € K". Then there
exists a U € V such that p(r) > max{p;(z) : j € J} for all z € U. It follows
that I(V) = () for every V € V such that V C U. This contradicts (a), thus
p = max{p;:j € J}. O

The set J in Lemma 1 can be replaced by any minimal subset M C {1,... ,m}
for which p = max{p; : i € M}. For the proof it suffices to apply Lemma 1 with
M instead of {1,... ,m}.

If A € K™™ is positive definite, let from now on

Fu={D*AD: D € Ap(K)}.
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Lemma 2. Let p = max{pi1,... ,pm}, and let J be as in Lemma 1. Then the
following statements are equivalent:

(a) p is monotonic;
(b) Fa; C{A1,...,Am} for each j € J.

PROOF: (a)=(b). Suppose (a), and let j € J, D € A,(K). Lemma 1 ensures
the existence of a nonempty open subset Uy C K" such that p;(z) = p(z) for all
x € Up. Since p is monotonic, p;(Dx) = p(Dx) = p(x) for every x € U = D*(Up).
The set U is nonempty and open, hence by Lemma 1 there exists a nonempty
open subset V C U and a k € J such that p(z) = pg(z) for all x € V. It follows
that p;(Dx) = pi(z) and therefore

t*D*AjDx = 2*Apx forall z € V.

Let us prove that this implies Ay, = D*A;D. Put A = D*A; D~ Ay, notice that
A* = A, and take any zg € V, y € K™. Then there exists a § > 0 such that for
every positive € < § we have xg+ ey € V, and therefore (zg + ey)* A(xg +ey) = 0.
It is clear that zjAzp = 0, and hence zjAy + y*Axg + ey* Ay = 0 for every
positive € < §. It follows that y* Ay = 0 for all y € K", thus A = 0 and therefore
A = D*A;D.

(b) = (a). Suppose (b) and let x € K™, D € A, (K). Lemma 1(b) ensures that
there is some j € J such that p(Dx) = pj(Dx). It follows from (b) that there
exists a k € J such that Ay, = D*A; D, hence

pj(Dz) = ((Dz)*A; D)% = (2 A2)'/? = py() < p(a).

Therefore, p(Dz) < p(z) for all x € K" and all D € Ap(K), and hence p is
monotonic. 0

Lemma 3. Let A € K™" be positive definite.
(a) If K= C, then F4 is finite if and only if A is diagonal. Both conditions
are equivalent to Fq = {A}.
(b) If K = R, then F4 has 2"~*(4) elements, where r(A) is the number of
connected components of the directed graph T'(A).

Proor: (a) If A is diagonal, then D*AD = A for all D € A,(C), and hence
Fa={A}.
Suppose that A is not diagonal, and take a nonzero entry a;; of A such that
i # j. Let (6;)32, be a sequence of different complex numbers of absolute value 1,
and let
Dy ZIn-i-(ék _1)Ejj eC", k=1,2,...,

where I, is the identity and Ej; is an elementary matrix. Then Dy, € A, (C) and

(D;;A.Dk)w = 5kaij, k= 1, 2, ey
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hence F4 contains an infinite number of different matrices D} ADj,.
(b) We shall prove first that the subset

Ay = {D € Ap(R) : D*AD = A}

of An(R) has 25(4) elements.

It is clear that a D = diag(dy,... ,dn) € Ap(R) satisfies D*AD = A if and
only if d;dja;; = a;; for all 4,5 € {1,...,n}. This implies that D € Ap(R)
belongs to A 4 if and only if

d; = dj; for all 4,5 such that a;; # 0.

It follows that d; € {1,—1} depends only on the connected component of I'(A4),
and that therefore A 4 has 25(4) elements.

Observe now that A 4 is a subgroup of the multiplicative group A, (R). Since
for each D1, Dy € Ay, (R) we have the equivalence

DiADy = D5ADy <= D1Dy' € Ay,

the map ¢ : D —— D*AD is constant on equivalence classes from the quo-
tient group Ay, (R)/A4. It may be easily verified that ¢ generates a bijection
Ap(R)/A 4 — Fya, hence Fy has 27— (4) elements. O

Theorem 4. The norm p = max{pi,...,pm} is monotonic if and only if there
exists a subset JJ C {1,...,m} such that p = max{p; : j € J} and one of the
following conditions is satisfied.
(a) If K= C, then A; is diagonal for every j € J;
(b) If K =R, then {A; : j € J} is a union of a pairwise disjoint sets of the
form Fy = {D*AD : D € A,(R)} each consisting of 2"~%(4) elements.

PROOF: Suppose that p is monotonic and put J = [Jy,cy, (V). Then Lemma 2
ensures that {A4; : j € J} is a union of sets of the form F4, A € {A1,...,An}.
If K = C, then by Lemma 3(a) each A;, j € J, is diagonal. If K = R, then by
Lemma 3(b) each F4 has 27 "(4) elements. It can be easily verified that the
sets F4, and F, A; are either equal or disjoint (they are the equivalence classes of
{A; :j € J} for the equivalence relation B ~ A if B € Fj4).

The converse is clear. (|

Theorem 4 shows how to form all monotonic norms that are maximum of
inner product norms. In the case K = C such norms are exactly the norms
p = max{pi,...,pm} with diagonal positive definite A1, ..., Ay, while in the
case K = R such norm are the norms ¢ = max{qi,... ,¢mn} with each ¢; of the
form ¢; = max{py : A € F4,} for some positive definite A; € R™". To prove this
observation it suffices to apply Theorem 4 and use the fact that all norms p; and
q; are monotonic.

The following characterization facilitates to check the monotonicity of the max-
imum of inner product norms.
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Theorem 5. Let p = max{pi1,... ,pm}, and let K be the set of all indices
k € {1,... ,m} for which F4, C {A1,...,An} (if K = C, then K consists of
all indices k for which Ay, is diagonal). Then p is monotonic if and only if K is
nonempty and

(2) p; <max{py : k€ K} foreach ic{l,...,m}\ K.

PRrROOF: First, notice that if K # ), then (2) is equivalent to p = max{p;, : k €
Now, suppose that p is monotonic. Then by Lemma 2 J C K, thus K is

nonempty. If (2) is not satisfied, take an zg € K" such that p(z¢) > max{pg(zo) :

k € K}. A continuity argument gives an open neighborhood U of zg such that

p(z) > max{pg(z) : k € K} forall zeU.

Lemma 1 ensures that there exists a nonempty open V' C U such that I(V') # 0.
It follows that each j € I(V) satisfies

pj(z) = p(x) > max{py(z) : k€ K} forall zeV.

Therefore j ¢ K, and hence Fa; € {A1,..., Am}. By Lemma 2 this contradicts
the monotonicity of p, hence (2) follows.

To show the converse suppose K is nonempty. Then (2) gives p = max{p;, :
k € K}, hence Lemma 2 ensures that p is monotonic. (]

It follows from Theorem 5 that if K = C, then A is diagonal for each k € K,
and that if K = R, then on—r(Ak) <mforeachk € K. If m <3 and k € K, then
k(A}L) equals n or n — 1. In the first case Ay, is diagonal, while in the second case
Ay is of the form D + E, where D is diagonal, and

(3) E =XEys + Es), AeR\ {0}, r#s.

For m = 2 this implies [4, Theorem 7], while for m = 3 we get the following result.

Corollary 6. The norm p = max{pi1, p2,p3} is monotonic if and only if one of
the following conditions in which {3, j, k} = {1, 2,3} is satisfied:
(a) Ay, As, As are diagonal;
(b) A;, Aj are diagonal, and pj, < max{p;,p;};
(c) A; is diagonal, A; — A;j and A; — Ay, are positive semidefinite;
(d) K=R, A; = D+ E, Aj = D — E with D diagonal, E of the form (3),
and Ay, is diagonal or p, < max{p;,p;}.
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