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Monotonicity of the maximum of inner product norms

Boris Lavrič

Abstract. Let K be the field of real or complex numbers. In this note we characterize all
inner product norms p1, . . . , pm on K

n for which the norm x 7−→ max{p1(x), . . . , pm(x)}
on K

n is monotonic.
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duct norm
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1. Introduction

Let Kn be the n-dimensional real or complex vector space of column vectors
x = (x1, . . . , xn)

T, and let Kn,n be the space of all n × n matrices with entries
in K. The space Kn is endowed with the standard inner product (x, y) 7→ y∗x,
where y∗ is the conjugate transpose of y, and with the standard vector space

topology. If C is a positive definite matrix, the functional pC : x 7−→ (x∗Cx)1/2

is an inner product norm on Kn. As is well known, each norm on Kn generated
by an inner product is of the form pC for some positive definite matrix C ∈ Kn,n.
A norm p on Kn is calledmonotonic if |x| ≤ |y| (componentwise) implies p(x) ≤

p(y) for all x, y ∈ Kn, and absolute if p(x) = p(|x|) for all x ∈ Kn. Monotonic
norms were introduced in [1] and have been extensively studied. It is well known
that monotonicity and absoluteness are equivalent, and easy to see that a norm p
is absolute if and only if p(Dx) ≤ p(x) for all x ∈ Kn and all D ∈ ∆n(K), where
∆n(K) denotes the set of all diagonal matrices D = diag(d1, . . . , dn) ∈ Kn,n such
that |di| = 1 for all i. A list of characterizations of monotonic norms is contained
in [2] and [3].
Let p1, . . . , pm be norms on Kn. If all pi are monotonic, then the norm

max{p1, . . . , pm} is monotonic as well. The converse fails even in case when
all pi are inner product norms. In this paper we characterize all inner product
norms p1, . . . , pm for which the norm p = max{p1, . . . , pm} is monotonic. More
precisely, if pi = pAi

with Ai ∈ Kn,n positive definite, then we describe all Ai for
which p is monotonic. The special case m = 2 is considered in [4, Theorem 7],
where a similar characterization is obtained with a completely different method
that is not applicable to the case m > 2.

Research supported by the Ministry of Education, Science and Sport of Slovenia, Research
program: Analysis and Geometry P1–0291.



384 B.Lavrič

2. Results

From now on let pi = pAi
: x 7−→ (x∗Aix)

1/2, i = 1, . . . , m, be given inner
product norms on Kn defined by positive definite matrices Ai ∈ Kn,n, and let p
be the norm p = max{p1, . . . , pm}. For every nonempty X ⊆ Kn let

I(X) = {i ∈ {1, . . . , m} : pi(x) = p(x) for all x ∈ X},

and for each x ∈ Kn denote I(x) = I({x}). It is clear that the sets I(x) are
nonempty. The following auxiliary result gives a useful information about the
sets I(X).

Lemma 1. Let p = max{p1, . . . , pm}, and let V be the collection of all nonempty
open subsets V ⊆ Kn.

(a) For every U ∈ V there exists a V ∈ V such that V ⊆ U and I(V ) is
nonempty.

(b) If J =
⋃

V ∈V I(V ), then p = max{pj : j ∈ J}.

Proof: (a) First, let us show that for every x0 ∈ Kn there exists a neighborhood
U0 of x0 such that

(1) I(x) ⊆ I(x0) for all x ∈ U0.

If i ∈ {1, . . . , m} \ I(x0), then pi(x0) < p(x0). The continuity of norms implies
that there is a neighborhood U0 of x0 such that pi(x) < p(x) for all x ∈ U0.
Therefore i /∈ I(x) for every x ∈ U0, and hence (1) follows.
Suppose U ∈ V does not satisfy (a). Take any x1 ∈ U and choose an open

neighborhood U1 of x1 such that U1 ⊆ U and

I(x) ⊆ I(x1) for all x ∈ U1.

If I(x) = I(x1) for all x ∈ U1, then I(U1) = I(x1), and hence V = U1 satisfies (a).
Since by assumption this is not the case, there exists an x2 ∈ U1 such that
I(x2) $ I(x1). Choose an open neighborhood U2 of x2 such that U2 ⊆ U1 and

I(x) ⊆ I(x2) for all x ∈ U2.

Proceeding like before we get an infinite sequence I(x1) % I(x2) % . . . Since I(x1)
is finite, this is impossible, hence (a) follows.

(b) Suppose p(x0) > max{pj(x0) : j ∈ J} for some x0 ∈ Kn. Then there
exists a U ∈ V such that p(x) > max{pj(x) : j ∈ J} for all x ∈ U . It follows
that I(V ) = ∅ for every V ∈ V such that V ⊆ U . This contradicts (a), thus
p = max{pj : j ∈ J}. �

The set J in Lemma 1 can be replaced by any minimal subsetM ⊆ {1, . . . , m}
for which p = max{pi : i ∈ M}. For the proof it suffices to apply Lemma 1 with
M instead of {1, . . . , m}.
If A ∈ Kn,n is positive definite, let from now on

FA = {D∗AD : D ∈ ∆n(K)}.
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Lemma 2. Let p = max{p1, . . . , pm}, and let J be as in Lemma 1. Then the
following statements are equivalent:

(a) p is monotonic;
(b) FAj

⊆ {A1, . . . , Am} for each j ∈ J .

Proof: (a)⇒ (b). Suppose (a), and let j ∈ J , D ∈ ∆n(K). Lemma 1 ensures
the existence of a nonempty open subset U0 ⊆ Kn such that pj(x) = p(x) for all
x ∈ U0. Since p is monotonic, pj(Dx) = p(Dx) = p(x) for every x ∈ U = D∗(U0).
The set U is nonempty and open, hence by Lemma 1 there exists a nonempty
open subset V ⊆ U and a k ∈ J such that p(x) = pk(x) for all x ∈ V . It follows
that pj(Dx) = pk(x) and therefore

x∗D∗AjDx = x∗Akx for all x ∈ V.

Let us prove that this implies Ak = D∗AjD. Put A = D∗AjD−Ak, notice that
A∗ = A, and take any x0 ∈ V , y ∈ Kn. Then there exists a δ > 0 such that for
every positive ǫ < δ we have x0+ ǫy ∈ V , and therefore (x0+ ǫy)∗A(x0+ ǫy) = 0.
It is clear that x∗0Ax0 = 0, and hence x∗0Ay + y∗Ax0 + ǫy∗Ay = 0 for every
positive ǫ < δ. It follows that y∗Ay = 0 for all y ∈ Kn, thus A = 0 and therefore
Ak = D∗AjD.

(b)⇒ (a). Suppose (b) and let x ∈ Kn, D ∈ ∆n(K). Lemma 1(b) ensures that
there is some j ∈ J such that p(Dx) = pj(Dx). It follows from (b) that there
exists a k ∈ J such that Ak = D∗AjD, hence

pj(Dx) = ((Dx)∗AjDx)1/2 = (x∗Akx)1/2 = pk(x) ≤ p(x).

Therefore, p(Dx) ≤ p(x) for all x ∈ Kn and all D ∈ ∆n(K), and hence p is
monotonic. �

Lemma 3. Let A ∈ Kn,n be positive definite.

(a) If K = C, then FA is finite if and only if A is diagonal. Both conditions
are equivalent to FA = {A}.

(b) If K = R, then FA has 2
n−κ(A) elements, where κ(A) is the number of

connected components of the directed graph Γ(A).

Proof: (a) If A is diagonal, then D∗AD = A for all D ∈ ∆n(C), and hence
FA = {A}.
Suppose that A is not diagonal, and take a nonzero entry aij of A such that

i 6= j. Let (δk)
∞
k=1 be a sequence of different complex numbers of absolute value 1,

and let
Dk = In + (δk − 1)Ejj ∈ Cn,n, k = 1, 2, . . . ,

where In is the identity and Ejj is an elementary matrix. Then Dk ∈ ∆n(C) and

(D∗
kADk)ij = δkaij , k = 1, 2, . . . ,
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hence FA contains an infinite number of different matrices D∗
kADk.

(b) We shall prove first that the subset

∆A = {D ∈ ∆n(R) : D∗AD = A}

of ∆n(R) has 2κ(A) elements.
It is clear that a D = diag(d1, . . . , dn) ∈ ∆n(R) satisfies D∗AD = A if and

only if didjaij = aij for all i, j ∈ {1, . . . , n}. This implies that D ∈ ∆n(R)
belongs to ∆A if and only if

di = dj for all i, j such that aij 6= 0.

It follows that di ∈ {1,−1} depends only on the connected component of Γ(A),

and that therefore ∆A has 2
κ(A) elements.

Observe now that ∆A is a subgroup of the multiplicative group ∆n(R). Since
for each D1, D2 ∈ ∆n(R) we have the equivalence

D∗
1AD1 = D∗

2AD2 ⇐⇒ D1D
−1
2 ∈ ∆A,

the map φ : D 7−→ D∗AD is constant on equivalence classes from the quo-
tient group ∆n(R)/∆A. It may be easily verified that φ generates a bijection

∆n(R)/∆A −→ FA, hence FA has 2
n−κ(A) elements. �

Theorem 4. The norm p = max{p1, . . . , pm} is monotonic if and only if there
exists a subset J ⊆ {1, . . . , m} such that p = max{pj : j ∈ J} and one of the
following conditions is satisfied.

(a) If K = C, then Aj is diagonal for every j ∈ J ;
(b) If K = R, then {Aj : j ∈ J} is a union of a pairwise disjoint sets of the

form FA = {D∗AD : D ∈ ∆n(R)} each consisting of 2n−κ(A) elements.

Proof: Suppose that p is monotonic and put J =
⋃

V ∈V I(V ). Then Lemma 2
ensures that {Aj : j ∈ J} is a union of sets of the form FA, A ∈ {A1, . . . , Am}.
If K = C, then by Lemma 3(a) each Aj , j ∈ J , is diagonal. If K = R, then by
Lemma 3(b) each FA has 2

n−κ(A) elements. It can be easily verified that the
sets FAi

and FAj
are either equal or disjoint (they are the equivalence classes of

{Aj : j ∈ J} for the equivalence relation B ∼ A if B ∈ FA).
The converse is clear. �

Theorem 4 shows how to form all monotonic norms that are maximum of
inner product norms. In the case K = C such norms are exactly the norms
p = max{p1, . . . , pm} with diagonal positive definite A1, . . . , Am, while in the
case K = R such norm are the norms q = max{q1, . . . , qm} with each qi of the
form qi = max{pA : A ∈ FAi

} for some positive definite Ai ∈ Rn,n. To prove this
observation it suffices to apply Theorem 4 and use the fact that all norms pi and
qi are monotonic.
The following characterization facilitates to check the monotonicity of the max-

imum of inner product norms.
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Theorem 5. Let p = max{p1, . . . , pm}, and let K be the set of all indices

k ∈ {1, . . . , m} for which FAk
⊆ {A1, . . . , Am} (if K = C, then K consists of

all indices k for which Ak is diagonal). Then p is monotonic if and only if K is
nonempty and

(2) pi ≤ max{pk : k ∈ K} for each i ∈ {1, . . . , m} \ K.

Proof: First, notice that if K 6= ∅, then (2) is equivalent to p = max{pk : k ∈
K}.
Now, suppose that p is monotonic. Then by Lemma 2 J ⊆ K, thus K is

nonempty. If (2) is not satisfied, take an x0 ∈ Kn such that p(x0) > max{pk(x0) :
k ∈ K}. A continuity argument gives an open neighborhood U of x0 such that

p(x) > max{pk(x) : k ∈ K} for all x ∈ U.

Lemma 1 ensures that there exists a nonempty open V ⊆ U such that I(V ) 6= ∅.
It follows that each j ∈ I(V ) satisfies

pj(x) = p(x) > max{pk(x) : k ∈ K} for all x ∈ V.

Therefore j /∈ K, and hence FAj
6⊆ {A1, . . . , Am}. By Lemma 2 this contradicts

the monotonicity of p, hence (2) follows.
To show the converse suppose K is nonempty. Then (2) gives p = max{pk :

k ∈ K}, hence Lemma 2 ensures that p is monotonic. �

It follows from Theorem 5 that if K = C, then Ak is diagonal for each k ∈ K,

and that if K = R, then 2n−κ(Ak) ≤ m for each k ∈ K. If m ≤ 3 and k ∈ K, then
κ(Ak) equals n or n− 1. In the first case Ak is diagonal, while in the second case
Ak is of the form D + E, where D is diagonal, and

(3) E = λ(Ers + Esr), λ ∈ R \ {0}, r 6= s.

For m = 2 this implies [4, Theorem 7], while form = 3 we get the following result.

Corollary 6. The norm p = max{p1, p2, p3} is monotonic if and only if one of
the following conditions in which {i, j, k} = {1, 2, 3} is satisfied:

(a) A1, A2, A3 are diagonal;
(b) Ai, Aj are diagonal, and pk ≤ max{pi, pj};
(c) Ai is diagonal, Ai − Aj and Ai − Ak are positive semidefinite;

(d) K = R, Ai = D + E, Aj = D − E with D diagonal, E of the form (3),
and Ak is diagonal or pk ≤ max{pi, pj}.
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