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Integro-differential-difference equations associated

with the Dunkl operator and entire functions

Néjib Ben Salem, Samir Kallel

Abstract. In this work we consider the Dunkl operator on the complex plane, defined by

Dkf(z) =
d

dz
f(z) + k

f(z)− f(−z)

z
, k ≥ 0.

We define a convolution product associated with Dk denoted ∗k and we study the integro-
differential-difference equations of the type µ ∗k f =

P
∞

n=0 an,kD
n
k
f , where (an,k) is a

sequence of complex numbers and µ is a measure over the real line. We show that many
of these equations provide representations for particular classes of entire functions of
exponential type.
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Introduction

In this paper we consider the first-order differential-difference operator on C

Dkf(z) =
d

dz
f(z) + k

f(z)− f(−z)

z
, z ∈ C, f ∈ A(C)

(A(C) is the space of entire functions), which is known as the Dunkl operator of
index k, k ≥ 0. It was introduced by C.F. Dunkl (see [4], [5]) and has found a
wide area of applications in mathematics and mathematical physics.

It has been shown that there exists a unique intertwining operator Vk between

Dk and D = d
dz
which satisfies

VkD = DkVk , Vkf(0) = f(0) , for all f ∈ A(C).

By using the method of generalized Taylor series, we associate with Dk the trans-
lation operators T k

z , z ∈ C, defined on A(C) by

(1) ∀ω ∈ C, T k
z f(ω) =

∞
∑

n=0

bn(ω)D
n
k f(z),
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where bn(ω) = Vk(
ωn

n! ). For an appropriate measure µ over the real line and an
entire function f , we define the convolution product of µ and f associated with
Dk, denoted µ ∗k f and given by

∀ z ∈ C , µ ∗k f(z) =

∫

R

T k
−yf(z) dµ(y).

In this work, we are interested in the study of the following integro-differential-
difference equations

(2) µ ∗k f(z) =
∑

n≥0

an,kD
n
k f(z),

where (an,k)n≥0 is a sequence of complex numbers.
These equations characterize a class of entire functions of exponential type which
intervenes in classical complex analysis and have many applications in other fields
(for more details, one can see [3]). In fact this study shows that when the mea-

sure µ satisfies
∫

R
eσ|x| d|µ| <∞, where σ is a positive number, then every entire

function of exponential type less than σ, is a solution of such equations and con-
versely if f is a C∞-function on R satisfying the equation (2) and if

∑

n≥0 an,kz
n

is analytic inside the disk |z| ≤ a, a ≤ σ, then f is the restriction to R of an
entire function of exponential type at most a. After, we develop a method which
permits us to construct solutions of these equations which are expressed in terms
of normalized spherical Bessel functions of index α

jα(z) = Γ(α+ 1)

+∞
∑

n=0

(−1)n

n!

(z2 )
2n

Γ(n+ α+ 1)
, z ∈ C.

Next, we suppose that k > 0. In this case, the restriction on R of the translation
operators associated with the Dunkl operator given by formula (1) possess an
integral representation which is available for a continuous function on R, so that
we can consider equations of the type

(3) µ ∗k f =

N
∑

n=0

an,kD
n
k f, aN,k 6= 0, N ∈ N,

when f is a CN -function on R and µ is an appropriate measure. We establish,
under some assumptions, that every CN -function on R satisfying equation (3)
is a C∞-function on R. In particular, if when all but one of the an,k are zero,
0 ≤ n ≤ N , then f is the restriction on R of an entire function of exponential
type.
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We point out that the notion of integro-differential equations was analyzed
in details by M.H. Mugler [9] in the classical case (which corresponds to k = 0).
Later, N. Ben Salem and W. Masmoudi have studied the integro-differential equa-
tions associated with the Bessel differential operator (see [2]).
The paper is arranged as follows. The first section of this paper is devoted

to the study and recall of some results of harmonic analysis associated with the
Dunkl operator Dk. Especially we define the translation operators and convolu-
tion product associated with Dk of an appropriate measure and an entire function,
we define also the Laplace-Dunkl transform of a measure over the real line and
we establish some properties related with these objects.
In the second section, we deal with the integro-differential difference equations

of the type µ ∗k f =
∑

n≥0 an,kD
n
k f . We give a class of functions which are

solutions of that equations.
In the third section, we assume that k > 0. We study equations of type

µ ∗k f =
∑N

n=0 an,kD
n
k f , where f is a C

N -function on R.
In the last section we establish a Paley-Wiener type theorem associated with

Dk and give some applications. For instance, we proceed to develop conditions

on the measure µ such equation of the form µ ∗k f =
∑N

n=0 an,kD
n
k f characterize

the class of entire functions of exponential type a which are square integrable
with respect to |x|2kdx and bounded on the real line. Next, we continue by
considering the equations characterizing entire functions of exponential type which
have polynomial growth on the real line. The section closes by considering an
equivalent condition characterizing the last equations in terms of the moments of
the measure µ.

1. Harmonic analysis associated with the Dunkl operator

We consider the following spaces:
- E(R) the space of C∞-functions, endowed with the usual topology of uniform
convergence of the functions and their derivatives of all order on compact subsets
of R;
- E ′(R) the space of distributions on R with compact support;
- A(C) is the space of entire functions on C provided with the topology of uniform
convergence on every compact of C;
- A′(C) is the topological dual of A(C);
- Exp(C) is the space of entire functions of exponential type, we have

Exp(C) =
⋃

a>0

Expa(C),

where

Expa(C) =

{

f ∈ A(C), Na(f) = sup
λ∈C

|f(λ)|e−a|λ| < +∞

}

.
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We provide Expa(C) with the topology defined by the norm Na(f). For this
topology Expa(C) is a Banach space. Exp(C) is endowed with the inductive limit
topology.

The Dunkl operator Dk associated with the parameter k ≥ 0, is defined on C

by

Dk(f)(z) =
d

dz
f(z) + k

f(z)− f(−z)

z
, f ∈ A(C).

For k = 0, D0 reduces to the usual derivative which will be denoted by D. It is
well known that there exists a unique isomorphism Vk of A(C) such that

(4) VkDf = DkVkf, Vkf(0) = f(0).

The operator Vk is called the Dunkl intertwining operator of index k between Dk

and D = d
dz
on the space A(C), (see [1]).

For k > 0, Vk has the following representation (see [5, Theorem 5.1])

(5) Vkf(z) =
2−2kΓ(2k + 1)

Γ(k)Γ(k + 1)

∫ 1

−1
f(zt)(1− t2)k−1(1 + t) dt, f ∈ A(C).

For k ≥ 0, and λ, z ∈ C, the equation

{

Dku(z) = λu(z),

u(0) = 1,

has a unique solution φk
λ,0 given by

φk
λ,0(z) = jk− 1

2

(iλz) +
λz

2k + 1
jk+ 1

2

(iλz),

where jα is the normalized spherical Bessel function defined for α ≥ −12 , by

jα(z) = Γ(α+ 1)

+∞
∑

n=0

(−1)n

n!

(z2 )
2n

Γ(n+ α+ 1)
, z ∈ C.

We remark that φk
λ,0(z) = Vk(e

λ.)(z). Formula (5) and the last result imply that

(6) |φk
λ,0(z)| ≤ e|λ||z|, |φk

λ,0(x)| ≤ e|x||Reλ|, |φk
−iy,0(x)| ≤ 1,

for all x, y ∈ R and λ, z ∈ C.
The function (λ, z) 7−→ φk

λ,0(z) (called Dunkl kernel) is analytic on C×C. There-

fore, there exist unique analytic functions bn, n ∈ N, on C such that
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φk
λ,0(z)=

∞
∑

n=0

bn(z)λ
n, λ, z ∈ C, where bn(z) = Vk(

ωn

n!
)(z) =

1

n!

dn

dλn
φk

λ,0(z) |λ=0,

namely

b2n(z) =
1

(k + 12 )n n!

(z

2

)2n
, b2n+1(z) =

1

(k + 12 )n+1 n!

(z

2

)2n+1
, ∀n ∈ N.

We remark that for all z ∈ C and for all n ∈ N, we have

(7) Dkbn+1 = bn and |bn(z)| ≤
|z|n

n!
.

In the same context, we denote by

(8) φk
λ0,n
(x) = Vk(x

neλ0x) =
dn

dtn
φk

t,0(x)|t=λ0 , n ∈ N and λ0 ∈ C.

Definition 1.1. The translation operators associated with the Dunkl operator ,
denoted by T k

z , z ∈ C, are defined on A(C) by

∀ω ∈ C, T k
z f(ω) =

∞
∑

n=0

bn(ω)D
n
k f(z).

We next collect some properties of translation operators.

Proposition 1.2. The operators T k
z satisfy the following properties.

(i) For every z ∈ C, the operator T k
z is linear and continuous map from A(C)

into itself and

T k
z f(ω) = Vk,zVk,ω

[

V −1
k
(f)(z + ω)

]

, ω ∈ C.

(We use the notation Vk,z when we wish to emphasize the functional depen-

dence on the variable z).
(ii) For all function f in A(C) and for every z ∈ C, z′ ∈ C and ω ∈ C, we have

T k
0 = identity, T k

z f(ω) = T
k
ωf(z), DkT

k
z = T

k
z Dk and T k

z T
k
z′ = T

k
z′T

k
z .

(iii) The function (z, ω) −→ T k
z f(ω) is the unique solution of the following

Cauchy problem
{

Dk,zu(z, ω) = Dk,ωu(z, ω),

u(z, 0) = f(z).

(iv) For all z ∈ C, ω ∈ C and λ ∈ C, we have

T k
z φ

k
λ,0(ω) = φ

k
λ,0(z)φ

k
λ,0(ω) (product formula).
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Remark. For k > 0, it was pointed out in [10], [11] that the translation operators

T k
x , x ∈ R, may be represented as:

(9) ∀ y ∈ R, T k
x f(y) =

∫

R

f(z) dµk
x,y(z), f ∈ C(R),

(C(R) is the space of continuous functions on R), µk
x,y is a real bounded measure

on R with support in [−|x| − |y| , −||x| − |y||] ∪ [||x| − |y|| , |x|+ |y|], for x, y 6= 0,

µk
x,y(R) = 1 and ‖µk

x,y‖ ≤ 4, for all x, y ∈ R.

Let us now recall the following generalized Taylor formula with integral re-
mainder (see [8]), which will be used frequently.

Theorem 1.3. Let f be a function of class Cn+1 on R, n ∈ N. Then we have

the following generalized Taylor formula with integral remainder

f(x) =
n
∑

p=0

bp(x)D
p
k
f(0) +

∫ |x|

−|x|
Wn(x, y)D

n+1
k

f(y)|y|2k dy,

where {Wn}, n = 0, 1, 2 . . . , is a sequence of functions constructed inductively

from the function |y|2k and satisfying

∫ |x|

−|x|
|Wn(x, y)||y|

2k dy ≤ bn+1(|x|) + |x|bn(|x|).

Definition 1.4. (i) The Borel-Dunkl transform of an analytic functional S ∈
A′(C) is defined by

Fk(S)(λ) = 〈S, φk
λ,0(.) 〉, λ ∈ C.

(ii) The Fourier-Dunkl transform of a distribution µ in E ′(R) is defined by

Fk(µ)(λ) = 〈µ , φk
−iλ,0(.)〉.

(iii) The k-convolution of two distributions µ, ν ∈ E ′(R) is given by

〈µ ∗k ν , f〉 = 〈µx , 〈νy , T
k
x f(y)〉〉, f ∈ E(R).

Next, let us recall the following Paley-Wiener type theorem associated with
the operator Dk (for some details see [1]).

Theorem 1.5. The Borel-Dunkl transform Fk is a topological isomorphism from

A′(C) onto Exp(C).
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Theorem 1.6 (Pólya representation). If f is an entire function of exponential
type a, a > 0, then f has the following integral representation

f(z) =
1

2iπ

∫

|ω|=a+ǫ
φk

z,0(ω)F (ω) dω,

where ǫ > 0 and F is an analytic function outside the disk centered at the origin
and with radius a.

Proof: From the Paley-Wiener Theorem 1.5, there exists an analytic functional
S ∈ A′(C) such that

∀ z ∈ C, f(z) = 〈S, φk
z,0(.) 〉.

Since the analytic functional S is given by a complex measure µ with support in
the disk centered at the origin and with radius a, (see [7]), we have

∀ z ∈ C, f(z) =

∫

C

φk
z,0(ω) dµ(ω).

On the other hand, by using the Cauchy integral formula, we can write for all
z ∈ C

φk
z,0(ω) =

1

2iπ

∫

|ξ|=a+ǫ

φk
z,0(ξ)

ξ − ω
dξ, ǫ > 0.

From Fubini’s Theorem we deduce that

f(z) =
1

2iπ

∫

|ξ|=a+ǫ
φk

z,0(ξ)F (ξ) dξ,

where F (ξ) =
∫

C

dµ(ω)
ξ−ω

, (F is called the Borel Transform of the measure µ). �

Proposition 1.7. Let f be an entire function of exponential type a, a > 0. Then
(i) for every n ∈ N, the function Dn

k f is entire and of exponential type a;

(ii) for every z, ω ∈ C and ǫ > 0

|T k
z f(ω)| ≤ Cǫe

(a+ǫ)(|z|+|ω|),

where Cǫ is a positive constant.

Proof: (i) It is clear that for n ∈ N, the function Dn
k f is entire. Let us show

that Dn
k f is of exponential type a. From the Pólya representation Theorem 1.6,

we deduce

Dn
k f(z) =

1

2iπ

∫

|ω|=a+ǫ
ωnφk

z,0(ω)F (ω) dω.
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Now using the property of the function φk
z,0, relation (6), we obtain

(10) |Dn
k f(z)| ≤ (a+ ǫ)

n+1Mǫe
(a+ǫ)|z| ,

whereMǫ = sup {|F (ω)|; |ω| = a+ ǫ}. Since ǫ is arbitrary, we conclude that D
n
k f

is of exponential type a.

(ii) We have for f ∈ Expa(C), T
k
z f(ω) =

∑∞
n=0 bn(ω)D

n
k f(z). A combination of

(7) and (10) gives the result. �

Notation. For σ > 0, letMσ(R) be the space of Radon measures on R satisfying
∫

R

eσ|x| d|µ|(x) <∞.

Definition 1.8. Let f be an entire function of exponential type a > 0 and
µ ∈ Mσ(R) with σ > a. The convolution product associated with Dk of the
function f and the measure µ is the function denoted µ ∗k f , defined by

∀ z ∈ C, µ ∗k f(z) =

∫

R

T k
−yf(z) dµ(y).

Proposition 1.9. Let f be an entire function of exponential type a > 0 and
µ ∈Mσ(R) with σ > a. Then µ ∗k f ∈ Expa(C).

Proof: We have for all z ∈ C

µ ∗k f(z) =

∫

R

T k
−yf(z) dµ(y).

With the hypotheses on the measure µ, we deduce easily that z 7−→ µ ∗k f(z) is
entire. Now, let ǫ ∈ R, 0 < ǫ < σ − a, by using Proposition 1.7(ii) we have

∀ z ∈ C, |µ ∗k f(z)| ≤ C′
ǫe
(a+ǫ)|z|,

where C′
ǫ is a positive constant. Since ǫ is arbitrary, we deduce that µ ∗k f is of

exponential type a. �

2. Integro-differential-difference equations associated with the Dunkl

operator for the class of entire functions of exponential type

Definition 2.1. Let µ be a measure in Mσ(R). The Laplace-Dunkl transform of
the measure µ is the function denoted Lk(µ), defined by

Lk(µ)(z) =

∫

R

φk
−z,0(y) dµ(y).

We remark that for µ ∈ Mσ(R), the function Lk(µ) is analytic in the strip
|Rez| ≤ σ.
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Theorem 2.2. Let µ be a measure in Mσ(R). If the equation

(11) ∀ z ∈ C , µ ∗k f(z) =

∞
∑

n=0

an,kD
n
k f(z), an,k ∈ C

is satisfied by any function f in Expa(C), 0 < a < σ, where
∑

n≥0 an,kz
n is

analytic in the closed disk centered at the origin and with radius a, then

an,k =
1

n!

dn

dzn
Lk(µ)(z)|z=0.

Conversely, if the sequence (an,k)n≥0, is related to the measure in this fashion,
then (11) holds for each class of entire function of exponential type a with 0 <
a < σ.

Proof: Let λ0 ∈ C such that |λ0| ≤ a. Since the function z 7−→ φk
λ0,0
(z) is of

exponential type |λ0|, we have

µ ∗k φ
k
λ0,0
(z) = φk

λ0,0
(z)

∫

R

φk
−λ0,0

(y) dµ(y) = φk
λ0,0
(z)Lk(µ)(λ0).

On the other hand, we have

∑

n≥0

an,kD
n
kφ

k
λ0,0
(z) = φk

λ0,0
(z)
∑

n≥0

an,kλ
n
0 .

So we deduce that

(

Lk(µ)(λ0)−
∑

n≥0

an,kλ
n
0

)

φk
λ0,0
(z) = 0.

Taking z = 0, we obtain Lk(µ)(λ0) =
∑

n≥0 an,kλ
n
0 . This holds for every λ0 such

that |λ0| ≤ a.

So an,k =
1
n!

dn

dzn Lk(µ)(z)|z=0. Conversely, let f ∈ Expa(C), we have

µ ∗k f(z) =

∫

R

(

∑

n≥0

bn(−y)D
n
k f(z)

)

dµ(y) =
∑

n≥0

(
∫

R

bn(−y)dµ(y)

)

Dn
k f(z).

The last identity is justified by the fact that

∫

R

∑

n≥0

|bn(−y)||D
n
k f(z)| d|µ|(y) < +∞
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which is a consequence of Proposition 1.7(i) and the relation (7). We conclude by
observing that

∫

R

bn(−y) dµ(y) =
1

n!

∫

R

dn

dλn
φk
−λ,0(y)|λ=0 dµ(y) =

1

n!

dn

dλn
Lk(µ)(λ)|λ=0.

�

Theorem 2.3. Let µ ∈Mσ(R) and let f be a C
∞-function on R satisfying

∀x ∈ R, µ ∗k f(x) =
∑

n≥0

an,kD
n
k f(x),

where (an,k)n≥0 is a sequence of complex numbers such that the series
∑

n≥0 an,kz
n is analytic inside the closed disk |z| ≤ a, 0 < a < σ. Then f is the

restriction on R of an entire function of exponential type at most a.

Proof: Let x be fixed in R. From the convergence of the series
∑

n≥0 an,kD
n
k f(x),

we deduce that there exists N1(x) ∈ N such that |an,kD
n
k f(x)| ≤ 1, for all n ≥

N1(x). On the other hand, since the series
∑

n≥0 an,kz
n is analytic in the disk

|z| ≤ a, we have lim supn−→+∞ |an,k|
1

n ≤ 1
a . Thus for every ǫ, 0 < ǫ < 1

a ,

there exists N2 ∈ N such that, |an,k|
1

n > ( 1a − ǫ), for all n ≥ N2. Hence, for

n ≥ max (N1(x), N2), we have |D
n
k f(x)| ≤ (

1
a − ǫ)−n. By applying the Delsarte

Taylor formula with integral remainder given in Theorem 1.3, to the function f
and the relation (7), we obtain

f(x) =

N
∑

n=0

bn(x)D
n
k f(0) +RN (x),

where

|RN (x)| ≤ sup
0≤|t|≤|x|

|DN+1
k f(t)| (bN+1(|x|) + |x|bN (|x|))

≤
|x|N+1

(N + 1)!
(2 +N) sup

0≤|t|≤|x|
|DN+1

k
f(t)|.

For each t, 0 ≤ |t| ≤ |x|, the above analysis shows that there exists Nt ∈ N such
that

|Dn
k f(t)| ≤ (

1

a
− ǫ)−n, for n ≥ Nt.

But [−|x| , |x|] is compact, so there is some N ′ independent of t such that

sup
0≤|t|≤|x|

|Dn
k f(t)| ≤ (

1

a
− ǫ)−n, for n ≥ N ′.
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Hence for N ≥ N ′, we have |RN (x)| ≤
|x|N+1

(N+1)!
(2+N)( 1a−ǫ)

−(N+1), which implies

that RN (x) tends to zero as N tends to +∞. Consequently the function f may
be expanded in a generalized Taylor series f(x) =

∑

n≥0 bn(x)D
n
k f(0). Hence f is

the restriction on R of the entire function g given by g(z) =
∑

n≥0 bn(z)D
n
k f(0).

We deduce from (7) and (10) that g is of exponential type at most a. �

Example. Let µ be the measure defined by

dµ(y) =
a

2
e−a|y||y|2kdy, a > 0, k ≥ 0.

Consider the equation

(12) µ ∗k f =

∞
∑

n=0

an,kD
2n
k f,

where an,k is given by

an,k =
22kΓ(k + 12 )Γ(k + n+ 1)

n!Γ(12 )a
2(k+n)

.

By computation, we have

Lk(µ)(z) =
22ka2Γ(k + 12 )Γ(k + 1)

Γ(12 )(a
2 − z2)k+1

=

∞
∑

n=0

an,kz
2n, for |z| < a.

Due to Theorem 2.2, Theorem 2.3 shows that equation (12) characterizes entire
functions of exponential type less than a.
This example shows that the relation between exponential type and domain of
analyticity is sharp since Lk(µ) has a singularity at ±a.

We proceed now to develop a method which permits us to construct solutions
of (11), expressed in terms of functions given by (8).

Proposition 2.4. Let µ ∈Mσ(R) and λ0 a zero of multiplicity N of the function

g(z) =

s
∑

n=0

cn,kz
n − Lk(µ)(z),

where (cn,k)0≤n≤s is a finite sequence in C. The function defined by f(x) =
∑N−1

m=0 amφ
k
λ0,m
(x) is a solution of the equation µ ∗k f(x) =

∑s
n=0 cn,kD

n
k f(x),

where (am)0≤m≤N−1 is a finite sequence in C.

Proof: We have, for all x ∈ R

µ ∗k f(x) =

N−1
∑

m=0

am

m
∑

j=0

(

m

j

)

(Lk(µ))
(j)(λ0)φ

k
λ0,m−j(x).
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Now we use the fact that λ0 is a zero of multiplicity N of the function g, so we
have

(Lk(µ))
(j)(λ0) =

{

∑s
n=j j!

(

n
j

)

cn,kλ
n−j
0 , for 0 ≤ j ≤ s,

0, if s < j ≤ N.

Hence

µ ∗k f(x) =

s
∑

n=0

cn,kVk,y





n
∑

j=0

N−1
∑

m=j

am

(

m

j

)

j!

(

n

j

)

ym−jeλ0yλ
n−j
0



 (x).

Using the following relation which is obtained by the generalized product rule,

Dn

{

N−1
∑

m=0

amx
meλ0x

}

= eλ0x
n
∑

j=0

N−1
∑

m=j

am

(

m

j

)

j!

(

n

j

)

xm−jλ
n−j
0

and (4), we deduce the result. �

In [1], we have called the functions φk
λ,m k-exponential-monomials which can

be expressed in terms of normalized spherical Bessel functions, namely

φk
λ,m(x) =











x2n
∑n

s=0 f2n,sφ
k+s
λ,0 (x), if m = 2n,

x2n+1
∑n

s=0 f2n,s

[

φk+s
λ,0 (x)−

k+s
k+s+ 1

2

j
k+s+ 1

2

(iλx)

]

, if m = 2n+ 1,

where f2n,s are given by

f2n,s = (−1)
s

(

n

s

)

(k)s

(k + 12 )s
, 0 ≤ s ≤ n.

We can extend the previous proposition to infinite case.

Proposition 2.5. Let µ ∈Mσ(R) and λ0 a zero of multiplicity N of the function

g(z) =
∞
∑

n=0

cn,kz
n − Lk(µ)(z).

Suppose that the series
∑

n≥0 cn,kz
n is analytic in the disk |z| ≤ a < σ and

|λ0| < a. Then every function of the form f(x) =
∑N−1

m=0 amφ
k
λ0,m
(x) is a solution

of the integro-differential-difference equation

µ ∗k f =

∞
∑

n=0

cn,kD
n
k f.

Proof: We proceed as in the previous proof, we remark that we can change the
order of summation by using the uniform convergence of series. �
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Lemma 2.6. If ψ is analytic on a neighborhood of a contour γ in C and

∫

γ
φk

z,0(ω)ψ(ω) dω = 0,

then ψ is analytic inside γ.

Proof: It is obtained in the same way as for Lemma 6.10.6, p. 110 in [3]. �

In the following proposition, we show that every solution of equation (11) which
is entire of exponential type is a sum of k-exponential-monomials functions.

Proposition 2.7. Let f be an entire function of exponential type a, a > 0,
∑

n≥0 an,kz
n an analytic function in a closed disk |z| ≤ b, which contains the

conjugate indicator diagram of f and µ ∈ Mσ(R), with σ ≥ b. If moreover f

satisfies the equation

µ ∗k f =

∞
∑

n=0

an,kD
n
k f.

Then f is of the following form

f(z) =

m
∑

s=0

ls−1
∑

n=0

βn,sφ
k
λs,n(z), βn,s ∈ C,

where λs, 0 ≤ s ≤ m, are the zeros of multiplicity ls of the function g(z) =
Lk(µ)(z)−

∑∞
n=0 an,kz

n, which are contained in the conjugate indicator diagram

of f , (m is possibly infinite).

Proof: From Pólya representation Theorem 1.6, we have

f(z) =
1

2iπ

∫

|ω|=a+ǫ
φk

z,0(ω)F (ω) dω, z ∈ C,

where F is analytic outside the disk |z| ≤ a and ǫ > 0. Hence we have

∀ z ∈ C, µ ∗k f(z) =
1

2iπ

∫

|ω|=a+ǫ
φk

z,0(ω)Lk(µ)(ω)F (ω) dω.

On the other hand, we have

∞
∑

n=0

an,kD
n
k f(z) =

1

2iπ

∫

|ω|=a+ǫ

(

∞
∑

n=0

an,kω
n

)

φk
z,0(ω)F (ω) dω.



712 N.Ben Salem, S. Kallel

Since f is a solution of the equation (11), we must have

∫

|ω|=a+ǫ
φk

z,0(ω)

[

∞
∑

n=0

an,kω
n − Lk(µ)(ω)

]

F (ω) dω = 0.

By using Lemma 2.6, we deduce that the function

ω 7−→

[

∞
∑

n=0

an,kω
n − Lk(µ)(ω)

]

F (ω)

is analytic inside the disk |z| ≤ a + ǫ. Hence the function F has at most poles
at the zeros of the function ω 7−→ g(ω) = Lk(µ)(ω)−

∑∞
n=0 an,kω

n, contained in
the conjugate indicator diagram of f . Now by using the Pólya representation and
the residue theorem, we deduce that

f(z) =

m
∑

s=0

Res(φk
z,0(ω)F (ω), λs) =

m
∑

s=0

ls−1
∑

n=0

βn,sφ
k
λs,n(z),

where βn,s =
1

(ls−1)!

(

ls−1
n

)

dls−1−n

dωls−1−n

[

(ω − λs)
lsF (ω)

]

|ω=λs

. �

3. Integro-differential equations associated with the Dunkl operator

on the space of Cn-functions on R

In the following we suppose that k > 0. Then the translation operators T k
x , x ∈

R associated with the Dunkl operator, are given for a continuous function on R

by formula (9).

Definition 3.1. Let f be a continuous function on R. We say that the nonneg-
ative function ψ ∈ C(R) is a bounding function of f , if we have
(i) ∀x ∈ R, |f(x)| ≤ ψ(x),
(ii) there exists a constant A = A(ψ, k) such that

∀x, y ∈ R,

∫

R

ψ(z) d|µk
x,y|(z) ≤ Aψ(x)ψ(y).

The smallest constant satisfying the latter inequality will be called the supporting
constant.

Example. ψ(x) = ea|x|, a > 0, we have

∀x, y ∈ R

∫

R

ea|z| d|µk
x,y|(z) ≤ 4e

a(|x|+|y|)

which can be seen by using the properties of the measure µk
x,y.
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Lemma 3.2. Let f be a function of class Cm on R, m ∈ N, such that Dm
k f is of

class Cn on R, n ∈ N. Then f is of class Cm+n on R.

Proof: See [8]. �

Lemma 3.3. Let f ∈ C1(R) and µ be a measure on R. If ψ is a bounding

function of f and Dkf , satisfying
∫

R
ψ(−y) d|µ|(y) < +∞, then µ ∗k f ∈ C1(R)

and we have

Dk(µ ∗k f) = µ ∗k Dkf.

Proof: Using the bounding function, by differentiation under the integral, we
can see that µ ∗k f ∈ C1(R). On the other hand, we have by Theorem 1.3

Dk(µ ∗k f)(x) = lim
a−→0

T k
x (µ ∗k f)(a)− µ ∗k f(x)

b1(a)

= lim
a−→0

∫

R

T k
x (T

k
−yf)(a)− T k

−yf(x)

b1(a)
dµ(y),

where T k
x (T

k
−yf)(a)− T k

−yf(x) =
∫ |a|
−|a|

W0(a, t)T
k
xT

k
−y(Dkf)(t)|t|

2k dt. Since

∣

∣

∣

∣

∫ |a|

−|a|
W0(a, t)T

k
xT

k
−y(Dkf)(t)|t|

2k dt

∣

∣

∣

∣

≤ A2 sup
|t|≤|a|

ψ(t)ψ(−y)ψ(x)(b1(|a|) + |a|),

we have for 0 < a < 1

∣

∣

∣

∣

T k
x (T

k
−yf)(a)− T k

−yf(x)

b1(a)

∣

∣

∣

∣

≤ A2
(

2Γ(k + 32 )

Γ(k + 12 )
+ 1

)

sup
|t|≤1

ψ(t)ψ(−y)ψ(x).

As y 7−→ ψ(−y) ∈ L1(d|µ|), the dominated convergence theorem and the following
formula

lim
a7−→0

T k
a (T

k
−yf)(x)− T k

−yf(x)

b1(a)
= Dk(T

k
−yf)(x) = T

k
−y(Dkf)(x)

yield Dk(µ ∗k f)(x) = (µ ∗k Dkf)(x). �

Lemma 3.4. Let f be in C∞(R). Suppose that there exist a positive constant
B and a nonnegative continuous function ψ on R such that

∀x ∈ R, ∀n ∈ N, |Dn
k f(x)| ≤ Bnψ(x).
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Then f is the restriction to R of an entire function of exponential type B.

Proof: From Theorem 1.3, we have for all x ∈ R,

f(x) =
n−1
∑

s=0

bs(x)D
s
kf(0) +Rn(x)

with

|Rn(x)| ≤ sup
|t|≤|x|

|Dn
k f(t)|(bn(|x|) + |x|bn−1(|x|)) ≤ Bn sup

|t|≤|x|
ψ(t)

n+ 1

n!
|x|n.

The latter term goes at zero as n tends to +∞. Hence for x ∈ R, f(x) can be
expanded as

f(x) =

∞
∑

n=0

bn(x)D
n
k f(0), x ∈ R.

Put g(z) =
∑∞

n=0 bn(z)D
n
k f(0). This series defines an entire function and we

have, |g(z)| ≤ ψ(0)eB|z|. Then g is entire of exponential type at most B. �

Proposition 3.5. Let f ∈ C(R), ψ a bounding function of f and µ a measure
on R such that

∫

R

ψ(−t) d|µ|(t) =M < +∞.

If f is a solution of the equation

Dkf = µ ∗k f,

then f is the restriction to R of an entire function of exponential type AM , where

A is the supporting constant.

Proof: Fix a, and choose a sequence such that xn −→ a as n −→ +∞. Since
for δ > 0

|T k
−yf(xn)− T k

−yf(a)| ≤ 2A max
|x−a|≤δ

ψ(x)ψ(−y)

and the latter terms is in L1(d|µ|), the dominated convergence theorem yields

lim
n−→+∞

(Dkf(xn)−Dkf(a)) = 0.

Hence Dkf ∈ C(R), so that Lemma 3.2 implies f ∈ C1(R). From the following
inequality

|Dkf(x)| ≤

∫

R

|T k
−yf(x)| d|µ|(y) ≤ AMψ(x),
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we see that Dkf has a bounding function AMψ. By Lemma 3.3 we obtain

D2kf(x) =

∫

R

T k
−y(Dkf)(x) dµ(y), so |D2kf(x)| ≤ (AM)

2ψ(x).

An induction argument shows that f ∈ C∞(R) and we have for n ≥ 1

Dn
k f(x) = µ ∗k Dn−1

k
f(x), with |Dn

k f(x)| ≤ (AM)
nψ(x), for n ≥ 0.

The result follows from Lemma 3.4. �

Example. Let µ be the measure defined by

µ =
∑

s∈Z

τ
4(−1)s

π2(2s+ 1)2
δ− 2s+1

2τ
π

where δa denotes the Dirac point mass measure at a. If f is bounded on the real
axis and satisfies the equation

Dkf(x) = µ ∗k f(x) =
4τ

π2

+∞
∑

n=−∞

(−1)n

(2n+ 1)2
T k
2n+1
2τ

π
f(x),

then f is the restriction on R of an entire function of exponential type |µ|(R) = τ .

Lemma 3.6. Let f ∈ Cn(R), n ≥ 1, satisfying

∀x ∈ R, |Dn
k f(x)| ≤ Aeτ |x|,

where A = Ak is a positive constant and τ > 0. Then we have

|Dn−s
k

f(x)| ≤ τ−s
(

2sA+ 2s−1τCn−1 + 2
s−2τ2Cn−2 + · · ·+ τsCn−s

)

eτ |x|,

where Cn−s = |Dn−s
k

f(0)|, 0 < s ≤ n.

Proof: From the Delsarte Taylor formula with integral remainder, Theorem 1.3,
we deduce that

|Dn−1
k

f(x)| ≤ |Dn−1
k

f(0)|+ 2A

∫ |x|

0
eτy dy

≤
1

τ
(2A+ τCn−1)e

τ |x|.

We complete by induction. �

From Proposition 2.7, we deduce that an entire function of exponential type
which satisfies an equation of the form in the following proposition is a sum of
k-exponential-monomials functions. The following proposition makes it clear why
this hypothesis on the analyticity of the function is chosen, since a solution which
is of exponential growth on the real line is shown to be entire of exponential type.
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Proposition 3.7. Let f ∈ Cn(R) satisfy

(i) |f(x)| ≤Meτ |x|,

(ii) Dn
k f = µ ∗k f , for n ≥ 2,

where µ is a measure on R such that B =
∫

R
eτ |t| d|µ|(t) < +∞. Then f is the

restriction to R of an entire function of exponential type at most (4B)
1

n .

Proof: We have

|Dn
k f(x)| ≤

∫

R

|T k
−tf(x)| d|µ|(t) ≤ 4MBeτ |x|.

By Lemma 3.6, we deduce that

|Dn−s
k f(x)|

≤ τ−s
(

2s × 4MB + 2s−1τCn−1 + 2
s−2τ2Cn−2 + · · ·+ τsCn−s

)

eτ |x|,

for 0 < s ≤ n. On the other hand, by using Lemma 3.3, we obtain

∀x ∈ R, ∀ s ∈ N, 0 ≤ s ≤ n, Dn+s
k f(x) = µ ∗k Ds

kf(x).

So that, |Dn+s
k

f(x)| ≤ 4BC̃se
τ |x|, for 0 < s < n, and |D2nk f(x)| ≤ (4B)2Meτ |x|,

where C̃s = τs−n
(

2n−s × 4MB + 2n−s−1τCn−1 + · · ·+ τn−sCs

)

. Repeating
this process we obtain for m ∈ N and 0 < s < n,

|Dnm+s
k

f(x)| ≤ (4B)mC̃se
τ |x| and |Dnm

k f(x)| ≤ (4B)mMeτ |x|.

Hence we deduce by Lemma 3.3 that f ∈ C∞(R). Furthermore, we have

lim sup
j−→+∞

|Dj
k
f(x)|

1

j ≤ lim
m−→+∞

(

(4B)mC̃s

)
1

nm+s
= (4B)

1

n

for 0 < s < n fixed. It then follows from Lemma 3.4 that f is entire of exponential

type at most (4B)
1

n . �

Lemma 3.8. Let f ∈ CN (R) satisfy

(i) |f(x)| ≤Meτ |x|,

(ii) |
∑N

n=0 an,kD
n
k f(x)| ≤ Beτ |x|, aN,k 6= 0.

Then |Ds
kf(x)| ≤Ms,ke

τ |x|, 0 < s ≤ N , whereMs,k is a constant depending upon

the function, k and s.

Proof: Proceed by induction on N . If |a1,kDkf(x) + a0,kf(x)| ≤ Beτ |x|, then

|Dkf(x)| ≤
1

|a1,k|
(B + |a0,k|M)e

τ |x|.
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This yields the statement for N = 1. Now if |
∑N+1

n=0 an,kD
n
k f(x)| ≤ Beτ |x|, then

the generalized Taylor formula with integral remainder gives
∣

∣

∣

∣

N
∑

n=0

an+1,kD
n
k f(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

N
∑

n=0

an+1,kD
n
k f(0)

∣

∣

∣

∣

+

∫ |x|

−|x|
|W0(x, y)||

N+1
∑

n=1

an,kD
n
k f(y)||y|

2k dy

≤
[

P0 + (|a0,k|M + B)2τ
−1
]

eτ |x|,

where P0 = |
∑N

n=0 an+1,kD
n
k f(0)|. By our induction hypothesis, |D

s
kf(x)| ≤

Ms,ke
τ |x|, for 0 < s ≤ N . Further

|DN+1
k f(x)| ≤

1

|aN+1,k|

[

N
∑

n=0

|an,k|Mn,k +B

]

eτ |x|.

This concludes the proof of Lemma 3.8. �

Proposition 3.9. Let µ be a measure on R such that B =
∫

R
eτ |t| d|µ|(t) < +∞,

τ > 0, and f ∈ CN (R) satisfy

(i) |f(x)| ≤Meτ |x|, x ∈ R,

(ii) µ ∗k f(x) =
∑N

n=0 an,kD
n
k f(x), aN,k 6= 0.

Then f is infinitely differentiable.

Proof: First
∣

∣

∣

∣

N
∑

n=0

an,kD
n
k f(x)

∣

∣

∣

∣

≤ 4MBeτ |x|.

Observe that by Lemma 3.8, |Ds
kf(x)| ≤ Ms,ke

τ |x|, 0 < s ≤ N . Further,
Lemma 3.3 implies that the right hand side of the following equation

DN
k f(x) =

1

|aN,k|

[

µ ∗k f(x)−
N−1
∑

n=0

an,kD
n
k f(x)

]

,

is differentiable and that in fact

DN+1
k

f(x) =
1

|aN,k|

[

µ ∗k Dkf(x)−
N−1
∑

n=0

an,kD
n+1
k

f(x)

]

.

Therefore

|DN+1
k

f(x)| ≤
1

|aN,k|

( N
∑

n=1

|an−1,k|Mn,k + 4M1,kB

)

eτ |x|.

This process can be repeated infinitely, proving the proposition. �
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Remark. Proposition 3.7 and 3.9 have shown that the equations µ ∗k f(x) =
∑N

n=0 an,kD
n
k f(x) have solutions which are entire functions of exponential type

when all but one of the an,k are zero, 1 ≤ n ≤ N , and are at least infinitely
differentiable otherwise.

4. Characterizations for certain classes of entire functions of slow

growth on the real axis associated with the Dunkl operator

In this section we show a Paley-Wiener type Theorem associated with Dk and
we proceed to develop conditions on the measure (more precisely on the Fourier-
Dunkl transform of the measure which will be defined below) such that equations

of the form µ ∗k f =
∑N

n=0 an,kD
n
k f characterize the class of entire functions

of exponential type a which are square integrable with respect to |x|2kdx and
bounded on the real line.
Next, we continue by considering the equations characterizing entire functions
of exponential type which have polynomial growth on the real line. The section
closes by giving some other results by considering these same equations in the
same order.

Notations. We denote by

• L
p
k
(R), 1 ≤ p <∞, the space of measurable functions f on R such that

‖f‖p,k =

(
∫

R

|f(x)|p|x|2k dx

)
1

p

< +∞.

• L2k([−a , a]) the subspace of functions in L
2
k(R) vanishing outside [−a , a], a >

0.
• ExpBa (C), the space of entire functions of exponential type a which are bounded
on the real line.

• L2k,a(R) the subspace of Exp
B
a (C) consisting of functions belonging to L

2
k(R).

- The Fourier-Dunkl transform on L1k(R) is defined by

Fk(f)(ξ) = ck

∫

R

f(x)φk
−iξ,0(x)|x|

2k dx,

where ck =
1

2k+
1
2 Γ(k+ 1

2
)
.

- Let µ be a finite Radon measure on the real line. The Fourier-Dunkl transform
of µ is given by

Fk(µ)(y) =

∫

R

φk
−iy,0(x) dµ(x).

Many properties of the Euclidean Fourier transform carry over to Fourier-Dunkl
transform. In particular Fk(f) ∈ C0(R) for f ∈ L1k(R) (C0(R) is the space of
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continuous functions on R such that vanish at infinity), and there holds an L1-
inversion Theorem: If f, Fk(f) ∈ L1k(R) then f = FkFk(f) = FkFk(f) a.e,

where Fk(f)(ξ) = Fk(f)(−ξ). Moreover, the Fourier-Dunkl transform Fk is a
topological isomorphism from S(R) onto itself (S(R) is the Schwartz space of
rapidly decreasing functions on the R), so Fk can be extended to a Plancherel
transform on L2k(R). For details see [6].

Let f in Lp
k
(R), 1 ≤ p <∞. We define the distribution Sf by

(13) 〈Sf , ϕ〉k =

∫

R

f(x)ϕ(x)|x|2k dx, ϕ ∈ S(R).

Let f in A(C) be such that

f(z) =

∫

R

g(t)φk
iz,0(t)|t|

2k dt, z ∈ C,

with g ∈ L2k([−a , a]), a > 0. Then f is an entire function of exponential type a.
The following Paley-Wiener type theorem associated with the operator Dk asserts
the converse of this is true, if we know that f restricted to the real axis belongs
to L2k(R). More precisely, we have

Theorem 4.1. Suppose f ∈ L2k(R) ∩ A(C). Then

f(z) = ck

∫ a

−a
g(t)φk

iz,0(t)|t|
2k dt,

where g ∈ L2k([−a , a]) if and only if f is of exponential type a.

Proof: Suppose f is of exponential type a and its restriction to the real axis
belongs to L2k(R). Let g be the Fourier-Dunkl transform of f . Then

f(x) = lim
T−→+∞

ck

∫ T

−T
g(t)φk

ix,0(t)|t|
2k dt,

where the limit is in the topology of L2k(R). If t < −a, let Γ be the closed curve
in the upper half plane which consists of the segment L1 = [−T,−ǫ], γǫ, ǫ > 0
is the small semicircle from −ǫ to ǫ, oriented counterclockwise, L2 = [ǫ, T ], L3 =
[T, T + iT ], L4 = [T + iT,−T + iT ] and L5 = [−T + iT,−T ]. We can use a
similar argument with Γ in the lower half plane if t > a. We obtain the result by
proceeding in the same way as [3, Theorem 6.8.1, p. 103] and using that

lim
ǫ−→0

∫

γǫ

f(z)φk
ix,0(z)|z|

2k dz = 0.

�
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Remarks. (i) If f ∈ L2k,a(R), then for all n ∈ N, Dn
k f ∈ L2k,a(R).

(ii) Let ξk be the function defined by ξk(x) = Fk(χ[−a,a]), where χ[−a,a] is the

characteristic function of the interval [−a, a]. We have

(14) ξk(x) =
1

2k−
1

2Γ(12 )
a2k+1

∞
∑

n=0

(−1)n(xa)2n

(2n)!(2n+ 2k + 1)

Γ(n+ 12 )

Γ(n+ k + 12 )
.

The function ξk belongs to L
2
k,a(R) and its Fourier-Dunkl transform equals 1 on

the interval [−a, a]. In the case k = 0, we have ξ0(x) =
√

2
π
sinax

x .

Theorem 4.2. Let f ∈ L2k(R) ∩ C
N (R) and µ be a finite Radon measure on R

such that

Fk(µ)(t) =

{

∑N
n=0 an,k(it)

n, for |t| ≤ a and an,k are complex,

g(t), for |t| > a where g(t) 6=
∑N

n=0 an,k(it)
n.

Then

(15) µ ∗k f(x) =

N
∑

n=0

an,kD
n
k f(x)

if and only if f ∈ L2k,a(R). Further, if (15) holds for every f ∈ L2k,a(R) but not

for every f ∈ L2k,b(R), where b > a, then Fk(µ) has the form above.

Proof: Suppose f ∈ L2k,a(R). From the Paley-Wiener type Theorem 4.1 and the

assumptions on the measure µ, we have

Fk(f)(t)

[

Fk(µ)(t) −

N
∑

n=0

an,k(it)
n

]

= 0.

Then

Fk(µ ∗k f)(t) = Fk(

N
∑

n=0

an,kD
n
k f)(t).

So, we see that (15) holds. Conversely, if (15) holds, by the Fourier-Dunkl trans-
form and the assumptions on the measure µ, it is clear that Fk(f)(t) = 0, for
|t| > a. Taking the inverse Fourier-Dunkl transform, we have

f(x) = ck

∫ a

−a
φk

ix,0(t)Fk(f)(t)|t|
2k dt.
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Hence f ∈ L2k,a(R) by the Paley-Wiener type Theorem 4.1. Finally, if (15) holds

for every f ∈ L2k,a(R), it certainly holds for the function ξk given by relation (14),

hence

Fk(µ)(t) =
N
∑

n=0

an,k(it)
n for |t| ≤ a.

If Fk(µ) has this form for the interval |t| ≤ b, where b > a, the previous argument
would show that (15) holds for every f ∈ L2k,b(R), contradiction to the hypothesis.

This finishes the proof. �

Example. Let µ be the measure defined by

µ = −
a2

3
δ0 +

2a2

π2

∑

n∈Z,n 6=0

(−1)n+1

n2
δnπ

a
.

By computation, we have Fk(µ)(t) =
1
2k+1 (it)

2 for |t| ≤ a, and for |t| > a the

graph repeats. Then

1

2k + 1
D2kf(x) = −

a2

3
f(x) +

2a2

π2

+∞
∑

n=−∞,n 6=0

(−1)n+1

n2
T k
−nπ

a
f(x)

for f ∈ L2k(R) ∩ C
2(R) is characteristic of f ∈ L2k,a(R).

Theorem 4.3. Let µ be a measure such that

Fk(µ)(t) =

{

∑N
n=0 an,k(it)

n, for |t| ≤ a,

g(t), for |t| > a, where g(t) 6=
∑N

n=0 an,k(it)
n.

Further, suppose that
∫

R
|t|J d|µ|(t) < +∞, where J ≥ 0. Let f ∈ CN (R) be such

that f(x) = O(|x|J ) as |x| −→ +∞. Then

(16) µ ∗k f =
N
∑

n=0

an,kD
n
k f

if and only if f is entire of exponential type a. Further, if (16) does hold for this

class of functions, then Fk(µ)(t) =
∑N

n=0 an,k(it)
n for |t| ≤ a.

Proof: Let f be an entire function of exponential type a and Sf the distribution

defined by (13), then Fk(Sf ) ∈ S′(R) whose support is in the interval [−a , a]. The
k-convolution Sf ∗k µ is also a distribution and Fk(Sf ∗k µ) = Fk(Sf )Fk(µ). By
the hypothesis on the measure and the properties of Fourier-Dunkl transform, we
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see that (16) holds for distributions and thus for functions. Conversely, applying
Fourier-Dunkl transform to (16) and using the assumptions on the measure µ yield
that the support of Fk(Sf ) is in the interval [−a , a]. Hence f is the restriction

to R of the entire function g of exponential type a given by g(z) = FkFk(Sf )(z).

Finally, if (16) holds for every f ∈ Expa(C) such that f(x) = O(|x|J ) as |x| −→

+∞, for any fixed J ≥ 0. Since z 7−→ φk
ix,0(z) is of exponential type a, for |x| ≤ a,

the characterization of the measure follows. �

Example. For χ ∈ D(R) (the space of C∞-functions on R with compact sup-
port), satisfying the following conditions: 0 ≤ χ ≤ 1, χ(x) = 1, ∀x ∈ [−a , a],
a > 0 and suppχ ⊂ ]−a− ǫ, a+ ǫ [ , ǫ > 0, we define

ϕk(x) = ck

∫

R

φk
ix,0(t)χ(t)|t|

2k dt = Fk(χ)(x).

We note that ϕk is an entire function of exponential type which is in L
2
k(R). Since

ϕk(x) = ck(−ix)
−n

∫

R

φk
ix,0(t)D

n
kχ(t)|t|

2k dt, n ∈ N,

we have

|ϕk(x)| ≤ ck|x|
−n

∫

R

|Dn
kχ(t)||t|

2k dt,

for arbitrary n, so that
∫

R
|t|J |ϕk(t)| dt < +∞, for J ≥ 0. A similar argument

shows that
∫

R
|t|J |Dn

kϕk(t)| dt < +∞, for any n ≥ 0 and J ≥ 0. Fk(D
n
kϕk)(t) =

(it)n, for |t| ≤ a. Then Dn
k f(x) =

∫

R
T k
−tf(x)D

n
kϕk(t) dt, n ≥ 0, characterizes

entire functions of exponential type a which have polynomial growth on the real
line.

Theorem 4.4. Let µ ∈Mσ(R), with σ > 0. The following equation

(17) µ ∗k f(z) =

N
∑

n=0

an,kD
n
k f(z), z ∈ C,

is satisfied for every entire function of exponential type a, (a < σ) if and only if

∫

R

ms(−t)dµ(t) =

{

s!as,k, if s ≥ 0, s ≤ N,

0, if s > N,

where ms(z) = Vk(z
s).

Proof: We have just to show the “only if” part of this theorem. The “if” part
is easy to see when we take in particular f(z) = ms(z), s ≥ 0, in equation (17).
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Let P be any polynomial of degree j. From Theorem 1.3, we deduce that T k
z P (t) =

∑j
n=0D

n
kP (z)bn(t). Thus µ ∗k P (z) =

∑N
n=0 an,kD

n
kP (z). Fixing z ∈ C, the

functional

F k
z : g 7−→

∫

R

{

T k
−tg(z)−

N
∑

n=0

Dn
k g(z)bn(−t)

}

dµ(t)

is a continuous linear functional on the Banach space X = {g ∈ L1(d|µ|), g

is entire}, it has the property that F k
z [P ] = 0, ∀P ∈ P , the polynomial space

on C. Let f ∈ Expa(C), a < σ, and z ∈ C fixed, thus T k
z f ∈ X . Since T k

z f is

analytic, Theorem 1.3 implies that T k
z f(t) =

∑∞
n=0D

n
k f(z)bn(t), (see [8]). By

the dominated convergence theorem, we have

‖Pj,z − T k
z f‖1 =

∫

R

|Pj,z(t)− T k
z f(t)| d|µ|(t) −→ 0, as j −→ ∞,

where Pj,z(t) =
∑j

n=0D
n
k f(z)bn(t). Consequently T

k
z f ∈ P, the closure of P

in X . We deduce the result by Hahn Banach theorem. �

Remark. Combining the last theorem with Theorem 2.2, we see that for µ ∈

Mσ(R), σ > 0, Lk(µ)(z) =
∑N

n=0 an,kz
n in a disc if and only

∫

R

ms(−t)dµ(t) =

{

s!as,k for 0 ≤ s ≤ N

0 if s > N.

We will consider the following cases, where µ represents the measure in each
case.

1. f ∈ L2k(R) and Fk(µ) exists.

2. f(x) = O(|x|J ) for J ≥ 0 as |x| −→ ∞ and Fk(µ) exists.

3. f has arbitrary growth and µ ∈Mb(R) with b > a.

Theorem 4.5. Let f belong to Expa(C) and satisfy both

(18) µ ∗k f(x) =

N
∑

n=0

an,kD
n
k f(x) and µ1 ∗k f(x) =

M
∑

m=0

bm,kD
m
k f(x),

where for case (1) and (2), the set of common zeros of the functions

g(t) = Fk(µ)(t)−

N
∑

n=0

an,k(it)
n and g1(t) = Fk(µ1)(t)−

M
∑

m=0

bm,k(it)
m
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for |t| ≤ a, is at most the origin (where roots of multiplicity r and r1 occur) and
for case (3) the set of common zeros of the complex functions

G(z) = Lk(µ)(z)−
N
∑

n=0

an,kz
n and G1(z) = Lk(µ1)(z)−

M
∑

m=0

bm,kz
m,

is at most the origin (where roots of multiplicity r and r1 occur). Then, case (1), f
is identically zero. Case (2) and (3), f is a polynomial of degree min(r−1 , r1−1).

Proof: (1) Follows easily from Paley-Wiener type Theorem 4.1 and the as-
sumptions on the measures µ and µ1. Case (2), applying Fourier-Dunkl trans-
form to (18) and using the assumptions on the measures µ and µ1 yield that

suppFk(Sf ) ⊂ {0}, then there exists N1 ∈ N such that Fk(Sf ) =
∑N1

n=0 cnδ
(n)
0 .

Since gFk(Sf ) is zero distribution and λ = 0 is a zero of g of order r, hence cn = 0

if n ≥ r. Thus f(x) =
∑r−1

n=0 cn,kx
n, cn,k ∈ C. The same work for g1, implies that

f is a polynomial of degree at most min(r − 1 , r1 − 1). Finally (3), from Pólya
representation Theorem 1.6, Lemma 2.6 and the residue theorem, we deduce the
assertion. �
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