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Oscillatory and nonoscillatory solutions

for first order impulsive differential inclusions
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Abstract. In this paper we discuss the existence of oscillatory and nonoscillatory so-
lutions of first order impulsive differential inclusions. We shall rely on a fixed point

theorem of Bohnenblust-Karlin combined with lower and upper solutions method.
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1. Introduction

In this paper we prove the existence of nonoscillatory and oscillatory solutions
for the following class of first order impulsive differential inclusions

y′(t) ∈ F (t, y(t)), a.e. t ∈ [t0,∞),(1)

y(t+
k
) = Ik(y(t

−

k
)), k ∈ N,(2)

where F : [t0,∞) × R −→ P(R) is a multivalued map with nonempty compact
and convex values, P(R) is the family of all nonempty subsets of R, Ik ∈ C(R, R),

t0 < t1 < . . . < tm < tm+1 . . . , tm → ∞ as m → ∞, y(t−
k
), y(t+

k
) represent the

left and right limit of y(t) at t = tk, respectively.
Impulsive differential equations are now recognized as an excellent source of

models to simulate processes and phenomena observed in control theory, physics,
chemistry, population dynamics, biotechnology, industrial robotics, economics,
etc., see the monographs of Bainov and Simeonov [4], Lakshmikantham et al [20],
and Samoilenko and Perestyuk [21] and the references therein. Recently, by means
of fixed point arguments, some extensions to impulsive differential inclusions have
been obtained by Benchohra et al [6], [7], [9]. The questions of oscillation and
nonoscillation for nonlinear differential equations have received much attention
in the last three decades, we recommend, for instance, the monographs [1], [12],
[16], [18] and the references cited therein. For oscillation and nonoscillation of
impulsive differential equations see for instance the monograph of Bainov and
Simeonov [5] and the papers of Graef et al [13], [14], [15] and Yong-shao and Wei-
zhen [22]. However the theory of nonoscillatory solutions of differential inclusions
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has received much less attention. Very recently it was initiated by Agarwal,
Grace and O’Regan in [2], [3]. The purpose of this paper is to give some sufficient
conditions for the existence of oscillatory and nonoscillatory solutions to the class
of impulsive differential inclusions (1)–(2). We shall rely on the Bohnenblust-
Karlin [10] theorem and the concept of lower and upper solutions. Our results
can be considered as a contribution to this field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper. Let [a, b] be an com-
pact real interval and let C([a, b], R) be the Banach space of all continuous func-
tions y from [a, b] into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ [a, b]}.

Let AC([a, b], R) be the space of absolutely continuous functions y : [a, b]→ R.
The property

y ≤ y if and only if y(t) ≤ y(t) for all t ∈ [a, b]

defines a partial ordering in C([a, b], R). If α, β ∈ C([a, b], R) and α ≤ β, we let

[α, β] = {y ∈ C([a, b], R) : α ≤ y ≤ β}.

Let L1([a, b], R) denote the Banach space of functions y : [a, b] −→ R that are
Lebesgue integrable with norm

‖y‖L1 =

∫ b

a
|y(t)| dt.

Let (X, ‖ · ‖) be a Banach space. A multi-valued map G : X −→ P(X) has
convex (closed) values if G(x) is convex (closed) for all x ∈ X . We say that G is
bounded on bounded sets if G(B) is bounded in X for each bounded subset B of X
(i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞). The map G is upper semi-continuous
(u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty, closed subset
of X , and if for each open subset N of X containing G(x0), there exists an open
neighborhoodM of x0 such that G(M) ⊆ N . Finally, we say that G is completely
continuous if G(B) is relatively compact for every bounded subset B ⊆ X . If
the multi-valued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph (i.e., xn −→ x∗, yn −→ y∗,
yn ∈ G(xn) imply y∗ ∈ G(x∗)). We say that G has a fixed point if there exists
x ∈ X such that x ∈ G(x). In what follows, Pcl(X), Pcl,c(X) and Pcp,c(X) denote
the family of nonempty closed, nonempty closed convex and nonempty compact
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convex subsets of X , respectively. A multi-valued map G : [t0,∞) −→ Pcl(X) is
said to be measurable if for each x ∈ X the function Y : [t0,∞) −→ R defined by

Y (t) = d(x, G(t)) = inf{|x − z| : z ∈ G(t)}

is measurable, where d is the metric induced from the Banach space X . For more
details on multi-valued maps see the book of Hu and Papageorgiou [17].

Definition 2.1. The multivalued map F : [t0,∞)×R −→ P(R) is L1loc-Carathéo-
dory if

(i) t 7−→ F (t, y) is measurable for each y ∈ R;
(ii) y 7−→ F (t, y) is upper semi-continuous for almost all t ∈ [t0,∞);
(iii) for each q > 0, there exists φq ∈ L1loc([t0,∞), R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ φq(t)

for all |y| ≤ q and for almost all t ∈ [t0,∞).

For any y ∈ C([a, b], R), we define the set

S1F (y) = {v ∈ L1([a, b], R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [a, b]}.

This is known as the set of selection functions .

Lemma 2.1 ([19]). Let J be an compact real interval and X be a Banach space.

Let F : J × X −→ Pcp,c(X) be an L1-Carathéodory multivalued map with

S1
F (y) 6= ∅ and let Γ be a linear continuous mapping from L1(J, X) to C(J, X).

Then the operator

Γ ◦ SF : C(J, X) −→ Pcp,c(C(J, X)), y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(J, X)× C(J, X).

Lemma 2.2 (Bohnenblust-Karlin [10], see also [23, p. 452]). Let X be a Banach

space and K ∈ Pcl,c(X) and suppose that the operator G : K −→ Pcl,c(K) is
upper semicontinuous and the set G(K) is relatively compact in X . Then G has

a fixed point in K.

3. Main results

Now, we are able to state and prove our main theorem for the impulsive dif-
ferential inclusion (1)–(2). We give first the definition of a solution of the prob-
lem (1)–(2). Consider the following space

PC = {y : [t0,∞)→ R : y ∈ C((tk, tk+1], R), k ∈ N
∗, and there exist y(t−

k
) and

y(t+k ), k ∈ N with y(t−k ) = y(tk)}.
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Definition 3.1. A function y ∈ PC ∩ AC(J ′, R) (J ′ := [t0,∞)\tk, k ∈ N) is
called solution of the problem (1)–(2) if there is v ∈ L1([t0,∞), R) with v(t) ∈
F (t, y(t)) a.e. t ∈ [t0,∞) such that the differential equation y′(t) = v(t), a.e.

t ∈ [t0,∞) is satisfied and y(t+
k
) = Ik(y(tk)), k ∈ N.

Now, we introduce the concept of lower and upper solutions for (1)–(2). It will
be the basic tool in the approach that follows (see [7], [8]).

Definition 3.2. A function α ∈ PC ∩ AC(J ′, R) is said to be a lower solution
of (1)–(2) if there exists v1 ∈ L1([t0,∞), R) such that v1(t) ∈ F (t, α(t)) a.e. on

[t0,∞), α′(t) ≤ v1(t) a.e. on [t0,∞) and α(t+k ) ≤ Ik(α(tk)), k ∈ N. Similarly, a

function β ∈ PC ∩ AC(J ′, R) is said to be an upper solution of (1)–(2) if there
exists v2 ∈ L1([t0,∞), R) such that v2(t) ∈ F (t, β(t)) a.e. on [t0,∞), β′(t) ≥ v2(t)

a.e. on [t0,∞) and β(t+
k
) ≥ Ik(β(tk)), k ∈ N.

Definition 3.3. The solution y is said to be regular if it is defined on some
halfline [Ty,∞) and sup{|y(t)| : t ≥ T } > 0 for all T > Ty. Ty depends on such
solution y. This solution is said to be

(i) eventually positive if there exists T ≥ t0 such that y is defined for t ≥ T

and y(t) > 0 for t ≥ T ;
(ii) eventually negative if there exists T ≥ t0 such that y is defined for t ≥ T

and y(t) < 0 for t ≥ T ;
(iii) nonoscillatory if it is either eventually positive or eventually negative;
(iv) oscillatory if it is neither eventually positive nor eventually negative.

Theorem 3.1. Assume that:

(H1) F : [t0,∞)× R −→ Pcp,c(R) is an L1-Carathéodory multi-valued map;

(H2) there exist α and β ∈ PC ∩ AC(J ′, R) lower and upper solutions, respec-
tively, for the problem (1)-(2), such that α ≤ β;

(H3) α(t+k ) ≤ min[α(tk),β(tk)] Ik(y) ≤ max[α(tk),β(tk)] Ik(y) ≤ β(t+k ), k ∈ N.

Then the problem (1)-(2) has at least one solution y on [t0,∞) such that
α ≤ y ≤ β.

Proof: The proof will be given in several steps.

Step 1. Consider first the problem (1)-(2) on J0 = [t0, t1]

(3) y′(t) ∈ F (t, y(t)), a.e. t ∈ [t0, t1).

Consider the modified problem

(4) y′(t) ∈ F (t, (τy)(t)), a.e. t ∈ [t0, t1),
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where τ : C([t0, t1], R)→ C([t0, t1], R) is the truncation operator defined by

(τy)(t) =











α(t), y(t) < α(t),

y(t), α(t) ≤ y(t) ≤ β(t),

β(t), y(t) > β(t).

Transform the problem into a fixed point problem. Consider the multivalued
operator N : C([t0, t1], R)→ P(C([t0, t1], R)) defined by:

N(y) =

{

h ∈ C([t0, t1], R) : h(t) =

∫ t

t0

g(s) ds, g ∈ S̃1F,τy

}

where

S̃1F,τy = {g ∈ S1F,τy : g(t) ≥ v1(t) a.e. on A1 and g(t) ≤ v2(t) a.e. on A2},

S1F,τy = {g ∈ L1([t0, t1], R) : g(t) ∈ F (t, (τy)(t)) for a.e. t ∈ [t0, t1]},

A1 = {t ∈ [t0, t1]) : y(t) < α(t) ≤ β(t)},

A2 = {t ∈ [t0, t1] : α(t) ≤ β(t) < y(t)}.

Remark 3.1. (i) For each y ∈ C([t0, t1], R), the set S̃1F,τy is nonempty. In fact,

(H1) implies there exists g3 ∈ S1F,τy, so we set

g = v1χA1 + v2χA2 + v3χA3 ,

where
A3 = {t ∈ [t0, t1] : α(t) ≤ y(t) ≤ β(t)}.

Then, by the decomposability, g ∈ S̃1F,τy.

(ii) By the definition of τ it is clear that F (·, τy(·)) is an L1loc−Carathéodory
multi-valued map with compact convex values and there exists φ1 ∈
L1([t0, t1], R) such that

‖F (t, (τy)(t))‖ ≤ φ1(t) for each y ∈ R.

We shall show that N satisfies the assumptions of Lemma 2.2. The proof will
be given in a series of Claims. Let

K1 := {y ∈ C([t0, t1], R) : ‖y‖∞ ≤ ‖φ1‖L1}.

It is clear that K1 is a closed bounded convex set.
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Claim 1. N(y) is convex for each y ∈ C([t0, t1], R). This is a obvious since S̃1F,τy

is convex (because F has convex values).

Claim 2. N(K1) ⊂ K1.

Indeed, let y ∈ K1 and fix t ∈ [t0, t1). We must show that N(y) ⊂ K1. If

h ∈ N(y) then there exists g ∈ S̃1F,τy such that for each t ∈ [t0, t1] we have

h(t) =

∫ t

t0

g(s) ds.

By the above remark we have for each t ∈ [t0, t1]

|h(t)| ≤

∫ t

t0

|g(s)| ds ≤ ‖φ1‖L1 .

Claim 3. N(K1) is relatively compact .

Since K1 is bounded and N(K1) ⊂ K1, it is clear that N(K1) is bounded.
N(K1) is equicontinuous. Let u1, u2 ∈ [t0, t1] with u1 < u2. Let y ∈ K1 and

h ∈ N(y). Then there exists g ∈ S̃1F,τy such that for each t ∈ [t0, t1] we have

h(t) =

∫ t

t0

g(s) ds.

Then

|h(u2)− h(u1)| =

∣

∣

∣

∣

∫ u2

t0

g(s) ds −

∫ u1

t0

g(s) ds

∣

∣

∣

∣

≤

∫ u2

u1

|g(s)| ds ≤

∫ u2

u1

φ1(s) ds.

The right-hand side tends to zero as u2 − u1 → 0. Hence N(K1) is relatively
compact in C([t0, t1], R). Then N(K1) is relatively compact in C([t0, t1], R).

Claim 4. N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn) and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists gn ∈ S̃1F,τyn
such that for each t ∈ [t0, t1]

hn(t) =

∫ t

t0

gn(s) ds.
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An application of Lemma 2.1 yields that there exists g∗ ∈ S̃1F,τy∗
such that for

each t ∈ [t0, t1]

h∗(t) =

∫ t

t0

g∗(s) ds,

which means that N has a closed graph, and hence it is upper semicontinuous.
As a consequence of Lemma 2.2 we deduce that N has a fixed point which is

a solution of (4).

Claim 5. The solution y of the problem (4) satisfies

α(t) ≤ y(t) ≤ β(t) for all t ∈ [t0, t1].

Let y be solution to (4). We prove that

α(t) ≤ y(t) for all t ∈ [t0, t1].

Suppose not. Then there exist e1, e2 ∈ [t0, t1), e1 < e2 such that α(e1) = y(e1)
and

y(t) < α(t) for all t ∈ (e1, e2).

In view of the definition of τ one has

y(t)− y(e1) ∈

∫ t

e1

F (s, α(s)) ds a.e. (e1, e2).

Thus there exists g(t) ∈ F (t, α(t)) a.e. on (e1, e2) with g(t) ≥ v1(t) a.e. on (e1, e2)
and

y(t) = y(e1) +

∫ t

e1

g(s) ds.

Since α is a lower solution to (1)–(2) we have

α(t)− α(e1) ≤

∫ t

e1

v1(s) ds.

Since y(e1) = α(e1) and g(t) ≥ v1(t), it follows that

α(t)− α(e1) ≤

∫ e2

t
v1(s) ds ≤ y(t)− α(e1) < α(t)− α(e1),

which is a contradiction since α(t) > y(t) for all t ∈ (e1, e2). Analogously, we can
prove that

y(t) ≤ β(t) for all t ∈ [t0, t1).
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This shows that the problem (3)–(2) has a solution in the interval [α, β] which is
a solution of (3). Denote this solution by y0.

Step 2: Consider now the following problem

(5) y′(t) ∈ F (t, y(t)), a.e. t ∈ [t1, t2], y(t+1 ) = I1(y0(t
−

1 )).

Transform the problem (5) into a fixed point problem. Consider the following
modified problem

(6) y′(t) ∈ F (t, (τy)(t)), a.e. t ∈ [t1, t2], y(t+1 ) = I1(y0(t
−

1 )).

A solution to (5) is a fixed point of the operator N1 : C([t1, t2], R) −→
P(C([t1, t2], R)) defined by:

N1(y) =

{

h ∈ C([t1, t2], R) : h(t) = I1(y0(t
−

1 )) +

∫ t

t1

g(s) ds, g ∈ S̃1F,τy

}

.

Since y0(t1) ∈ [α(t
−

1 ), β(t
−

1 )], (H2) implies that

α(t+1 ) ≤ I1(y0(t
−

1 )) ≤ β(t+1 ),

that is
α(t+1 ) ≤ y(t+1 ) ≤ β(t+1 ).

Using the same reasoning as that used for problem (4) we can conclude the exis-
tence of at least one solution y to (6). We now show that this solution satisfies

α(t) ≤ y(t) ≤ β(t) on J1 = [t1, t2].

We first show that α(t) ≤ y(t) on J1. Assume this is false. Then since y(t+1 ) ≥

α(t+1 ), there exist e3, e4 ∈ J1 with e3 < e4 such that y(e3) = α(e3) and y(t) < α(t)
on (e3, e4). Consequently,

y(t)− y(e3) =

∫ t

e3

g(s) ds, t ∈ (e3, e4),

where g(·) ∈ F (·, α(·)) a.e. on J1 with g(t) ≥ v1(t) a.e. on (e3, e4) since α is a
lower solution to (1). Thus

α(t) − α(e3) ≤

∫ t

e3

v1(s) ds, t ∈ (e3, e4).
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It follows that

α(t) ≤ y(t) on (e3, e4),

which is a contradiction since α(t) > y(t) for all t ∈ (e3, e4). Analogously, we can
prove that

y(t) ≤ β(t) for all t ∈ [t1, t2].

This shows that the problem (5) has a solution in the interval [α, β] which is a
solution of (1)–(2) on J1. Denote this solution by y1.

Step 3: Take into account that ym := y
∣

∣

∣

[tm−1,tm]
is a solution to the problem

(7) y′(t) ∈ F (t, y(t)), a.e. t ∈ (tm−1, tm), y(t+m) = Im(ym−1(t
−

m)).

Consider the following modified problem

(8) y′(t) ∈ F (t, (τy)(t)), a.e. t ∈ [tm−1, tm], y(t+m) = Im(ym−1(t
−

m−1)).

Let the operator Nm : C([tm−1, tm], R) −→ P(C([tm−1, tm], R)) be defined by:

Nm(y) =

{

h ∈ C([tm−1, tm], R) : h(t) = Im(y(t
−

m−1)) +

∫ t

tm

g(s) ds, g ∈ S̃1F,τy

}

,

and set

Km = {y ∈ C([tm−1, tm], R) : ‖y‖∞ ≤ ‖φm‖L1}.

Clearly, Km is closed, bounded and convex. As in Step 1 we show that the
operator Nm : Km → P(Km) is completely continuous. As a consequence of
Lemma 2.2 we deduce that Nm has a fixed point which is a solution of the prob-
lem (7). Denote this one by ym−1. The solution y of the problem (1)–(2) is then
defined by

y(t) =



































y0(t), if t ∈ [t0, t1],

y1(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, tm+1],

. . .
�

The following theorem gives sufficient conditions to ensure that the solutions
of problem (1)–(2) are nonoscillatory.
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Theorem 3.2. Let α and β be lower and upper solutions respectively of (1)–(2)
and assume that

(H4) α is eventually positive nondecreasing or β is eventually negative nonin-

creasing.

Then every solution y of (1)–(2) such that y ∈ [α, β] is nonoscillatory.

Proof: Assume that α is eventually positive. Thus there exist Tα > t0 such that

α(t) > 0 for all t > Tα.

Hence y(t) > 0 for all t > Tα, and t 6= tk, k = 1, . . . . For some k ∈ N and

tk > Tα we have y(t+k ) = Ik(y(tk)). From (H3) we get y(t+k ) ≥ α(t+k ). Since
for each h > 0, α(tk + h) ≥ α(tk) > 0, we have Ik(y(tk)) > 0 for all tk > Tα,
k = 1, . . . which means that y is nonoscillatory. Analogously, if β is eventually
negative, then there exists Tβ > t0 such that

y(t) < 0 for all t > Tβ,

which means that y is nonoscillatory. �

The following theorem discusses when solutions of (1)–(2) are nonoscillatory.

Theorem 3.3. Let α and β be lower and upper solutions respectively of (1)–(2)
and assume that the sequences α(tk) and β(tk), k = 1, . . . are oscillatory. Then
every solution y of (1)–(2) such that y ∈ [α, β] is oscillatory.

Proof: Suppose on the contrary that y is a nonoscillatory solution of (1)–(2).
Then there exists Ty > 0 such that y(t) > 0 for all t > Ty or y(t) < 0 for all
t > Ty. In the case that y(t) > 0 for all t > Ty we have β(tk) > 0 for all
tk > Ty, k = 1, . . . , which is a contradiction since β(tk) is an oscillatory upper
solution. Analogously in the case y(t) < 0, for all t > Ty we have α(tk) < 0 for all
tk > Ty, k = 1, . . . , which is also a contradiction since α is an oscillatory lower
solution. �

4. An example

As an application of our results, we consider the following differential inclusion
of the form

y′ ∈ F (t, y), a.e. t ∈ [t0,∞),(9)

y(t+k ) = Ik(y(t
−

k )), k ∈ N,(10)

where

F (t, y) = [f1(t, y), f2(t, y)] := {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},
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and f1, f2 : [t0,∞) × R → R. We assume that for each t ∈ [t0,∞), f1(t, ·) is
lower semicontinuous (i.e., the set {y ∈ R : f1(t, y) > µ} is open for each µ ∈ R),
and assume that for each t ∈ [t0,∞), f2(t, ·) is upper semicontinuous (i.e., the set
{y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). Assume, also, that there exist
g1(·), g2(·) ∈ L1([t0,∞), R) such that

g1(t) ≤ f1(t, y) ≤ f2(t, y) ≤ g2(t) for all t ∈ [t0,∞) and y ∈ R,

and for each t ∈ [t0,∞)

∫ t

t0

g1(s) ds ≤ Ik

(
∫ t

t0

g1(s) ds

)

, k ∈ N,

∫ t

t0

g2(s) ds ≥ Ik

(
∫ t

t0

g2(s) ds

)

, k ∈ N.

Consider the functions α(t) :=

∫ t

t0

g1(s) ds and β(t) :=

∫ t

t0

g2(s) ds. Clearly, α

and β are lower and upper solutions of the problem (9)–(10), respectively, that is,

α′(t) ≤ f1(t, y) for all t ∈ [t0,∞) and all y ∈ R,

and
β′(t) ≥ f2(t, y) for all t ∈ [t0,∞) and all y ∈ R.

It is clear that F is compact, convex valued, and upper semicontinuous (see [11]).
Since all the conditions of Theorem 3.1 are satisfied, the problem (9)–(10) has at
least one solution y on [t0,∞) with α ≤ y ≤ β. If g1(t) > 0 then α is positive
and nondecreasing, thus y(t) is nonoscillatory. If g2(t) < 0 then β is negative and
nonincreasing, thus y(t) is nonoscillatory. If the sequences α(tk) and β(tk) are
both oscillatory, then y(t) is oscillatory.
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