Minimal *KC*-spaces are countably compact

T. VIDALIS

Abstract. In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1].

Keywords: KC-space, weaker topology Classification: 54A10

1. Introduction

A topological space (X, τ) is said to be a *KC*-space if every compact set is closed. Since every *KC*-space is T_1 and every T_2 space is *KC*, the *KC*-property can be thought of as a separation axiom between T_1 and T_2 .

In 1943 E. Hewitt [3] proved that a compact T_2 space is minimal T_2 and maximal compact, see also [5], [6], [7]. R. Larson [4] asked whether a space is maximal compact iff it is minimal KC. A related question is whether every KC-topology contains a minimal KC-topology. W. Fleissner proved that this is not always true. In [2] he constructed a KC-topology which does not contain a minimal KC-topology.

In a recent paper, [1], the authors proved that every minimal KC-topology on a countable set is compact and posed the question whether minimal KC-spaces are countably compact.

In this paper we answer affirmatively this question by proving that every KCspace which is not countably compact has a strictly weaker KC-topology.

2. Preliminaries and notations

A filter over a set X is a collection \mathcal{F} of subsets of X such that:

- (i) $\emptyset \notin \mathcal{F}$;
- (ii) if $F_1 \in \mathcal{F}$ and $F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$;
- (iii) if $A, B \subset X, A \in \mathcal{F}$ and $B \supset A$ then $B \in \mathcal{F}$.

A filter \mathcal{F} over a set X is an ultrafilter if

 $\forall A \subset X \text{ either } A \in \mathcal{F} \text{ or } X - A \in \mathcal{F}.$

With |A| we denote the cardinality of a set A, and with A^c the complement of a set A.

For κ an infinite cardinal number, an ultrafilter \mathcal{F} over κ is uniform if $|F| = \kappa$ for all $F \in \mathcal{F}$.

3. Minimal KC-spaces are countably compact

Let (X, τ) be a *KC*-space which is not countably compact. Then there exists a set $\{x_n : n \in \omega\} \subset X$ which has no accumulation points. We define a new topology τ' on X as follows:

For every $x \in X$ with $x \neq x_0$ the open neighborhoods of x in τ' coincide with the open neighborhoods of x in τ .

(NT) An open neighborhood of x_0 in τ' is every τ -open set containing x_0 and a member of \mathcal{F} , where \mathcal{F} is a uniform ultrafilter defined over the set $\{x_n : 0 < n < \omega\}$.

Remark 3.1. It is clear that τ' is a T_1 -topology and that x_0 is the unique point which can be τ' -accumulation point for a set $K \subset X$ while it is not τ -accumulation point of it.

Our aim is to show that if (X, τ) is a *KC*-space, which is not countably compact, then the topology τ' defined by (NT) is also a *KC*-topology.

Let $K \subset X$ be τ' -compact. If $x_0 \notin K$ then K is τ -compact, thus τ -closed, and since $\{x_n : n \in \omega\}$ has no accumulation points we have that $\{x_n : n \in \omega\} \cap K$ is finite. Hence x_0 is not a τ' -accumulation point of K and it follows that K is τ' -closed.

So it remains to prove that if $K \subset X$ is τ' -compact and $x_0 \in K$, then K is τ' -closed, or equivalently it is τ -closed. Therefore we assume for the rest of the paper that $x_0 \in K$.

To prove that a τ' -compact set K is τ' -closed we consider the following cases for a member of the ultrafilter \mathcal{F} in relation with K:

(1)
$$F \subset K;$$

(2) $F \cap \overline{K}^{\tau} = \emptyset;$
(3) $F \subset (\overline{K}^{\tau} - K)$

Lemma 3.2 below refers to case (1), Lemma 3.3 to case (2), while Lemmas 3.4 and 3.5 to case (3).

Lemma 3.2. Let (X, τ) be a KC-space which is not countably compact, $\{x_n : n \in \omega\}$ a set without accumulation points, \mathcal{F} a uniform ultrafilter defined over $\{x_n : 0 < n < \omega\}, \tau'$ the topology defined by (NT) and K a τ' -compact set. Then there is an $F \in \mathcal{F}$, such that $F \cap K = \emptyset$.

PROOF: Since \mathcal{F} is an ultrafilter, either there exists an $F \in \mathcal{F}$ such that $F \subset K$, or there is an $F \in \mathcal{F}$ with $F \cap K = \emptyset$.

In the first case let $F = F_1 \cup F_2$ with $F_1 \cap F_2 = \emptyset$ and $|F_1| = |F_2| = \omega$. Then if $F_1 \in \mathcal{F}$, there exists an open set $U(F_1)$ containing F_1 with

$$U(F_1) \cap F_2 = \emptyset.$$

Thus there is a τ' -open neighborhood of $x_0, U'(x_0)$, with

$$F_2 \cap U'(x_0) = \emptyset,$$

and F_2 will be an infinite subset of K without τ' -accumulation points, which is impossible. So there must be an $F \in \mathcal{F}$ such that: $F \cap K = \emptyset$.

Lemma 3.3. With the assumptions of Lemma 3.2 if there exists an $F_0 \in \mathcal{F}$ such that $F_0 \cap \overline{K}^{\tau} = \emptyset$, then K is τ' -closed.

PROOF: Since $x_0 \in K$ it suffices to show that K is τ -closed.

Let $\{U_i : i \in I\}$, be a τ -open cover of K and let V_0 be an open set containing F_0 such that $V_0 \cap K = \emptyset$.

Then the collection $\{U_i \cup V_0 : i \in I\}$, is a τ' -open cover of K and thus it has a finite subcover, say, $U_{i_1} \cup U_{i_2} \cup \ldots \cup U_{i_n} \cup V_0$.

The set $\bigcup \{ U_{i_k} : k = 1, 2, ..., n \}$ covers K, so K is τ -compact and therefore τ -closed.

It remains to consider the case where there is an $F \in \mathcal{F}$ such that $F \subset (\overline{K}^{\tau} - K)$. We will show first that in this case K is countably compact.

Lemma 3.4. Let (X, τ) be a KC-space which is not countably compact, τ' the topology defined by (NT), K a τ' -compact set, $x_0 \in K$ and $F_0 \in \mathcal{F}$ with $F_0 \subset (\overline{K}^{\tau} - K)$. Then K is τ -countably compact.

PROOF: Let $F_0 \in \mathcal{F}$ be such that $F_0 \subset (\overline{K}^{\tau} - K)$, with $F_0 = \{x_{n_k} : k \in \omega\}$ and suppose for a contradiction that K is not τ -countably compact.

Then there exists a set $\{y_n : n \in \omega\} \subset K$ without τ -accumulation points in Kand since $x_0 \in K$, there is a τ -open neighborhood $U(x_0)$ of x_0 with

$$U(x_0) \cap \{y_n : n \in \omega\} = \emptyset.$$

We claim that for every infinite subset $\{y_{n_k} : k \in \omega\}$ of $\{y_n : n \in \omega\}$ and for every $z \in F_0$ there is a τ -open neighborhood of z, U(z), such that

$$|U(z)^c \cap \{y_{n_k} : k \in \omega\}| = \omega.$$

Actually, for otherwise $\{y_{n_k} : k \in \omega\} \to z$ and since τ is a *KC*-topology, z will be the unique τ -accumulation point of $\{y_{n_k} : k \in \omega\}$.

But, there is an $F \in \mathcal{F}$ with $z \notin F$, thus there is an open set W(F) containing F with $z \notin W(F)$. So $z \notin U(x_0) \cup W(F)$, and consequently x_0 is not a τ' -accumulation point of $\{y_{n_k} : k \in \omega\}$.

It follows that $\{y_{n_k} : k \in \omega\}$ is an infinite subset of K with no τ' -accumulation points in K which is impossible, since K is τ' -compact.

So, let $U(x_{n_1})$ be an open neighborhood of x_{n_1} such that

$$|U(x_{n_1})^c \cap \{y_n : n \in \omega\}| = \omega,$$

and let

$$z_1 \in U(x_{n_1})^c \cap \{y_n : n \in \omega\}.$$

Let $U(x_{n_2})$ be an open neighborhood of x_{n_2} with

$$|U(x_{n_2})^c \cap U(x_{n_1})^c \cap \{y_n : n \in \omega\}| = \omega,$$

and let

$$z_2 \in U(x_{n_2})^c \cap U(x_{n_1})^c \cap \{y_n : n \in \omega\},\$$

with $z_2 \neq z_1$ and inductively, let $U(x_{n_k})$ be an open neighborhood of x_{n_k} with

$$|U(x_{n_1})^c \cap U(x_{n_2})^c \cap \ldots \cap U(x_{n_k})^c \cap \{y_n : n \in \omega\}| = \omega,$$

and let

$$z_k \in U(x_{n_1})^c \cap U(x_{n_2})^c \cap \ldots \cap U(x_{n_k})^c \cap \{y_n : n \in \omega\},\$$

with

$$z_k \notin \{z_1, z_2, \ldots, z_{k-1}\}.$$

The so defined sequence $\{z_n : n \in \omega\}$ is a subset of K and since

$$\{z_n: n \in \omega\} \cap [U(x_0) \cup \bigcup \{U(x_{n_k}): k \in \omega\}] = \emptyset,$$

it follows that it has no τ' -accumulation points in K, contrary to the hypothesis.

Lemma 3.5. Let (X, τ) be a KC-space which is not countably compact. Then X can be condensed onto a weaker KC-topology.

PROOF: Let τ' be the topology defined by (NT). We will prove that (X, τ') is a *KC*-space.

For this we will show that there is an $F \in \mathcal{F}$ with $F \cap \overline{K}^{\tau} = \emptyset$ and the proof will be a consequence of Lemma 3.3.

Indeed, suppose for a contradiction that there is $F_0 \in \mathcal{F}$ such that $F_0 \subset \overline{K}^{\tau}$. Let F_1 , F_2 be subsets of F_0 with $|F_1| = |F_2| = \omega$, $F_1 \cup F_2 = F_0$, and $F_1 \cap F_2 = \emptyset$.

Suppose that $F_1 \in \mathcal{F}$. We claim that $F_1 \cup K$ is τ -compact.

Actually let $\{U_i : i \in I\}$ be a τ -open cover of $F_1 \cup K$. Then countably many of the $U'_i s$, say, $\{U_{i_n} : n \in \omega\}$, cover the countable set F_1 , and if we write

$$U'(x_0) = U(x_0) \cup \bigcup \{ U_{i_n} : n \in \omega \},\$$

where $U(x_0)$ is a member of $\{U_i : i \in I\}$ which contains x_0 then $U'(x_0)$ is a τ' -open neighborhood of x_0 , and we will have

$$\bigcup \{U_i : i \in I\} = U'(x_0) \cup \bigcup \{V_j : j \in J\},\$$

546

where $\{V_j : j \in J\}$ is a subcollection of $\{U_i : i \in I\}$ which covers $U'(x_0)^c \cap K$. But $\{U_i : i \in I\}$ is also a τ' -open cover of K. So it contains a finite subcover.

It turns out that finitely many V'_{js} , say, V_{j_1} , V_{j_2} , ..., V_{j_k} , cover the set

$$K \cap (U(x_0) \cup \bigcup \{U_{i_n} : n \in \omega\})^c = K \cap U'(x_0)^c.$$

Now

$$\bigcup\{V_{j_m}: m=1,2,\ldots,k\} \cup \bigcup\{U_{i_n}: n \in \omega\} \cup U(x_0)$$

is a countable τ -open cover of K and in view of Lemma 3.4 it has a finite subcover.

So $K \cup F_1$ is τ -compact and therefore τ -closed. But this is impossible since every $x \in F_2$ is a τ -accumulation point of K.

So there must be an $F \in \mathcal{F}$ with

$$F \cap \overline{K}^{\tau} = \emptyset$$

and Lemma 3.3 implies that K is τ -closed. Now from Remark 3.1 it follows that K is τ' -closed.

The following theorem answers a question posed in [1]. Its proof is an immediate consequence of Lemma 3.5.

Theorem 3.6. Every minimal KC-space is countably compact.

References

- Alas O.T., Wilson R.G., Spaces in which compact subsets are closed and the lattice of T₁-topologies on a set, Comment. Math. Univ. Carolinae 43.4 (2002), 641–652.
- [2] Fleissner W.G., A T_B-space which is not Katetov T_B, Rocky Mountain J. Math. 10 (1980), 661–663.
- [3] Hewitt E., A problem of set theoretic topology, Duke Math. J. 10 (1943), 309-333.
- [4] Larson R., Complementary topological properties, Notices AMS 20 (1973), 176.
- [5] Ramanathan A., Minimal bicompact spaces, J. Indian Math. Soc. 19 (1948), 40–46.
- [6] Smythe N., Wilkins C.A., Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167–177.
- [7] Tong H., Minimal bicompact spaces, Bull. Amer. Math. Soc. 54 (1948), 478–479.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, 451 10 IOANNINA, GREECE *E-mail*: tvidalis@cc.uoi.gr

(Received November 10, 2003, revised March 1, 2004)