TAKAMITSU YAMAUCHI

Dedicated to Professor Takao Hoshina on his sixtieth birthday.

Abstract. Blum and Swaminathan [Pacific J. Math. 93 (1981), 251–260] introduced the notion of \mathcal{B} -fixedness for set-valued mappings, and characterized realcompactness by means of continuous selections for Tychonoff spaces of non-measurable cardinal. Using their method, we obtain another characterization of realcompactness, but without any cardinal assumption. We also characterize Dieudonné completeness and Lindelöf property in similar formulations.

Keywords: set-valued mapping, selection, realcompact, Dieudonné complete, Lindelöf, \mathcal{B} -fixed, local intersection property, open lower sections

Classification: 54C60, 54C65, 54D20, 54D60

1. Introduction

Let X be a topological space and Y be a topological vector space. Let us denote by 2^{Y} the set of all non-empty subsets of Y, and write

$$\mathcal{K}(Y) = \{ K \in 2^Y \mid K \text{ is convex} \},$$
$$\mathcal{F}_c(Y) = \{ F \in 2^Y \mid F \text{ is closed and convex} \}.$$

A set-valued mapping $\varphi:X\to 2^Y$ is $lower\ semicontinuous$ (l.s.c. for short) if the set

$$\varphi^{-1}(V) = \{ x \in X \mid \varphi(x) \cap V \neq \emptyset \}$$

is open in X for every open subset V of Y. For a set-valued mapping $\varphi : X \to 2^Y$, a mapping $f : X \to Y$ is called a *selection* of φ if $f(x) \in \varphi(x)$ for every $x \in X$. A subset S of X is a *zero-set* (respectively a *cozero-set*) if $S = \{x \in X \mid f(x) = 0\}$ (respectively $S = \{x \in X \mid f(x) \neq 0\}$) for some real-valued continuous function f on X. For undefined notations and terminology we refer to [1] or [4].

The following is a well-known selection theorem due to Michael [6, Theorem 3.2''].

T. Yamauchi

Theorem 1.1 (Michael [6]). A T_1 -space X is paracompact if and only if, for every Banach space Y, every l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection.

This result not only guarantees the existence of a selection but describes paracompactness in terms of continuous selections of l.s.c. set-valued mappings. In addition to this theorem, some topological properties have been characterized by means of continuous selections (see [9]). Among these results, Blum and Swaminathan [2] characterized realcompactness for Tychonoff spaces (that is, completely regular T_1 -spaces) of non-measurable cardinal as in Theorem 1.2.

Before stating Theorem 1.2, let us recall some terminology introduced by Blum and Swaminathan [2]. An l.s.c. set-valued mapping $\varphi : X \to 2^Y$ is said to be of infinite character if there exists a neighborhood V of the origin of Y such that the open cover $\{\varphi^{-1}(y+V) \mid y \in Y\}$ of X has no finite subcover; and otherwise φ is called of finite character. For a family S of subsets of a space X, a set-valued mapping $\varphi : X \to 2^Y$ is S-fixed if $\bigcap \{\varphi(x) \mid x \in S\} \neq \emptyset$ for every $S \in S$. For a given Tychonoff space X, let B be the family of subsets of X defined as follows:

 $\mathcal{B} = \{ B \subset X \mid B \text{ is a realcompact cozero-set in } X \text{ and } X \setminus B \text{ is not compact} \}.$

A cardinality τ is called *measurable* if the discrete space of cardinal τ admits a nontrivial $\{0, 1\}$ -valued countably additive measure.

Theorem 1.2 (Blum and Swaminathan [2]). For a Tychonoff space X of nonmeasurable cardinal, the following statements are equivalent:

- (a) X is realcompact;
- (b) for every locally convex topological vector space Y, every \mathcal{B} -fixed l.s.c. set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ is of finite character;
- (c) for every locally convex topological vector space Y, every \mathcal{B} -fixed l.s.c. setvalued mapping $\varphi : X \to \mathcal{K}(Y)$ of infinite character admits a continuous selection.

The main purpose of this paper is to obtain another description of realcompactness in terms of \mathcal{B} -fixed l.s.c. set-valued mappings as follows. Notice that, in our case, a space X is not assumed to be of non-measurable cardinal.

Theorem 1.3. A Tychonoff space X is realcompact if and only if, for every Banach space Y, every \mathcal{B} -fixed l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection $f : X \to Y$ such that f(X) is separable.

Let us recall that a Tychonoff space X is *Dieudonné complete* if there exists a complete uniformity on the space X (see [4, 8.5.13]). It is known that every realcompact space is Dieudonné complete. For a Tychonoff space X, Blum and Swaminathan defined the collection C of subsets of X as follows:

 $\mathcal{C} = \{ C \subset X \mid C \text{ is a Dieudonné complete cozero-set in } X \}$

and $X \setminus C$ is not compact}.

Besides they mentioned that several theorems in their paper [2] are valid with substitution of the phrases "Dieudonné complete" for "realcompact", and "C-fixed" for " \mathcal{B} -fixed" [2, REMARKS (ii)]. Thus it is natural to ask whether Dieudonné completeness can be described by means of C-fixed set-valued mappings in a formulation analogous to Theorem 1.3. In Section 3, we prove the following:

Theorem 1.4. A Tychonoff space X is Dieudonné complete if and only if, for every Banach space Y, every C-fixed l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection.

In addition, we will characterize Lindelöf property in Section 3.

Theorem 1.5. A regular space X is Lindelöf if and only if, for every Banach space Y, every l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection $f : X \to Y$ such that f(X) is separable.

Yannelis and Prabhakar [13] defined set-valued mappings with open lower sections, and Wu and Shen [12] defined the local intersection property for set-valued mappings. In [12] and [13], selection theorems of such set-valued mappings on paracompact spaces were obtained. Adopting these notions, we will also characterize paracompactness, realcompactness, Dieudonné completeness, and Lindelöf property in Section 4.

2. Proof of Theorem 1.3

Let X be a topological space. For a subset S of X, $cl_X(S)$ stands for the closure of S in X. Let us denote by C(X) the set of all real-valued continuous functions on X. For $f \in C(X)$, set $Z(f) = \{x \in X \mid f(x) = 0\}$ and $Coz(f) = \{x \in X \mid f(x) \neq 0\}$. A family $\{p_{\lambda} \mid \lambda \in \Lambda\}$ of continuous functions $p_{\lambda} : X \to [0,1]$ is called a *partition of unity* on X if $\sum_{\lambda \in \Lambda} p_{\lambda}(x) = 1$ for each $x \in X$. A partition of unity $\{p_{\lambda} \mid \lambda \in \Lambda\}$ on X is said to be *locally finite* if the cover $\{Coz(p_{\lambda}) \mid \lambda \in \Lambda\}$ of X is locally finite. For an open cover \mathcal{U} of X, a partition of unity $\{p_{\lambda} \mid \lambda \in \Lambda\}$ on X is *subordinated to* \mathcal{U} if the cover $\{Coz(p_{\lambda}) \mid \lambda \in \Lambda\}$ refines \mathcal{U} . Let us denote \mathbb{N} , \mathbb{Q} , and \mathbb{R} the set of all positive integers, the set of all rationals, and the set of all reals, respectively. For a set A, $l_1(A)$ means the Banach space of all functions $y : A \to \mathbb{R}$ such that $\sum_{a \in A} |y(a)| < \infty$ with the norm $||y|| = \sum_{a \in A} |y(a)|$. For $a \in A$, let $\pi_a : l_1(A) \to \mathbb{R}$ be the *a*-th projection. We will use the following lemma due to Michael [6, p. 369].

Lemma 2.1 (Michael [6]). Let \mathcal{U} be an open cover of a topological space X. Let $\varphi: X \to 2^{l_1(\mathcal{U})}$ be a set-valued mapping defined by

$$\begin{split} \varphi(x) &= \{ y \in l_1(\mathcal{U}) \mid \|y\| = 1, \ y(U) \geq 0 \ \text{ for every } U \in \mathcal{U}, \\ \text{ and } y(U) &= 0 \ \text{ for all } U \in \mathcal{U} \ \text{ with } x \notin U \}, \end{split}$$

for $x \in X$. Then φ is l.s.c. and closed-and-convex-valued. Furthermore, if φ has a continuous selection, then there exists a locally finite partition of unity subordinated to \mathcal{U} .

A Tychonoff space X is called *realcompact* if every z-ultrafilter (that is, a maximal filter consisting of zero-sets) on X with the countable intersection property has non-empty intersection. For a Tychonoff space X, βX and vX denote the Stone-Čech compactification and the realcompactification of X, respectively.

The following theorem was essentially proved by De Marco and Wilson [3, 4. THEOREM] and Tamano [10, Theorem 2.5].

Lemma 2.2 (De Marco and Wilson [3], Tamano [10]). For a Tychonoff space X and a point $a \in \beta X$, $a \in \beta X \setminus vX$ if and only if there exists a (locally finite) countable partition of unity $\{p_i \mid i \in \mathbb{N}\}$ on X such that $a \in cl_{\beta X}(Z(p_i))$ for each $i \in \mathbb{N}$.

Using this lemma, we prove the following:

Lemma 2.3. Let X be a non-compact realcompact space and Y be a topological vector space. Then every \mathcal{B} -fixed set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ has a continuous selection $f : X \to Y$ such that f(X) is separable.

PROOF: Since X is a non-compact realcompact space, that is, $vX = X \subsetneq \beta X$, we may choose $a \in \beta X \setminus vX$. By Lemma 2.2, there exists a locally finite countable partition of unity $\{p_i \mid i \in \mathbb{N}\}$ on X such that $a \in cl_{\beta X}(Z(p_i))$ for each $i \in \mathbb{N}$. Then $X \setminus Coz(p_i) = Z(p_i)$ is not compact. By virtue of [5, 8.14. THEOREM], $Coz(p_i)$ is realcompact. Thus we have $\{Coz(p_i) \mid i \in \mathbb{N}\} \subset \mathcal{B}$. Since φ is \mathcal{B} -fixed, we can take $y_i \in \bigcap \{\varphi(x) \mid x \in Coz(p_i)\}$ for each $i \in \mathbb{N}$. Define a mapping $f: X \to Y$ by the formula $f(x) = \sum_{i \in \mathbb{N}} p_i(x)y_i$ for each $x \in X$. Then f is a continuous selection of φ since $\{p_i \mid i \in \mathbb{N}\}$ is locally finite and φ is convex-valued. It remains to prove the separability of f(X). For $n \in \mathbb{N}$, put $\Lambda_n = \{((q_i)_{i=1}^n, k) \in \mathbb{Q}^n \times \mathbb{N} \mid \sum_{i=1}^n r_i y_i \in f(X) \text{ and } |q_i - r_i| < 1/k \text{ for some } (r_i)_{i=1}^n \in \mathbb{R}^n\}$. For $n \in \mathbb{N}, \lambda = ((q_i)_{i=1}^n, k) \in \Lambda_n$, and $j \in \{1, 2, \ldots, n\}$, choose $r_j(\lambda) \in \mathbb{R}$ so that $\sum_{j=1}^n r_j(\lambda)y_j \in f(X)$ and $|q_j - r_j(\lambda)| < 1/k$ for every $j \in \{1, 2, \ldots, n\}$. Then the set $A = \{\sum_{i=1}^n r_i(\lambda)y_i \mid \lambda \in \Lambda_n, n \in \mathbb{N}\}$ is a countable dense subset of f(X). \Box

PROOF OF THEOREM 1.3: If X is compact, the "only if" part follows from Theorem 1.1; otherwise from Lemma 2.3.

To see the "if" part, let X be a Tychonoff space satisfying that, for every Banach space Y, every \mathcal{B} -fixed l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a continuous selection $f : X \to Y$ such that f(X) is separable. Assume that X is not realcompact and take $a_0 \in vX \setminus X$. We will deduce a contradiction. Put $\mathcal{U} = \{ \operatorname{Coz}(p) \mid p \in C(X), a_0 \in \operatorname{cl}_{\beta X}(Z(p)) \}$. Then \mathcal{U} is an open cover of X. Put $Y = l_1(\mathcal{U})$ and define a set-valued mapping $\varphi : X \to 2^Y$ as in Lemma 2.1. Then φ is l.s.c. and $\varphi(x) \in \mathcal{F}_c(Y)$ for each $x \in X$. We claim that φ is \mathcal{B} -fixed. To prove this, let $B \in \mathcal{B}$. Then $B = \operatorname{Coz}(h)$ for some $h \in C(X)$ as B is a cozero-set. Since $\operatorname{Coz}(h)$ is realcompact and $\operatorname{cl}_{\beta X}(Z(h))$ is compact, $\operatorname{Coz}(h) \cup \operatorname{cl}_{\beta X}(Z(h))$ is realcompact ([5, 8.16. THEO-REM]) and contains X. Thus we have $vX \subset \operatorname{Coz}(h) \cup \operatorname{cl}_{\beta X}(Z(h))$, and hence $a_0 \in vX \setminus X \subset \operatorname{cl}_{\beta X}(Z(h))$. Thus $B = \operatorname{Coz}(h) \in \mathcal{U}$. Let $y \in l_1(\mathcal{U})$ be the element defined by

$$y(U) = \begin{cases} 1, & \text{if } U = B, \\ 0, & \text{if } U \neq B, \end{cases}$$

for each $U \in \mathcal{U}$. Then $y \in \bigcap \{\varphi(x) \mid x \in B\}$. Therefore φ is \mathcal{B} -fixed.

By hypothesis, φ admits a continuous selection $f: X \to Y$ such that f(X)is separable. Then there exists a countable subset $\{x_n \mid n \in \mathbb{N}\}$ of Y whose closure contains f(X). Put $\mathcal{U}' = \{U \in \mathcal{U} \mid x_n(U) \neq 0 \text{ for some } n \in \mathbb{N}\}$. Then \mathcal{U}' is a countable subset of \mathcal{U} . We may regard $l_1(\mathcal{U}')$ as a linear subspace of $l_1(\mathcal{U})$ by canonical identification. Since $l_1(\mathcal{U}')$ is a closed subspace of $l_1(\mathcal{U})$, $f(X) \subset$ $cl_{l_1(\mathcal{U})}(\{x_n \mid n \in \mathbb{N}\}) \subset l_1(\mathcal{U}')$, so that $\pi_U(f(X)) = \{0\}$ for each $U \in \mathcal{U} \setminus \mathcal{U}'$. Let us denote $\mathcal{U}' = \{U_i \mid i \in \mathbb{N}\}$, and put $p_i = \pi_{U_i} \circ f$ for $i \in \mathbb{N}$. Then $\{p_i \mid i \in \mathbb{N}\}$ is a countable partition of unity on X such that $Coz(p_i) \subset U_i$ for each $i \in \mathbb{N}$. Then $a_0 \in cl_{\beta X}(Z(p_i))$ for each $i \in \mathbb{N}$. Thus $a_0 \in \beta X \setminus vX$ due to Lemma 2.2, that contradicts the choice of a_0 . Hence X is realcompact.

Remark 2.4. Note that in [2, THEOREM 2], the implication $(a)\Rightarrow(b)$ of Theorem 1.2 was shown without assuming that X is of non-measurable cardinal. Here we show that the other implication $(b)\Rightarrow(a)$ also holds for a Tychonoff space X of any cardinal. The set-valued mapping defined in the proof of the "if" part of Theorem 1.3 can be shown to be of infinite character as in the proof of [2, THE-OREM 8]. Thus for a Tychonoff space X, the realcompactness of X is equivalent to the following statement:

For every Banach space Y, every \mathcal{B} -fixed and l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}_c(Y)$ of infinite character admits a continuous selection $f : X \to Y$ such that f(X) is separable.

Since the statement (b) of Theorem 1.2 implies the above statement, the implication (b) \Rightarrow (a) in Theorem 1.2 is valid for every Tychonoff space X of any cardinal.

On the other hand, the implication $(c) \Rightarrow (a)$ of Theorem 1.2 need not be true for Tychonoff spaces of any cardinal. Indeed, a discrete space D of measurable cardinal satisfies condition (c) of Theorem 1.2 since every set-valued mapping on D has a continuous selection. But D is not realcompact (see [4, 3.11.D]).

3. Characterizations of Dieudonné completeness and Lindelöf property

For a Tychonoff space X, let Φ_X be the set of all normal open covers of X.

Then Φ_X forms the finest uniformity on X. Let us denote μX the Dieudonné completion of X (that is, the completion with respect to Φ_X). We will use the fact that a cozero-set of a Dieudonné complete space is Dieudonné complete [4, 8.5.13 (f)] as a subspace.

For the proof of Theorem 1.4, we use the following lemma which is essentially proved in [10, Theorem 2.6] (see also [4, 8.5.13(b)]).

Lemma 3.1 (Tamano [10]). For a Tychonoff space X and a point $a \in \beta X$, $a \in \beta X \setminus \mu X$ if and only if there exists a (locally finite) partition of unity $\{p_{\lambda} \mid \lambda \in \Lambda\}$ on X such that $a \in cl_{\beta X}(Z(p_{\lambda}))$ for each $\lambda \in \Lambda$.

With this lemma, the following can be shown as in the proof of Lemma 2.3.

Lemma 3.2. For a non-compact Dieudonné complete space X and a topological vector space Y, every C-fixed set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ has a continuous selection.

To prove Theorem 1.4, we also need the following:

Proposition 3.3. Let X be a Tychonoff space. If X is the union of a compact subspace K and a Dieudonné complete subspace S, then X is Dieudonné complete.

PROOF: Let \mathcal{F} be a Cauchy filter basis with respect to Φ_X . In case $\operatorname{cl}_X(F) \cap K \neq \emptyset$ for each $F \in \mathcal{F}$, \mathcal{F} converges to a point of K since K is compact. Otherwise, suppose that $\operatorname{cl}_X(F_0) \cap K = \emptyset$ for some $F_0 \in \mathcal{F}$. Since K is compact, there exist a zero-set Z and a cozero-set C in X such that $\operatorname{cl}_X(F_0) \subset Z \subset C \subset X \setminus K \subset S$. Hence C is a cozero-set of the Dieudonné complete space S, so that the subspace C of S is Dieudonné complete. Put $\mathcal{F}' = \{F \cap C \mid F \in \mathcal{F}\}$. As $F_0 \subset C$, \mathcal{F}' is a filter basis on C.

We claim that \mathcal{F}' is a Cauchy filter basis with respect to Φ_C . To prove this, let $\mathcal{U} \in \Phi_C$. Since \mathcal{U} is a normal open cover of C, there exists a locally finite (in C) cozero-set cover \mathcal{U}' of C which refines \mathcal{U} . Then there exists a countable collection $\{\mathcal{V}_i \mid i \in \mathbb{N}\}$ of locally finite (in X) families \mathcal{V}_i consisting of cozero-sets of X such that each \mathcal{V}_i refines \mathcal{U}' and $C = \bigcup \bigcup_{i \in \mathbb{N}} \mathcal{V}_i$. Indeed, since C is a cozero-set of X, there exists a continuous function $f: X \to [0, 1]$ such that $C = \operatorname{Coz}(f)$. Putting $Z_i = f^{-1}([1/i, 1])$ and $U_i = f^{-1}((1/i, 1])$ for each $i \in \mathbb{N}$, we obtain zero-sets Z_i and cozero-sets U_i of X satisfying $U_i \subset Z_i \subset U_{i+1}$ and $C = \bigcup_{i \in \mathbb{N}} U_i$. Set $\mathcal{V}_i = \{U \cap U_i \mid U \in \mathcal{U}'\}$ for each $i \in \mathbb{N}$. Then $\{\mathcal{V}_i \mid i \in \mathbb{N}\}$ is the desired collection.

Finally, put $\mathcal{W} = \bigcup_{i \in \mathbb{N}} \mathcal{V}_i \cup \{X \setminus Z\}$. Then \mathcal{W} is a σ -locally finite (in X) cozero-set cover of X. Hence \mathcal{W} is a normal open cover of X, and $\mathcal{W} \in \Phi_X$. Because \mathcal{F} is a Cauchy filter basis with respect to Φ_X , it follows that $F \subset W$ for some $F \in \mathcal{F}$ and some $W \in \mathcal{W}$. As $F_0 \cap F \neq \emptyset$, we have $W \neq X \setminus Z$, so that $W \in \mathcal{V}_i$ for some $i \in \mathbb{N}$. Since \mathcal{V}_i refines \mathcal{U} , we may take $U \in \mathcal{U}$ so that $W \subset U$. Thus $F \cap C \subset U$. Therefore \mathcal{F}' is a Cauchy filter basis with respect to Φ_C .

Since C is Dieudonné complete, \mathcal{F}' converges to some x in C. As $F_0 \subset C$, \mathcal{F} converges to x in X. Therefore X is Dieudonné complete.

PROOF OF THEOREM 1.4: The proof is quite similar to that of Theorem 1.3. If X is compact, the "only if" part follows from Theorem 1.1; otherwise from Lemma 3.2. Proof of the "if" part is obtained by replacing "realcompact", "vX", and " \mathcal{B} " in that of Theorem 1.3 with "Dieudonné complete", " μX ", and " \mathcal{C} ", respectively.

Next, we show Theorem 1.5.

PROOF OF THEOREM 1.5: The "only if" part follows from Theorem 1.1 and the fact that the continuous image of a Lindelöf space is Lindelöf. To prove the "if" part, given an open cover \mathcal{U} of X, apply the same argument as in the proof of the "if" part of Theorem 1.3. Then we can obtain some countable partition of unity on X subordinated to \mathcal{U} .

Lindelöf property is also characterized by set-valued selections. Let us recall some notations and terminology. For a topological space Y, set

$$\mathcal{F}(Y) = \{ F \in 2^Y \mid F \text{ is closed} \},\$$
$$\mathcal{C}(Y) = \{ C \in 2^Y \mid C \text{ is compact} \}.$$

A set-valued mapping $\varphi:X\to 2^Y$ is upper semicontinuous (u.s.c. for short) if the set

$$\varphi^{\#}(V) = \{ x \in X \mid \varphi(x) \subset V \}$$

is open in X for every open subset V of Y.

Proposition 3.4. A regular space X is Lindelöf if and only if, for every completely metrizable space Y and every l.s.c. set-valued mapping $\varphi : X \to \mathcal{F}(Y)$, there exist a u.s.c. set-valued mapping $\psi : X \to \mathcal{C}(Y)$ and an l.s.c. set-valued mapping $\theta : X \to \mathcal{C}(Y)$ such that $\theta(x) \subset \psi(x) \subset \varphi(x)$ for every $x \in X$ and $\bigcup_{x \in X} \psi(x)$ is separable.

PROOF: To prove the "only if" part, let X be a Lindelöf space, Y a completely metrizable space, and $\varphi : X \to \mathcal{F}(Y)$ an l.s.c. set-valued mapping. Due to Michael's compact-valued selection theorem [7, THEOREM 1.1], there exist a u.s.c. set-valued mapping $\psi : X \to \mathcal{C}(Y)$ and an l.s.c. set-valued mapping $\theta : X \to \mathcal{C}(Y)$ such that $\theta(x) \subset \psi(x) \subset \varphi(x)$ for every $x \in X$ (see also [8, p. 305, Theorem 3]). Since Y is metrizable, it suffices to show that $\bigcup_{x \in X} \psi(x)$ is Lindelöf. Let \mathcal{V} be a family of open sets of Y covering $\bigcup_{x \in X} \psi(x)$. For $x \in X$, $\psi(x)$ is compact, hence $\psi(x)$ is covered with some finite subset \mathcal{V}_x of \mathcal{V} . Then $\{\psi^{\#}(\bigcup \mathcal{V}_x) \mid x \in X\}$ is an open cover of X. Since X is Lindelöf, $X = \bigcup_{i \in \mathbb{N}} \psi^{\#}(\bigcup \mathcal{V}_{x_i})$ for some countable set $\{x_i \mid i \in \mathbb{N}\}$ of X. Then $\bigcup_{i \in \mathbb{N}} \mathcal{V}_{x_i}$ is a countable subfamily of \mathcal{V} that covers $\bigcup_{x \in X} \psi(x)$.

To prove the "if" part, let \mathcal{U} be an open cover of X. Topologize \mathcal{U} by the discrete topology. Note that \mathcal{U} is completely metrizable. Define a set-valued

T. Yamauchi

mapping $\varphi : X \to 2^{\mathcal{U}}$ by $\varphi(x) = \{U \in \mathcal{U} \mid x \in U\}$ for $x \in X$. Then φ is closed-valued and l.s.c. By hypothesis, there exists a set-valued mapping $\psi : X \to 2^{\mathcal{U}}$ such that $\psi(x) \subset \varphi(x)$ for every $x \in X$ and $\bigcup_{x \in X} \psi(x)$ is separable. Then $\bigcup_{x \in X} \psi(x)$ is a countable subcover of \mathcal{U} .

4. Characterizations in terms of convex-valued mappings with the local intersection property or with open lower sections

Let $\varphi : X \to 2^Y$ be a set-valued mapping. Then φ is said to have open lower sections if $\varphi^{-1}(\{y\})$ is open in X for every $y \in Y$ ([13]). We say that φ has the local intersection property if each $x \in X$ has a neighborhood U with $\bigcap \{\varphi(z) \mid z \in U\} \neq \emptyset$ ([12]). Note that a set-valued mapping having open lower sections is l.s.c. and has the local intersection property. But lower semicontinuity need not imply the local intersection property and vice versa.

Yannelis and Prabhakar [13] showed that if X is paracompact, then every convex-valued mapping with open lower sections from X into a topological vector space admits a continuous selection. Later, Wu and Shen [12] improved this result by establishing that if X is paracompact, then every convex-valued mapping with the local intersection property from X into a topological vector space admits a continuous selection. By the following theorem we show that the converse of Yannelis and Prabhakar's result (and hence, one of Wu and Shen's result above) is also true.

Theorem 4.1. For a T_1 -space X, the following statements are equivalent:

- (a) X is paracompact;
- (b) for every topological vector space Y, a set-valued mapping φ : X → K(Y) having the local intersection property admits a continuous selection;
- (c) for every topological vector space Y, a set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ having open lower sections admits a continuous selection.

PROOF: It suffices to show $(c) \Rightarrow (a)$. Let X be a T_1 -space satisfying (c) and \mathcal{U} an open cover of X. For $x \in X$, let $\varphi(x)$ be the set of elements $y \in l_1(\mathcal{U})$ such that ||y|| = 1, $y(U) \ge 0$ for every $U \in \mathcal{U}$, y(U) = 0 for all but finitely many $U \in \mathcal{U}$, and y(U) = 0 for all $U \in \mathcal{U}$ with $x \notin U$. Then the resulting mapping $\varphi: X \to 2^{l_1(\mathcal{U})}$ is convex-valued. To see that φ has open lower sections, let $y \in Y$ with $\varphi^{-1}(\{y\}) \neq \emptyset$ and take $x \in \varphi^{-1}(\{y\})$. Choose $U_1, U_2, \ldots, U_n \in \mathcal{U}$ so that $\{U_1, U_2, \ldots, U_n\} = \{U \in \mathcal{U} \mid y(U) > 0\}$. Then $x \in \bigcap_{i=1}^n U_i \subset \varphi^{-1}(\{y\})$. Thus $\varphi^{-1}(\{y\})$ is open in X.

By hypothesis, there exists a continuous selection $f: X \to l_1(\mathcal{U})$ of φ . Putting $p_U = \pi_U \circ f$ for $U \in \mathcal{U}$, we obtain a partition of unity $\{p_U \mid U \in \mathcal{U}\}$ subordinated to \mathcal{U} . Therefore X is paracompact.

In formulations similar to Theorem 4.1, we can characterize realcompactness, Dieudonné completeness, and Lindelöf property. A topological space satisfies *the discrete countable chain condition* (DCCC for short) if every discrete collection of non-empty open sets is countable. Every Lindelöf T_1 -space and every separable space satisfy the DCCC. We also note that every metrizable space satisfying the DCCC is second countable (see [11]).

Theorem 4.2. For a Tychonoff space X, the following statements are equivalent:

- (a) X is realcompact;
- (b) for every Hausdorff topological vector space Y, every β-fixed set-valued mapping φ : X → K(Y) having the local intersection property admits a continuous selection f : X → Y such that f(X) satisfies the DCCC;
- (c) for every Hausdorff topological vector space Y, every \mathcal{B} -fixed set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ having open lower sections admits a continuous selection $f : X \to Y$ such that f(X) satisfies the DCCC.

PROOF: If X is compact, (a) \Rightarrow (b) follows from Theorem 4.1 and the fact that the continuous image of compact space is compact; otherwise from Lemma 2.3. The implication (b) \Rightarrow (c) is trivial. To prove (c) \Rightarrow (a), suppose that X satisfies the statement (c). Assume that X is not realcompact and take $a_0 \in vX \setminus X$. We derive a contradiction. Set $\mathcal{U} = \{\operatorname{Coz}(p) \mid p \in C(X), a_0 \in \operatorname{cl}_{\beta X}(Z(p))\}$. Then \mathcal{U} is an open cover of X. For $x \in X$, let $\varphi(x)$ be the set of elements y of $l_1(\mathcal{U})$ such that $||y|| = 1, y(U) \geq 0$ for every $U \in \mathcal{U}, y(U) = 0$ for all but finitely many $U \in \mathcal{U}$, and y(U) = 0 for all $U \in \mathcal{U}$ with $x \notin U$. By referring to the proof of the "if" part of Theorem 1.3 and the proof of (c) \Rightarrow (a) of Theorem 4.1, we can verify that the resulting mapping $\varphi : X \to 2^{l_1(\mathcal{U})}$ is a \mathcal{B} -fixed and convex-valued mapping having open lower sections.

By hypothesis, φ admits a continuous selection $f : X \to l_1(\mathcal{U})$ such that f(X) satisfies the DCCC. Since f(X) is metrizable, f(X) is separable. As in the proof of the "if" part of Theorem 1.3, there exists a countable partition of unity $\{p_i \mid i \in \mathbb{N}\}$ subordinated to \mathcal{U} . Then $a_0 \in cl_{\beta X}(Z(p_i))$ for each $i \in \mathbb{N}$, so that $a_0 \in \beta X \setminus vX$ due to Lemma 2.2, but that contradicts the choice of a_0 . Hence X is realcompact.

Remark 4.3. By the proof of Theorem 4.2, it also holds that a Tychonoff space is realcompact if and only if, for every normed space Y, every \mathcal{B} -fixed set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ having the local intersection property admits a continuous selection $f : X \to Y$ such that f(X) is separable.

Theorem 4.4. For a Tychonoff space X, the following statements are equivalent:

- (a) X is Dieudonné complete;
- (b) for every topological vector space Y, every C-fixed set-valued mapping φ : X → K(Y) having the local intersection property admits a continuous selection;

T. Yamauchi

(c) for every topological vector space Y, every C-fixed set-valued mapping $\varphi: X \to \mathcal{K}(Y)$ having open lower sections admits a continuous selection.

PROOF: If X is compact, the (a) \Rightarrow (b) follows from Theorem 4.1; otherwise from Lemma 3.2. The implication (b) \Rightarrow (c) is clear. The implication (c) \Rightarrow (a) is obtained by replacing "realcompact", "vX", and " \mathcal{B} " in the proof of Theorem 4.2 with "Dieudonné complete", " μX ", and " \mathcal{C} ", respectively.

Theorem 4.5. For a regular space X, the following statements are equivalent:

- (a) X is Lindelöf;
- (b) for every topological vector space Y, every set-valued mapping φ : X → K(Y) having the local intersection property admits a continuous selection f : X → Y such that f(X) is Lindelöf;
- (c) for every topological vector space Y, every set-valued mapping $\varphi : X \to \mathcal{K}(Y)$ having open lower sections admits a continuous selection $f : X \to Y$ such that f(X) is Lindelöf.

PROOF: The implication $(a) \Rightarrow (b)$ follows from Theorem 4.1 and the fact that the continuous image of a Lindelöf space is Lindelöf. The implication $(b) \Rightarrow (c)$ is clear. To prove $(c) \Rightarrow (a)$, let \mathcal{U} be an open cover of X. By the same argument as in the proof of $(c) \Rightarrow (a)$ of Theorem 4.2, there exists a countable partition of unity on X subordinated to \mathcal{U} .

Acknowledgment. Finally, the author would like to express his gratitude to Professors T. Hoshina and K. Yamazaki for their constant encouragement.

References

- Aló R.A., Shapiro H.L., Normal Topological Spaces, Cambridge University Press, New York-London, 1974.
- Blum I., Swaminathan S., Continuous selections and realcompactness, Pacific J. Math. 93 (1981), 251–260.
- [3] De Marco G., Wilson R.G., Realcompactness and partitions of unity, Proc. Amer. Math. Soc. 30 (1971), 189–194.
- [4] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989.
- [5] Gillman L., Jerison M., Rings of Continuous Functions, D. Van Nostrand Co., Inc., Princeton, NJ.-Toronto-London-New York, 1960.
- [6] Michael E., Continuous selection I, Ann. Math. 63 (1956), 361-382.
- [7] Michael E., A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647–651.
- [8] Nedev S., Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291–317.
- [9] Repovš D., Semenov P.V., Continuous selections of multivalued mappings, Kluwer Acad. Publ., Dordrecht, 1998.
- [10] Tamano H., On compactifications, J. Math. Kyoto Univ. 1 (1962), 162–193.
- [11] Wiscamb M.R., The discrete countable chain condition, Proc. Amer. Math. Soc. 23 (1969), 608–612.

- [12] Wu X., Shen S., A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl. 197 (1996), 61–74.
- [13] Yannelis N.C., Prabhakar N.D., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), 233-245.

Doctoral Program in Mathematics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan

E-mail:yamauchi@math.tsukuba.ac.jp

(Received January 26, 2004, revised June 4, 2004)