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On tilting and cotilting-type modules
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Dedicated to Vlastimil Dlab on the occasion of his 70th birthday.

Abstract. We use modules of finite length to compare various generalizations of the
classical tilting and cotilting modules introduced by Brenner and Butler [BrBu].
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Introduction

The first part of the announcement of the Tilting Tagung “Twenty years of
tilting theory” says the following: “Tilting modules were born about twenty years
ago in the context of finite dimensional algebras. Since then, tilting theory has
spread in many different directions, . . . ”1

In this note we describe the answer to two questions by S. Bazzoni, on the
so called n-tilting and n-cotilting modules studied in her papers [Ba2] and [Ba3].
Roughly speaking, the first question (i.e. Question A) deals with the gap between
the modules which satisfy a word-by-word generalization (to modules of higher
projective (resp. injective) dimension) of one of the two equivalent definitions
of finitely presented tilting (resp. cotilting) modules of projective (resp. injec-
tive) dimension ≤ 1 (Theorem 4; Corollaries 6 and 7). The second question (i.e.
Question B) deals with the gap between a cotilting-type module U of injective
dimension > 1, and its injective envelope E(U). As we shall see, E(U) may be
large enough so that the factor module E(U)/U admits selfextensions (Theorem 5
and Proposition 8).
We stress the fact that all useful modules, with a tilting-type (resp. cotilting-

type) behaviour constructed in the sequel, are actually injective (resp. projective)
modules of finite length.
This paper is organized as follows. In Section 1 we fix the notation, and we

recall some definitions of modules used in the sequel, and belonging to the large
tilting and cotilting worlds. In Section 2 we collect all the proofs.

This work was partially supported by G.N.S.A.G.A., Istituto Nazionale di Alta Matematica
“Francesco Severi”, Italy.

1(see www.mathematik.uni-muenchen.de/~tilting).
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1. Definitions and notation

Throughout the paper, R denotes a ring and R-Mod denotes the class of all

left R-modules. Moreover, if M ∈ R-Mod and λ is a cardinal, then M (λ) (resp.

Mλ) denotes the direct sums (resp. products) of λ copies ofM , and GenM (resp.
CogenM) denotes the class of all modules generated (resp. cogenerated) by M .
Finally, AddM (resp. ProdM) denotes the class of all modules isomorphic to
summands of direct sums (resp. products) of copies of M , and E(M) denotes the
injective envelope of M .
Keeping the above notation and following the terminology of [Ba2], we say that

an R-module T is an n-tilting module if the following conditions hold.

(T1) The projective dimension of T is at most n.

(T2) ExtiR(T, T (λ)) = 0 for every i ≥ 1 and every cardinal λ.
(T3) There exists a long exact sequence of the form

0→ R → T0 → T1 → · · · → Tn → 0,

where Ti ∈ AddT for every i = 0, . . . , n.

Moreover, we say that T is a partial n-tilting module, if T satisfies conditions
(T1) and (T2). Dually, we say that an R-module U is an n-cotilting module if
the following conditions hold.

(C1) The injective dimension of U is at most n.

(C2) ExtiR(U
λ, U) = 0 for every i ≥ 1 and every cardinal λ.

(C3) There exists a long exact sequence of the form

0→ Un → · · · → U1 → U0 → E → 0,

where E is an injective cogenerator of R-Mod and Ui ∈ ProdU for every
i = 0, . . . , n.

Moreover, we say that U is a partial n-cotilting module, if U satisfies conditions
(C1) and (C2). As in [Ba2], for everyM ∈ R-Mod, we denote byM⊥∞ and ⊥∞M
the following classes of modules:

M⊥∞ =
{

X ∈ R-Mod |ExtiR(M, X) = 0 for every i ≥ 1
}

,

⊥∞M =
{

X ∈ R-Mod |ExtiR(X, M) = 0 for every i ≥ 1
}

.

We know from [C1, Theorem 3] that a finitely presented R-module T is
a 1-tilting module iff T is a partial 1-tilting module and KerHomR(T,−) ∩
KerExt1R(T,−) = 0.
On the other hand, by [AnTT, Proposition 2.3], [CDT1, Proposition 1.7] and

[CDT2], an R-module U is a 1-cotilting module iff U is a partial 1-cotilting
module and KerHomR(−, U) ∩KerExt1R(−, U) = 0.
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A remark of [Ba2] points out that the following condition (T3’) (resp. (C3’))
holds for every n-tilting R-module T (resp. n-cotilting R-module U):

(T3’) KerHomR(T,−) ∩ T⊥∞ = 0.

(resp. (C3’) KerHomR(−, U) ∩ ⊥∞U = 0.)

A preliminary version of [Ba2] suggested the following question:

Question A: Are there partial n-tilting (resp. n-cotilting) modules satisfying
condition (T3’) (resp. (C3’)), but not condition (T3) (resp. (C3))?

Our answer (Theorem 4) to Question A, mentioned in [Ba2, Example 1], is
positive even for n = 2 and for non faithful modules. Surprisingly enough, it
actually occurs that a faithful summand of a 2-tilting (resp. 2-cotilting) module
may satisfy condition (T3’) (resp. (C3’)) without being an n-tilting (resp. n-
cotilting) module for any n (Corollary 7).
In addition to this, condition (T3’) may hold for two summands of an n-tilting

module T with quite different properties. For instance, exactly one of them may
be both a faithful module and a maximal summand of T (Corollary 7).
A new important result by S. Bazzoni [Ba1, Theorem 2.8] states that 1-cotilting

modules are pure-injective (see e.g. several characterizations of pure-injective
modules in [JL, Theorem 7.1], [Hu, Theorems 1 and 5] and [R2, Sections 3 and 4]).
Moreover, by [Ba3, Theorem 4.2 and Proposition 4.4], the pure-injectivity on an
n-cotilting module U is equivalent to a property of its injective envelope E(U).
Since any 1-cotilting module C has the property that E(C)/C is injective, it is
natural to investigate the gap between n-cotilting modules U and their injective
envelopes E(U). In particular, the following question arises:

Question B: Are there n-cotilting modules U such that the modules E(U)/U
are not partial (n − 1)-cotilting modules?

We shall see that for any n ≥ 2 Question B has a positive answer obtained by
means of projective modules (Theorem 5 and Proposition 8).
In the next sections K denotes an algebraically closed field, and all useful

rings are K-algebras A of finite representation type, given by quivers and defined
according to [R1]. Moreover, we always identify indecomposable left A-modules
and their isomorphic classes. In particular, we describe the structure of these
modules by means of some pictures, where the vertices of some quiver index the
simple composition factors of these modules. If A admits only finitely many
simple modules up to isomorphism, we say that an A-module M of finite length
is sincere [AuReS, p. 317], if every simple A-module appears as a composition
factor of M . Under the same hypotheses on M , we say that M is multiplicity-
free [HR], if M is the direct sum of pairwise non-isomorphic indecomposable

modules. Moreover, if M ≃
⊕m

i=1Mdi

i , where di > 0 for every i andM1, . . . , Mm

are indecomposable with Mk 6≃ Mj , for i 6= j, then we denote m by δ(M).
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For unexplained representation-theoretic terminology, we refer to [AF], [AuReS]
and [R1].
For new and old generalizations of tilting and cotilting modules, equivalences,

dualities, approximations etc., see e.g. the following papers [AnT], [Ba1], [BK],
[C2], [CbF], [D], [G], [ReR] (presented in both lectures and talks at the Venice
Algebra Conference 2002), and all the references therein.

2. Proofs

In the next lemmas we collect some tricks used to construct more or less large
modules of finite length needed in the sequel.

Lemma 1. Let A be a finite dimensional K-algebra of finite representation type
and of finite global dimension m. Then the following facts hold.

(i) The regular module AA is an n-cotilting module for some n ≤ m.
(ii) The minimal injective cogenerator AD = HomK(AA, K) is an n-tilting
module for some n ≤ m.

Proof: (i) By our assumptions on A, it suffices to note that the projective
module AA is product-complete [KS, Theorem 4.1].
(ii) This is an immediate consequence of the fact that AD is an injective module

over a left noetherian algebra. �

Keeping all the notation of the introduction, we show that only reasonably
large partial n-tilting (resp. n-cotilting) modules may satisfy condition (T3’) (resp.
(C3’)).

Lemma 2. Let R be a left perfect ring, and let M be a left R-module of finite
length satisfying one of the following conditions:

(a) KerHomR(M,−) ∩ M⊥∞ = 0;

(b) KerHomR(−, M) ∩ ⊥∞M = 0.

Then M is sincere.

Proof: Let S be a simple R-module, let P be the projective cover of S, and let
E be the injective envelope of S. Since P ∈ ⊥∞M and E ∈ M⊥∞ , we have either
HomR(P, M) 6= 0 or HomR(M, E) 6= 0. Hence S is isomorphic to a composition
factor of M . Consequently, M is sincere, as claimed. �

The following example shows that the modules satisfying the hypotheses of
Lemma 2 are not necessarily faithful.

Example 3. Let A be the K-algebra given by the quiver •
1

a
((
•
2

b

gg with rela-

tion ab = 0, and let T and U be the modules 1
2
and 2

1
respectively. Since the

Auslander-Reiten quiver is of the form
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;
we have Ext2A

(

1
2
, 2

)

≃ Ext1A

(

1
2
, 1

)

6= 0 and Ext2A

(

2, 2
1

)

≃ Ext1A

(

1, 2
1

)

6= 0.

Moreover, the simple module 2 is the unique indecomposable module belonging to

KerHomA

(

1
2
,−

)

(resp. KerHomA

(

−, 2
1

)

). Consequently, T (resp. U) satisfies

condition (a) (resp. (b)) of Lemma 2.

By Lemma 2, the next result gives a positive answer to Question A by means
very small modules.

Theorem 4. There are a representation-finite K-algebra A of global dimension
two, and indecomposable not faithful A-modules T and U with the following
properties:

(i) T (resp. U) is a summand of a 2-tilting (resp. 2-cotilting) module;
(ii) T (resp. U) satisfies condition (T3’) (resp. (C3’)), but no proper submo-
dule of T (resp. U) has this property.

Proof: Let A, T and U be as in Example 3. Then the global dimension of A
is equal to two, and T (resp. U) is a summand of the 2-tilting injective module
1
2
1
⊕ 1
2
(resp. 2-cotilting projective module

1
2
1
⊕ 2
1
). By Lemmas 1 and 2, these

observations and the remarks in Example 3 imply that (i) and (ii) hold. �

The next result gives a positive answer to Question B, by means of a 2-cotilting
projective module admitting a reasonably large injective envelope.

Theorem 5. There are a K-algebra A and a 2-cotilting A-module U with the
following properties.

(i) E(U)/U is semisimple.
(ii) Every simple A-module of injective dimension at most one is isomorphic
to a summand of E(U)/U .

(iii) Ext1A(E(U)/U, E(U)/U) 6= 0.
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Proof: Let A be the K-algebra given by the quiver
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u
with relations ba = 0 and dc = 0.

Then the following Auslander-Reiten quiver indicates that the global dimension
of A is equal to two.
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Hence, we deduce from Lemma 1 that the regular module AA = 4⊕ 3
4
⊕ 2
4
⊕ 1
2 3

is a 2-cotilting module. Since E(A)/A ∼= 2⊕ 3⊕ 2⊕ 3⊕ 1, it immediately follows
that AA satisfies conditions (i), (ii) and (iii). �

It is now easy to see that even faithful, and very special, partial 2-tilting (resp.
2-cotilting) modules satisfy condition (T3’) (resp. (C3’)), without being n-tilting
(resp. n-cotilting) modules for any n.

Corollary 6. Let A be a K-algebra of finite representation type and of global
dimension two, and let AD = HomK(AA, K). Assume T and U are faithful
A-modules with the following properties:

(i) T is a summand of D, GenT = GenD, and T satisfies condition (T3’);
(ii) U is a summand of A, CogenU = CogenA, and U satisfies condition (C3’).

Then T (resp. U) is not necessarily a 2-tilting (resp. 2-cotilting) module. More-
over, T (resp. U) does not necessarily generate (resp. cogenerate) the modules

belonging to T⊥∞ (resp. ⊥∞U).
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Proof: Let A be the algebra used to prove Theorem 5, and let T and U denote
the following faithful modules:

T =
2 3
4

⊕
1
3
⊕
1
2
, U =

2
4
⊕
3
4
⊕
1
2 3

.

Since AD = T ⊕ 1 and AA = U ⊕ 4, we clearly have GenT = GenD and
CogenU = CogenA. On the other hand, KerHomA(T,−) and KerHomA(−, U)

contain the indecomposable modules 4, 2
4
, 3
4
and 1

2
, 1
3
, 1 respectively. To end the

proof, we first note that

(1) Ext1A

(

2 3
4

, 4
)

6= 0 and Ext1A

(

1, 1
2 3

)

6= 0;

(2) Ext2A

(

1
2
, 2
4

)

∼=
�

�

Ext1A

(

1
2
, 3

)

6= 0

Ext1A

(

3, 2
4

)

6= 0
;

(3) Ext2A

(

1
3
, 3
4

)

∼=
�

�

Ext1A

(

1
3
, 2

)

6= 0

Ext1A

(

2, 3
4

)

6= 0
.

By the previous remarks, the conclusion that (i) and (ii) hold is an immediate
consequence of (1), (2) and (3). Moreover, we clearly have

(4) 1
2 3

/∈ GenT , 2 3
4

/∈ CogenU ;

(5) Ext1A

(

T, 1
2 3

)

= 0, Ext1A

(

2 3
4

, U
)

= 0.

Since the injective (resp. projective) dimension of 1
2 3
(resp. 2 3

4
) is equal to one,

we deduce from (4) and (5) that

(6) 1
2 3

∈ T⊥∞ \GenT and 2 3
4

∈ ⊥∞U \ CogenU .

Consequently, by (6) and [Ba2, Theorem 3.14], T (resp. U) is not an n-tilting
(resp. n-cotilting) module for any n. The corollary is proved. �

Note that the partial n-tilting A-modules T (satisfying condition (T3’), without
being n-tilting modules), constructed up to now, are actually maximal summands
of multiplicity-free n-tilting modules. Hence these modules T are almost complete
tilting modules (in the sense of [CoHU], [HU] and [BSo]). However, the next
corollary shows that the modules with the above property are not necessarily
almost complete tilting modules.

Corollary 7. Let A be a K-algebra of finite representation type and of global
dimension two. Assume T , T ′, U and U ′ are multiplicity-free A-modules with the
following properties:

(a) T and T ′ (resp. U and U ′) are injective (resp. projective) modules satisfy-
ing condition (T3’) (resp (C3’)), but no proper summand of these modules
has this property;
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(b) T and T ′ (resp. U and U ′) are not n-tilting (resp. n-cotilting) modules for
any n;

(c) δ(T ) = δ(U) = δ(AA)− 1.

Then we may have δ(T ′) < δ(T ) and δ(U ′) < δ(U).

Proof: Let A be the algebra used to prove Theorem 5 and Corollary 6, and let
T , T ′, U , U ′ be the following modules:

T =
2 3
4

⊕
1
3
⊕
1
2
; T ′ =

2 3
4

⊕ 1,

U =
2
4
⊕
3
4
⊕
1
2 3

, U ′ =
1
2 3

⊕ 4.

Since T ′ and U ′ are not faithful, the proof of Corollary 6 guarantees that (b) holds.
On the other hand, we have δ(AA) = 4, δ(T ) = δ(U) = 3 and δ(T ′) = δ(U ′) = 2.
Consequently, also (c) holds, and we have δ(T ′) < δ(T ) and δ(U ′) < δ(U), as
claimed. Since no indecomposable A-module is sincere, we deduce from Lemma 2
that

(1) no proper summand of T ′ (resp. U ′) satisfies condition (T3’) (resp. (C3’)).

We next observe that the indecomposable modulesM such that HomA(T
′, M) = 0

and Ext1A(T
′, M) = 0 (resp. HomA(M, U ′) = 0 and Ext1A(M, U ′) = 0) are 2

4
and

3
4
(resp. 1

2
and 1

3
). Let {2, 3} = {i, j}; then we have Ext2A

(

1, i
4

)

≃ Ext1A(1, j) 6= 0

and Ext2A

(

1
i
, 4

)

≃ Ext1A(j, 4) 6= 0. These remarks and the definition of T ′ and

U ′ guarantee that

(2) T ′ (resp. U ′) satisfies condition (T3’) (resp. (C3’)).

Finally, let X , Y , V , W denote the following modules:

X =
2 3
4

⊕
1
2

, Y =
2 3
4

⊕
1
3
, V =

1
2 3

⊕
2
4
, W =

1
2 3

⊕
3
4
.

We first note that

(3) HomA

(

X, 3
4

)

= 0, HomA

(

Y, 2
4

)

= 0, HomA

(

1
3
, V

)

= 0 and

HomA

(

1
2
, W

)

= 0.

Moreover, by [AuReS, Proposition 4.6], and by dimension shifting, we obtain

(4) ExtiA

(

X, 3
4

)

= 0, ExtiA

(

Y, 2
4

)

= 0, ExtiA

(

1
3
, V

)

= 0 and

ExtiA

(

1
2
, W

)

= 0 for i = 1, 2.
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By Lemma 2, we deduce from (3) and (4) that

(5) No proper summand of T (resp. U) satisfies condition (T3’) (resp. (C3’)).

Putting (1), (2) and (5) together, we conclude that also property (a) holds. The
proof is finished. �

The next statement indicates that the gap between an n-cotilting module and
its injective envelope may by reasonably large.

Proposition 8. For any positive integer n, there are a K-algebra A and an
n-cotilting A-module U such that

Extn−1A

(

E(U)

U
,
E(U)

U

)

6= 0.

Proof: By Theorem 5, it suffices to assume that n ≥ 3. Next, let m = n + 2
and let A be the K-algebra given by the following quiver, with m vertices and m
arrows α1, . . . , αm such that αiαj = 0 for every i, j ∈ {1, . . . , m}.2�

��6
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66
66

661 � CC�����������

��5
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55
55

55
55

5 �4 // �5 �m� 1 // �m�3
EE










Then it is easy to see that A has finite representation type. Moreover, the
Auslander-Reiten quiver is of the form
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Hence the global dimension of A (and the injective dimension of AA) is equal
to n. Consequently, we deduce from Lemma 1 that U = AA is an n-cotilting
module. Moreover, the definition of A implies that E(U)/U is a semisimple
module of the form
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(1) E(U)/U ≃ 1⊕ 2⊕ 3⊕ (m − 1).

On the other hand, we obviously have

(2) Extn−1A (1, m − 1) ≃ Extn−2A (1, m − 2) ≃ . . .

· · · ≃ Ext3A(1, 5) ≃ Ext
2
A(1, 4) ≃ Ext

1
A(1, 2⊕ 3) 6= 0.

Comparing (1) and (2), we obtain Extn−1A

(

E(U)
U ,

E(U)
U

)

6= 0, as desired. �
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feld 1998, Birkhäuser, 2000, pp. 1–73.

[ReR] Reiten I., Ringel C.M., Infinite dimensional representations of canonical algebras,
preprint, 2002.
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