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Abstract. Blum and Swaminathan [Pacific J. Math. 93 (1981), 251–260] introduced the
notion of B-fixedness for set-valued mappings, and characterized realcompactness by
means of continuous selections for Tychonoff spaces of non-measurable cardinal. Us-
ing their method, we obtain another characterization of realcompactness, but without
any cardinal assumption. We also characterize Dieudonné completeness and Lindelöf
property in similar formulations.
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1. Introduction

Let X be a topological space and Y be a topological vector space. Let us
denote by 2Y the set of all non-empty subsets of Y , and write

K(Y ) = {K ∈ 2Y | K is convex},

Fc(Y ) = {F ∈ 2Y | F is closed and convex}.

A set-valued mapping ϕ : X → 2Y is lower semicontinuous (l.s.c. for short) if the
set

ϕ−1(V ) = {x ∈ X | ϕ(x) ∩ V 6= ∅}

is open in X for every open subset V of Y . For a set-valued mapping ϕ : X → 2Y ,
a mapping f : X → Y is called a selection of ϕ if f(x) ∈ ϕ(x) for every x ∈ X .
A subset S of X is a zero-set (respectively a cozero-set) if S = {x ∈ X | f(x) = 0}
(respectively S = {x ∈ X | f(x) 6= 0}) for some real-valued continuous function
f on X . For undefined notations and terminology we refer to [1] or [4].

The following is a well-known selection theorem due to Michael [6, Theo-
rem 3.2′′].
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Theorem 1.1 (Michael [6]). A T1-space X is paracompact if and only if, for
every Banach space Y , every l.s.c. set-valued mapping ϕ : X → Fc(Y ) admits a
continuous selection.

This result not only guarantees the existence of a selection but describes para-
compactness in terms of continuous selections of l.s.c. set-valued mappings. In
addition to this theorem, some topological properties have been characterized by
means of continuous selections (see [9]). Among these results, Blum and Swami-
nathan [2] characterized realcompactness for Tychonoff spaces (that is, completely
regular T1-spaces) of non-measurable cardinal as in Theorem 1.2.
Before stating Theorem 1.2, let us recall some terminology introduced by Blum

and Swaminathan [2]. An l.s.c. set-valued mapping ϕ : X → 2Y is said to be of
infinite character if there exists a neighborhood V of the origin of Y such that
the open cover {ϕ−1(y+V ) | y ∈ Y } of X has no finite subcover; and otherwise ϕ
is called of finite character . For a family S of subsets of a space X , a set-valued
mapping ϕ : X → 2Y is S-fixed if

⋂

{ϕ(x) | x ∈ S} 6= ∅ for every S ∈ S. For a
given Tychonoff space X , let B be the family of subsets of X defined as follows:

B = {B ⊂ X | B is a realcompact cozero-set in X and X \B is not compact}.

A cardinality τ is called measurable if the discrete space of cardinal τ admits
a nontrivial {0, 1}-valued countably additive measure.

Theorem 1.2 (Blum and Swaminathan [2]). For a Tychonoff space X of non-
measurable cardinal, the following statements are equivalent:

(a) X is realcompact;
(b) for every locally convex topological vector space Y , every B-fixed l.s.c.
set-valued mapping ϕ : X → K(Y ) is of finite character;

(c) for every locally convex topological vector space Y , every B-fixed l.s.c. set-
valued mapping ϕ : X → K(Y ) of infinite character admits a continuous
selection.

The main purpose of this paper is to obtain another description of realcom-
pactness in terms of B-fixed l.s.c. set-valued mappings as follows. Notice that, in
our case, a space X is not assumed to be of non-measurable cardinal.

Theorem 1.3. A Tychonoff space X is realcompact if and only if, for every
Banach space Y , every B-fixed l.s.c. set-valued mapping ϕ : X → Fc(Y ) admits
a continuous selection f : X → Y such that f(X) is separable.

Let us recall that a Tychonoff space X is Dieudonné complete if there exists
a complete uniformity on the space X (see [4, 8.5.13]). It is known that every
realcompact space is Dieudonné complete. For a Tychonoff space X , Blum and
Swaminathan defined the collection C of subsets of X as follows:

C = {C ⊂ X | C is a Dieudonné complete cozero-set in X

and X \ C is not compact}.
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Besides they mentioned that several theorems in their paper [2] are valid with sub-
stitution of the phrases “Dieudonné complete” for “realcompact”, and “C-fixed”
for “B-fixed” [2, Remarks (ii)]. Thus it is natural to ask whether Dieudonné
completeness can be described by means of C-fixed set-valued mappings in a for-
mulation analogous to Theorem 1.3. In Section 3, we prove the following:

Theorem 1.4. A Tychonoff space X is Dieudonné complete if and only if, for
every Banach space Y , every C-fixed l.s.c. set-valued mapping ϕ : X → Fc(Y )
admits a continuous selection.

In addition, we will characterize Lindelöf property in Section 3.

Theorem 1.5. A regular space X is Lindelöf if and only if, for every Banach
space Y , every l.s.c. set-valued mapping ϕ : X → Fc(Y ) admits a continuous
selection f : X → Y such that f(X) is separable.

Yannelis and Prabhakar [13] defined set-valued mappings with open lower sec-
tions, and Wu and Shen [12] defined the local intersection property for set-valued
mappings. In [12] and [13], selection theorems of such set-valued mappings on
paracompact spaces were obtained. Adopting these notions, we will also charac-
terize paracompactness, realcompactness, Dieudonné completeness, and Lindelöf
property in Section 4.

2. Proof of Theorem 1.3

LetX be a topological space. For a subset S ofX , clX(S) stands for the closure
of S in X . Let us denote by C(X) the set of all real-valued continuous functions
on X . For f ∈ C(X), set Z(f) = {x ∈ X | f(x) = 0} and Coz(f) = {x ∈ X |
f(x) 6= 0}. A family {pλ | λ ∈ Λ} of continuous functions pλ : X → [0, 1] is called
a partition of unity on X if

∑

λ∈Λ pλ(x) = 1 for each x ∈ X . A partition of unity
{pλ | λ ∈ Λ} on X is said to be locally finite if the cover {Coz(pλ) | λ ∈ Λ} of X
is locally finite. For an open cover U of X , a partition of unity {pλ | λ ∈ Λ} on
X is subordinated to U if the cover {Coz(pλ) | λ ∈ Λ} refines U . Let us denote
N, Q, and R the set of all positive integers, the set of all rationals, and the set of
all reals, respectively. For a set A, l1(A) means the Banach space of all functions
y : A → R such that

∑

a∈A |y(a)| < ∞ with the norm ‖y‖ =
∑

a∈A |y(a)|. For
a ∈ A, let πa : l1(A)→ R be the a-th projection. We will use the following lemma
due to Michael [6, p. 369].

Lemma 2.1 (Michael [6]). Let U be an open cover of a topological space X . Let

ϕ : X → 2l1(U) be a set-valued mapping defined by

ϕ(x) = {y ∈ l1(U) | ‖y‖ = 1, y(U) ≥ 0 for every U ∈ U ,

and y(U) = 0 for all U ∈ U with x /∈ U},
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for x ∈ X . Then ϕ is l.s.c. and closed-and-convex-valued. Furthermore, if ϕ
has a continuous selection, then there exists a locally finite partition of unity

subordinated to U .

A Tychonoff space X is called realcompact if every z-ultrafilter (that is, a max-
imal filter consisting of zero-sets) on X with the countable intersection property
has non-empty intersection. For a Tychonoff space X , βX and υX denote the
Stone-Čech compactification and the realcompactification of X , respectively.
The following theorem was essentially proved by De Marco and Wilson [3,

4. Theorem] and Tamano [10, Theorem 2.5].

Lemma 2.2 (De Marco and Wilson [3], Tamano [10]). For a Tychonoff space X
and a point a ∈ βX , a ∈ βX \ υX if and only if there exists a (locally finite)
countable partition of unity {pi | i ∈ N} on X such that a ∈ clβX (Z(pi)) for each
i ∈ N.

Using this lemma, we prove the following:

Lemma 2.3. Let X be a non-compact realcompact space and Y be a topological
vector space. Then every B-fixed set-valued mapping ϕ : X → K(Y ) has a
continuous selection f : X → Y such that f(X) is separable.

Proof: Since X is a non-compact realcompact space, that is, υX = X ( βX , we
may choose a ∈ βX \ υX . By Lemma 2.2, there exists a locally finite countable
partition of unity {pi | i ∈ N} on X such that a ∈ clβX(Z(pi)) for each i ∈ N.
Then X \ Coz(pi) = Z(pi) is not compact. By virtue of [5, 8.14. Theorem],
Coz(pi) is realcompact. Thus we have {Coz(pi) | i ∈ N} ⊂ B. Since ϕ is B-fixed,
we can take yi ∈

⋂

{ϕ(x) | x ∈ Coz(pi)} for each i ∈ N. Define a mapping
f : X → Y by the formula f(x) =

∑

i∈N
pi(x)yi for each x ∈ X . Then f is a

continuous selection of ϕ since {pi | i ∈ N} is locally finite and ϕ is convex-valued.
It remains to prove the separability of f(X). For n ∈ N, put Λn = {((qi)

n
i=1, k) ∈

Qn × N |
∑n

i=1 riyi ∈ f(X) and |qi − ri| < 1/k for some (ri)
n
i=1 ∈ Rn}. For

n ∈ N, λ = ((qi)
n
i=1, k) ∈ Λn, and j ∈ {1, 2, . . . , n}, choose rj(λ) ∈ R so that

∑n
j=1 rj(λ)yj ∈ f(X) and |qj − rj(λ)| < 1/k for every j ∈ {1, 2, . . . , n}. Then the

set A = {
∑n

i=1 ri(λ)yi | λ ∈ Λn, n ∈ N} is a countable dense subset of f(X). �

Proof of Theorem 1.3: If X is compact, the “only if” part follows from
Theorem 1.1; otherwise from Lemma 2.3.
To see the “if” part, let X be a Tychonoff space satisfying that, for every

Banach space Y , every B-fixed l.s.c. set-valued mapping ϕ : X → Fc(Y ) admits
a continuous selection f : X → Y such that f(X) is separable. Assume that X
is not realcompact and take a0 ∈ υX \X . We will deduce a contradiction. Put
U = {Coz(p) | p ∈ C(X), a0 ∈ clβX(Z(p))}. Then U is an open cover of X . Put

Y = l1(U) and define a set-valued mapping ϕ : X → 2Y as in Lemma 2.1. Then
ϕ is l.s.c. and ϕ(x) ∈ Fc(Y ) for each x ∈ X .
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We claim that ϕ is B-fixed. To prove this, let B ∈ B. Then B = Coz(h)
for some h ∈ C(X) as B is a cozero-set. Since Coz(h) is realcompact and
clβX (Z(h)) is compact, Coz(h) ∪ clβX (Z(h)) is realcompact ([5, 8.16. Theo-
rem]) and contains X . Thus we have υX ⊂ Coz(h) ∪ clβX(Z(h)), and hence
a0 ∈ υX \X ⊂ clβX(Z(h)). Thus B = Coz(h) ∈ U . Let y ∈ l1(U) be the element
defined by

y(U) =

{

1, if U = B,

0, if U 6= B,

for each U ∈ U . Then y ∈
⋂

{ϕ(x) | x ∈ B}. Therefore ϕ is B-fixed.
By hypothesis, ϕ admits a continuous selection f : X → Y such that f(X)

is separable. Then there exists a countable subset {xn | n ∈ N} of Y whose
closure contains f(X). Put U ′ = {U ∈ U | xn(U) 6= 0 for some n ∈ N}. Then U ′

is a countable subset of U . We may regard l1(U
′) as a linear subspace of l1(U)

by canonical identification. Since l1(U
′) is a closed subspace of l1(U), f(X) ⊂

cll1(U)({xn | n ∈ N}) ⊂ l1(U
′), so that πU (f(X)) = {0} for each U ∈ U \ U ′. Let

us denote U ′ = {Ui | i ∈ N}, and put pi = πUi
◦ f for i ∈ N. Then {pi | i ∈ N} is

a countable partition of unity on X such that Coz(pi) ⊂ Ui for each i ∈ N. Then
a0 ∈ clβX(Z(pi)) for each i ∈ N. Thus a0 ∈ βX \ υX due to Lemma 2.2, that
contradicts the choice of a0. Hence X is realcompact. �

Remark 2.4. Note that in [2, Theorem 2], the implication (a)⇒(b) of Theo-
rem 1.2 was shown without assuming that X is of non-measurable cardinal. Here
we show that the other implication (b)⇒(a) also holds for a Tychonoff space X
of any cardinal. The set-valued mapping defined in the proof of the “if” part of
Theorem 1.3 can be shown to be of infinite character as in the proof of [2, The-
orem 8]. Thus for a Tychonoff space X , the realcompactness of X is equivalent
to the following statement:

For every Banach space Y , every B-fixed and l.s.c. set-valued mapping ϕ : X →
Fc(Y ) of infinite character admits a continuous selection f : X → Y such that
f(X) is separable.

Since the statement (b) of Theorem 1.2 implies the above statement, the im-
plication (b)⇒(a) in Theorem 1.2 is valid for every Tychonoff space X of any
cardinal.
On the other hand, the implication (c)⇒(a) of Theorem 1.2 need not be true

for Tychonoff spaces of any cardinal. Indeed, a discrete space D of measurable
cardinal satisfies condition (c) of Theorem 1.2 since every set-valued mapping on
D has a continuous selection. But D is not realcompact (see [4, 3.11.D]).

3. Characterizations of Dieudonné completeness and Lindelöf

property

For a Tychonoff space X , let ΦX be the set of all normal open covers of X .
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Then ΦX forms the finest uniformity on X . Let us denote µX the Dieudonné
completion of X (that is, the completion with respect to ΦX). We will use the
fact that a cozero-set of a Dieudonné complete space is Dieudonné complete [4,
8.5.13 (f)] as a subspace.
For the proof of Theorem 1.4, we use the following lemma which is essentially

proved in [10, Theorem 2.6] (see also [4, 8.5.13(b)]).

Lemma 3.1 (Tamano [10]). For a Tychonoff space X and a point a ∈ βX , a ∈
βX \µX if and only if there exists a (locally finite) partition of unity {pλ | λ ∈ Λ}
on X such that a ∈ clβX(Z(pλ)) for each λ ∈ Λ.

With this lemma, the following can be shown as in the proof of Lemma 2.3.

Lemma 3.2. For a non-compact Dieudonné complete space X and a topological
vector space Y , every C-fixed set-valued mapping ϕ : X → K(Y ) has a continuous
selection.

To prove Theorem 1.4, we also need the following:

Proposition 3.3. Let X be a Tychonoff space. If X is the union of a compact
subspaceK and a Dieudonné complete subspace S, thenX is Dieudonné complete.

Proof: Let F be a Cauchy filter basis with respect to ΦX . In case clX (F )∩K 6= ∅
for each F ∈ F , F converges to a point of K since K is compact. Otherwise,
suppose that clX(F0) ∩K = ∅ for some F0 ∈ F . Since K is compact, there exist
a zero-set Z and a cozero-set C in X such that clX(F0) ⊂ Z ⊂ C ⊂ X \K ⊂ S.
Hence C is a cozero-set of the Dieudonné complete space S, so that the subspace
C of S is Dieudonné complete. Put F ′ = {F ∩ C | F ∈ F}. As F0 ⊂ C, F ′ is a
filter basis on C.
We claim that F ′ is a Cauchy filter basis with respect to ΦC . To prove this, let

U ∈ ΦC . Since U is a normal open cover of C, there exists a locally finite (in C)
cozero-set cover U ′ of C which refines U . Then there exists a countable collection
{Vi | i ∈ N} of locally finite (in X) families Vi consisting of cozero-sets of X such
that each Vi refines U

′ and C =
⋃⋃

i∈N
Vi. Indeed, since C is a cozero-set of X ,

there exists a continuous function f : X → [0, 1] such that C = Coz(f). Putting
Zi = f−1([1/i, 1]) and Ui = f−1((1/i, 1]) for each i ∈ N, we obtain zero-sets
Zi and cozero-sets Ui of X satisfying Ui ⊂ Zi ⊂ Ui+1 and C =

⋃

i∈N
Ui. Set

Vi = {U ∩Ui | U ∈ U ′} for each i ∈ N. Then {Vi | i ∈ N} is the desired collection.
Finally, put W =

⋃

i∈N
Vi ∪ {X \ Z}. Then W is a σ-locally finite (in X)

cozero-set cover of X . Hence W is a normal open cover of X , and W ∈ ΦX .
Because F is a Cauchy filter basis with respect to ΦX , it follows that F ⊂W for
some F ∈ F and some W ∈ W . As F0 ∩ F 6= ∅, we have W 6= X \ Z, so that
W ∈ Vi for some i ∈ N. Since Vi refines U , we may take U ∈ U so that W ⊂ U .
Thus F ∩ C ⊂ U . Therefore F ′ is a Cauchy filter basis with respect to ΦC .
Since C is Dieudonné complete, F ′ converges to some x in C. As F0 ⊂ C, F

converges to x in X . Therefore X is Dieudonné complete. �
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Proof of Theorem 1.4: The proof is quite similar to that of Theorem 1.3.
If X is compact, the “only if” part follows from Theorem 1.1; otherwise from
Lemma 3.2. Proof of the “if” part is obtained by replacing “realcompact”, “υX”,
and “B” in that of Theorem 1.3 with “Dieudonné complete”, “µX”, and “C”,
respectively. �

Next, we show Theorem 1.5.

Proof of Theorem 1.5: The “only if” part follows from Theorem 1.1 and the
fact that the continuous image of a Lindelöf space is Lindelöf. To prove the “if”
part, given an open cover U of X , apply the same argument as in the proof of the
“if” part of Theorem 1.3. Then we can obtain some countable partition of unity
on X subordinated to U . �

Lindelöf property is also characterized by set-valued selections. Let us recall
some notations and terminology. For a topological space Y , set

F(Y ) = {F ∈ 2Y | F is closed},

C(Y ) = {C ∈ 2Y | C is compact}.

A set-valued mapping ϕ : X → 2Y is upper semicontinuous (u.s.c. for short) if
the set

ϕ#(V ) = {x ∈ X | ϕ(x) ⊂ V }

is open in X for every open subset V of Y .

Proposition 3.4. A regular space X is Lindelöf if and only if, for every com-
pletely metrizable space Y and every l.s.c. set-valued mapping ϕ : X → F(Y ),
there exist a u.s.c. set-valued mapping ψ : X → C(Y ) and an l.s.c. set-valued
mapping θ : X → C(Y ) such that θ(x) ⊂ ψ(x) ⊂ ϕ(x) for every x ∈ X and
⋃

x∈X ψ(x) is separable.

Proof: To prove the “only if” part, let X be a Lindelöf space, Y a completely
metrizable space, and ϕ : X → F(Y ) an l.s.c. set-valued mapping. Due to
Michael’s compact-valued selection theorem [7, Theorem 1.1], there exist a u.s.c.
set-valued mapping ψ : X → C(Y ) and an l.s.c. set-valued mapping θ : X → C(Y )
such that θ(x) ⊂ ψ(x) ⊂ ϕ(x) for every x ∈ X (see also [8, p. 305, Theorem 3]).
Since Y is metrizable, it suffices to show that

⋃

x∈X ψ(x) is Lindelöf. Let V be a
family of open sets of Y covering

⋃

x∈X ψ(x). For x ∈ X , ψ(x) is compact, hence

ψ(x) is covered with some finite subset Vx of V . Then {ψ#(
⋃

Vx) | x ∈ X} is an
open cover of X . Since X is Lindelöf, X =

⋃

i∈N
ψ#(

⋃

Vxi
) for some countable

set {xi | i ∈ N} of X . Then
⋃

i∈N
Vxi
is a countable subfamily of V that covers

⋃

x∈X ψ(x).
To prove the “if” part, let U be an open cover of X . Topologize U by the

discrete topology. Note that U is completely metrizable. Define a set-valued
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mapping ϕ : X → 2U by ϕ(x) = {U ∈ U | x ∈ U} for x ∈ X . Then ϕ is closed-

valued and l.s.c. By hypothesis, there exists a set-valued mapping ψ : X → 2U

such that ψ(x) ⊂ ϕ(x) for every x ∈ X and
⋃

x∈X ψ(x) is separable. Then
⋃

x∈X ψ(x) is a countable subcover of U . �

4. Characterizations in terms of convex-valued mappings with the

local intersection property or with open lower sections

Let ϕ : X → 2Y be a set-valued mapping. Then ϕ is said to have open
lower sections if ϕ−1({y}) is open in X for every y ∈ Y ([13]). We say that
ϕ has the local intersection property if each x ∈ X has a neighborhood U with
⋂

{ϕ(z) | z ∈ U} 6= ∅ ([12]). Note that a set-valued mapping having open lower
sections is l.s.c. and has the local intersection property. But lower semicontinuity
need not imply the local intersection property and vice versa.

Yannelis and Prabhakar [13] showed that if X is paracompact, then every
convex-valued mapping with open lower sections from X into a topological vector
space admits a continuous selection. Later, Wu and Shen [12] improved this result
by establishing that if X is paracompact, then every convex-valued mapping with
the local intersection property from X into a topological vector space admits a
continuous selection. By the following theorem we show that the converse of
Yannelis and Prabhakar’s result (and hence, one of Wu and Shen’s result above)
is also true.

Theorem 4.1. For a T1-space X , the following statements are equivalent:

(a) X is paracompact;
(b) for every topological vector space Y , a set-valued mapping ϕ : X → K(Y )
having the local intersection property admits a continuous selection;

(c) for every topological vector space Y , a set-valued mapping ϕ : X → K(Y )
having open lower sections admits a continuous selection.

Proof: It suffices to show (c)⇒(a). Let X be a T1-space satisfying (c) and U
an open cover of X . For x ∈ X , let ϕ(x) be the set of elements y ∈ l1(U) such
that ‖y‖ = 1, y(U) ≥ 0 for every U ∈ U , y(U) = 0 for all but finitely many
U ∈ U , and y(U) = 0 for all U ∈ U with x /∈ U . Then the resulting mapping

ϕ : X → 2l1(U) is convex-valued. To see that ϕ has open lower sections, let y ∈ Y
with ϕ−1({y}) 6= ∅ and take x ∈ ϕ−1({y}). Choose U1, U2, . . . , Un ∈ U so that
{U1, U2, . . . , Un} = {U ∈ U | y(U) > 0}. Then x ∈

⋂n
i=1 Ui ⊂ ϕ−1({y}). Thus

ϕ−1({y}) is open in X .

By hypothesis, there exists a continuous selection f : X → l1(U) of ϕ. Putting
pU = πU ◦ f for U ∈ U , we obtain a partition of unity {pU | U ∈ U} subordinated
to U . Therefore X is paracompact. �
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In formulations similar to Theorem 4.1, we can characterize realcompactness,
Dieudonné completeness, and Lindelöf property. A topological space satisfies the
discrete countable chain condition (DCCC for short) if every discrete collection of
non-empty open sets is countable. Every Lindelöf T1-space and every separable
space satisfy the DCCC. We also note that every metrizable space satisfying the
DCCC is second countable (see [11]).

Theorem 4.2. For a Tychonoff spaceX , the following statements are equivalent:

(a) X is realcompact;
(b) for every Hausdorff topological vector space Y , every B-fixed set-valued
mapping ϕ : X → K(Y ) having the local intersection property admits a
continuous selection f : X → Y such that f(X) satisfies the DCCC;

(c) for every Hausdorff topological vector space Y , every B-fixed set-valued
mapping ϕ : X → K(Y ) having open lower sections admits a continuous
selection f : X → Y such that f(X) satisfies the DCCC.

Proof: If X is compact, (a)⇒(b) follows from Theorem 4.1 and the fact that
the continuous image of compact space is compact; otherwise from Lemma 2.3.
The implication (b)⇒(c) is trivial. To prove (c)⇒(a), suppose that X satisfies
the statement (c). Assume that X is not realcompact and take a0 ∈ υX \X . We
derive a contradiction. Set U = {Coz(p) | p ∈ C(X), a0 ∈ clβX(Z(p))}. Then
U is an open cover of X . For x ∈ X , let ϕ(x) be the set of elements y of l1(U)
such that ‖y‖ = 1, y(U) ≥ 0 for every U ∈ U , y(U) = 0 for all but finitely many
U ∈ U , and y(U) = 0 for all U ∈ U with x /∈ U . By referring to the proof of
the “if” part of Theorem 1.3 and the proof of (c)⇒(a) of Theorem 4.1, we can

verify that the resulting mapping ϕ : X → 2l1(U) is a B-fixed and convex-valued
mapping having open lower sections.
By hypothesis, ϕ admits a continuous selection f : X → l1(U) such that

f(X) satisfies the DCCC. Since f(X) is metrizable, f(X) is separable. As in the
proof of the “if” part of Theorem 1.3, there exists a countable partition of unity
{pi | i ∈ N} subordinated to U . Then a0 ∈ clβX (Z(pi)) for each i ∈ N, so that
a0 ∈ βX \ υX due to Lemma 2.2, but that contradicts the choice of a0. Hence X
is realcompact. �

Remark 4.3. By the proof of Theorem 4.2, it also holds that a Tychonoff space
is realcompact if and only if, for every normed space Y , every B-fixed set-valued
mapping ϕ : X → K(Y ) having the local intersection property admits a continu-
ous selection f : X → Y such that f(X) is separable.

Theorem 4.4. For a Tychonoff spaceX , the following statements are equivalent:

(a) X is Dieudonné complete;
(b) for every topological vector space Y , every C-fixed set-valued mapping

ϕ : X → K(Y ) having the local intersection property admits a continuous
selection;
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(c) for every topological vector space Y , every C-fixed set-valued mapping
ϕ : X → K(Y ) having open lower sections admits a continuous selection.

Proof: If X is compact, the (a)⇒(b) follows from Theorem 4.1; otherwise from
Lemma 3.2. The implication (b)⇒(c) is clear. The implication (c)⇒(a) is ob-
tained by replacing “realcompact”, “υX”, and “B” in the proof of Theorem 4.2
with “Dieudonné complete”, “µX”, and “C”, respectively. �

Theorem 4.5. For a regular space X , the following statements are equivalent:

(a) X is Lindelöf;
(b) for every topological vector space Y , every set-valued mapping ϕ : X →

K(Y ) having the local intersection property admits a continuous selection
f : X → Y such that f(X) is Lindelöf;

(c) for every topological vector space Y , every set-valued mapping ϕ : X →
K(Y ) having open lower sections admits a continuous selection f : X → Y
such that f(X) is Lindelöf.

Proof: The implication (a)⇒(b) follows from Theorem 4.1 and the fact that
the continuous image of a Lindelöf space is Lindelöf. The implication (b)⇒(c) is
clear. To prove (c)⇒(a), let U be an open cover of X . By the same argument
as in the proof of (c)⇒(a) of Theorem 4.2, there exists a countable partition of
unity on X subordinated to U . �
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[1] Aló R.A., Shapiro H.L., Normal Topological Spaces, Cambridge University Press, New
York-London, 1974.

[2] Blum I., Swaminathan S., Continuous selections and realcompactness, Pacific J. Math. 93
(1981), 251–260.

[3] De Marco G., Wilson R.G., Realcompactness and partitions of unity, Proc. Amer. Math.
Soc. 30 (1971), 189–194.

[4] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989.

[5] Gillman L., Jerison M., Rings of Continuous Functions, D. Van Nostrand Co., Inc., Prince-
ton, NJ.-Toronto-London-New York, 1960.

[6] Michael E., Continuous selection I, Ann. Math. 63 (1956), 361–382.

[7] Michael E., A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959),
647–651.

[8] Nedev S., Selection and factorization theorems for set-valued mappings, Serdica 6 (1980),
291–317.
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