Extending the structural homomorphism of LCC loops

Piroska Csörgő

Abstract. A loop Q is said to be left conjugacy closed if the set $A = \{L_x / x \in Q\}$ is closed under conjugation. Let Q be an LCC loop, let \mathcal{L} and \mathcal{R} be the left and right multiplication groups of Q respectively, and let I(Q) be its inner mapping group, M(Q) its multiplication group. By Drápal's theorem [3, Theorem 2.8] there exists a homomorphism $\Lambda : \mathcal{L} \to I(Q)$ determined by $L_x \to R_x^{-1}L_x$. In this short note we examine different possible extensions of this Λ and the uniqueness of these extensions.

Keywords: LCC loop, multiplication group, inner mapping group, homomorphism Classification: 20D10, 20N05

1. Introduction

Q is a loop if it is a quasigroup with neutral element. The functions $L_a(x) = ax$ (left translation) and $R_a(x) = xa$ (right translation) are permutations on the elements of Q for every $a \in Q$. The permutation group generated by left and right translations $M(Q) = \langle L_a, R_a \mid a \in Q \rangle$ is called the multiplication group of the loop Q. Denote I(Q) the stabilizer of the neutral element in M(Q). I(Q) is a subgroup of M(Q) and it is called the inner mapping group of Q. It is clear that M(Q) is a transitive permutation group on the loop Q. Denote $A = \{L_a \mid a \in Q\}$ and $B = \{R_a \mid a \in Q\}$. It is well known that A and B are left (and right) transversals to I(Q) in M(Q) which satisfy $\langle A, B \rangle = M(Q)$, and the commutator subgroup $[A, B] \leq I(Q)$. Furthermore $\operatorname{core}_{M(Q)} I(Q) = 1$ ($\operatorname{core}_{M(Q)} I(Q)$ means the largest normal subgroup of M(Q) in I(Q).

The subgroups $\mathcal{L} = \langle L_a \mid a \in Q \rangle$ and $\mathcal{R} = \langle R_a \mid a \in Q \rangle$ are called left and right multiplication groups, respectively. Denote $\mathcal{L}_1 = \mathcal{L} \cap I(Q), \mathcal{R}_1 = \mathcal{R} \cap I(Q)$ and $T_x = L_x^{-1} R_x$. A standard fact is that I(Q) is generated by $\mathcal{L}_1 \cup \mathcal{R}_1 \cup \{T_x \mid x \in Q\}$.

The right nucleus of a loop Q is

$$N_{\rho} = \{ a \in Q / (xy)a = x(ya) \text{ for every } x, y \in Q \},\$$

the left nucleus of a loop Q is

 $N_{\lambda} = \{ a \in Q \mid a(xy) = (ax)y \text{ for every } x, y \in Q \}.$

This paper was partly supported by Hungarian National Foundation for Scientific Research Grant # T034878 and T038059.

We have (see [3, Lemma 1.9])

$$C_{M(Q)}(\mathcal{R}) = \{L_a \mid a \in N_\lambda\} \text{ and} C_{M(Q)}(\mathcal{L}) = \{R_a \mid a \in N_\rho\}.$$

A subset A of a group G is said to be closed under conjugation if $a_1^{a_2} \in A$ for all $a_1, a_2 \in A$. This is clearly true if and only if A is a normal subset in $\langle A \rangle$.

A loop Q is said to be conjugacy closed (CC) if the sets $A = \{L_x \mid x \in Q\}$ and $B = \{R_x \mid x \in Q\}$ are closed under conjugation. The concept of conjugacy closedness was introduced first by Soikis [7] and later independently by Goodaire and Robinson [4].

A loop Q is called left conjugacy closed (LCC) if the set $A = \{L_x \mid x \in Q\}$ is closed under conjugation. Thus for all $a, b \in Q$ there exists $c \in Q$ such that $L_a L_b L_a^{-1} = L_c$. Hence in every LCC loop Q we have $L_a L_b L_a^{-1} = L_{T_a(b)}$ for all $a, b \in Q$.

LCC loops were also introduced by Soikis [7]. We have to mention Basarab's paper [1], A. Drápal's paper [3] and P. Nagy and K. Strambach's paper [6]. This latter paper is in connection with geometry of LCC loops. As a Bol loop Q is LCC if and only if $x^2 \in N_{\lambda}$ for all $x \in Q$ we have to emphasize the relevance of the paper of G.P. Nagy with H. Kiechle [5].

A. Drápal studied in [2] the relationship within multiplication groups of conjugacy closed (CC) loops, and in his other paper [3] concerning LCC loops he could transfer some basic facts from CC loops to LCC loops. The following basic result — which has been used in proofs of many statements — can also be found in this latter paper [3]. This result was first obtained for CC loops in Drápal's earlier paper [2].

Theorem 1.1. Let Q be a left conjugacy closed loop. Denote by \mathcal{L} its left multiplication group. Then there exists a unique homomorphism: $\Lambda : \mathcal{L} \to I(Q)$ that maps L_x to T_x for each $x \in Q$. This homomorphism is the identity on \mathcal{L}_1 and its kernel is equal to $Z(\mathcal{L}) = \{R_x \mid x \in Q\} \cap \mathcal{L}$; furthermore if $R_x \in Z(\mathcal{L})$, then $x \in Z(N_\rho)$.

As the kernel of this homomorphism Λ does not contain the whole set $\{R_a \mid a \in N_\rho\}$ we cannot conclude — using this kernel — if the loop has non-trivial right nucleus. The purpose of this paper is to extend this homomorphism in such a way that the kernel consists of the set $\{R_a \mid a \in N_\rho\}$. Since $C_{M(Q)}(L) = \{R_a \mid a \in N_\rho\}$ it seems natural to examine the relationship between $\{g \in M(Q) \mid L_a^g \in A \text{ for every } L_a \in A\}$ and Λ . It turned out that we can really extend this Λ in the required way.

2. Extension

In this section, for the proofs of our theorems we need the following

Lemma 2.1. Let Q be a loop, M(Q) its multiplication group, $A = \{L_x | x \in Q\}$, $B = \{R_x | x \in Q\}$. Denote $H_0 = \{h \in I(Q) | A^h = A\}$. Then the following statements are true:

(i) $H_0 = I(Q) \cap \operatorname{Aut}(Q);$

(ii) $B^h = B$ for some $h \in I(Q)$ if and only if $h \in H_0$.

PROOF: (i) First we show that if $h \in I(Q) \cap \operatorname{Aut} Q$, then $h \in H_0$ i.e. $hL_ah^{-1} \in A$ for every $L_a \in A$.

Let $a_0 \in Q$ be arbitrary, and denote $h(a) = a^*$. Then $(hL_ah^{-1})(a_0) = h(ah^{-1}(a_0)) = h(a)a_0 = a^*a_0 = L_{a^*}(a_0)$. Consequently $hL_ah^{-1} = L_{a^*}$.

Conversely, let $h \in H_0$. It suffices to prove h(xy) = h(x)h(y) for arbitrary $x, y \in Q$. Suppose $hL_xh^{-1} = L_{x_1}$, $hL_yh^{-1} = L_{y_1}$. Then

$$h(x) = h(x \cdot 1) = (hL_x)(1) = (hL_xh^{-1})(1) = L_{x_1}(1) = x_1 \quad \text{and} \\ h(y) = h(y \cdot 1) = (hL_y)(1) = (hL_yh^{-1})(1) = L_{y_1}(1) = y_1,$$

further $h(xy) = h(xy \cdot 1) = (hL_xL_y)(1) = (hL_xL_yh^{-1})(1) = L_{x_1}L_{y_1}(1) = x_1y_1.$ (ii) By (i) it is abricus

(ii) By (i) it is obvious.

Lemma 2.2. Let Q be an LCC loop, M(Q) its multiplication group, I(Q) its inner mapping group, $A = \{L_a \mid a \in Q\}$. Let Λ be the homomorphism from Theorem 1.1. Suppose $h \in I(Q) \cap \operatorname{Aut} Q$. Then $(\Lambda(L_a))^h = \Lambda(L_a^h)$ for every $L_a \in A$.

PROOF: We have $L_a^h = L_{h^{-1}(a)}$, $T_a^h = T_{h^{-1}(a)}$. Using $\Lambda(L_a) = T_a$ we get our statement.

We observe that for every element g of M(Q) obviously both $(R_{g(1)})^{-1}g$ and $(L_{g(1)})^{-1}g$ belong to I(Q).

In Drápal's theorem (Theorem 1.1) this homomorphism Λ maps L_x to $T_x = R_x^{-1}L_x$ and it is the identity on $\mathcal{L}_1 \ (= \mathcal{L} \cap I(Q))$. Consequently, $\operatorname{Im} \Lambda = \langle T_x \ / \ x \in Q \rangle$. As we have $\mathcal{L} = A\mathcal{L}_1$ and $A \cap \mathcal{L}_1 = \{e\}$, this Λ maps \mathcal{L} into I(Q) in such a way that $\Lambda(\ell) = R_{\ell(1)}^{-1}\ell$ for every $\ell \in \mathcal{L}$.

Extend this function Λ to the whole M(Q). Thus we consider the function Λ_0 which maps $g \in M(Q)$ to $R_{q(1)}^{-1}g \in I(Q)$.

Since Λ_0 is a homomorphism on \mathcal{L} , the question arises: which is the largest subgroup of M(Q) such that Λ_0 is a homomorphism on this subgroup. The following theorem gives the answer.

Theorem 2.3. Let Q be an LCC loop. Let $\Lambda_0 : M(Q) \to I(Q)$ be such that $\Lambda_0(g) = R_{g(1)}^{-1}g$. Then the largest subgroup \mathcal{L}^* of M(Q) such that the restriction of Λ_0 on \mathcal{L}^* is a homomorphism, is the following:

$$\mathcal{L}^* = \{ g \in M(Q) \ / \ L_x^g \in A \ \text{ for every } \ L_x \in A \},$$
$$\mathcal{L}^* \cap I(Q) = I(Q) \cap \operatorname{Aut} Q \quad \text{and} \quad \mathcal{L}^* = \mathcal{L}(I(Q) \cap \operatorname{Aut} Q).$$

Denote Λ^* the restriction of Λ_0 on \mathcal{L}^* . Then Λ^* is the identity on $\mathcal{L}^* \cap I(Q)$ and Ker $\Lambda^* = \{R_x \mid x \in Q\} \cap \mathcal{L}^* = \{R_a \mid a \in N_\rho\}$. Furthermore Im Λ^* is generated by $(\mathcal{L}^* \cap I(Q)) \cup \{T_x \mid x \in Q\}.$

PROOF: The left conjugacy closedness implies $\mathcal{L}^* \geq \mathcal{L}$. Denote $\mathcal{U} = \{g \in \mathcal{L}\}$ $M(Q) / L_x^g \in A$ for every $L_x \in A$. Clearly \mathcal{U} is a subgroup of M(Q).

First we show $\mathcal{L}^* \leq \mathcal{U}$. Since $B \cap I(Q) = \{e\}$ obviously Λ_0 is the identity on I(Q). Let $h \in \mathcal{L}^* \cap I(Q)$, $L_a \in A$. Then $hL_a \in \mathcal{L}^*$ and $\Lambda_0(hL_a) = \Lambda_0(h)\Lambda_0(L_a) = hR_a^{-1}L_a$. On the other hand, $\Lambda_0(hL_a) = R_c^{-1}hL_a$ where $R_c^{-1}hL_a \in I(Q)$. Hence $R_a^{h^{-1}} = R_c$ for every $a \in Q$, $h \in \mathcal{L}^* \cap I(Q)$, consequently $B^h = B$. Using Lemma 2.1 we obtain $\mathcal{L}^* \cap I(Q) \leq \mathcal{U}$. The left conjugacy closedness implies $\mathcal{L} \leq \mathcal{U}.$

We show Λ_0 is a homomorphism on \mathcal{U} . Let $\ell_1, \ell_2 \in \mathcal{U}$, clearly $\ell_1 = L_{a_1}h_1, \ell_2 =$ $L_{a_2}h_2$ with $h_1, h_2 \in \mathcal{U} \cap I(Q)$. We prove $\Lambda_0(L_{a_1}h_1L_{a_2}h_2) = \Lambda_0(L_{a_1}h_1)\Lambda_0(L_{a_2}h_2)$. Clearly $\Lambda_0(L_{a_1}h_1) = R_{a_1}^{-1}L_{a_1}h_1 = \Lambda(L_{a_1})h_1, \ \Lambda_0(L_{a_2}h_2) = R_{a_2}^{-1}L_{a_2}h_2 = \Lambda(L_{a_2})h_2.$ On the other hand, $\Lambda_0(L_{a_1}h_1L_{a_2}h_2) = \Lambda_0(L_{a_1}L_{a_2}^{h_1^{-1}}h_1h_2) = R_d^{-1}L_{a_1}L_{a_2}^{h_1^{-1}}h_1h_2$ for some $d \in Q$. By the definition of \mathcal{U} , $L_{a_2}^{h_1^{-1}} \in A$, whence $L_{a_1}L_{a_2}^{h_1^{-1}} \in \mathcal{L}$, consequently $\Lambda(L_{a_1}L_{a_2}^{h_1^{-1}}) = R_d^{-1}L_{a_1}L_{a_2}^{h_1^{-1}}$, and using that Λ is a homomorphism on \mathcal{L} we get $\Lambda_0(L_{a_1}h_1L_{a_2}h_2) = \Lambda(L_{a_1})\Lambda(L_{a_2}^{h_1^{-1}})h_1h_2$. Thus it suffices to show $\Lambda(L_{a_2}^{h_1^{-1}}) = (\Lambda(L_{a_2}))^{h_1^{-1}}, \text{ but this follows immediately from Lemma 2.2.}$ Lemma 2.1 implies $\mathcal{L}^* \cap I(Q) = I(Q) \cap \operatorname{Aut} Q$. Since $\mathcal{L} \leq \mathcal{L}^*$, we have $\mathcal{L}^* =$

 $\mathcal{L}(I(Q) \cap \operatorname{Aut} Q).$

As Im $\mathcal{L} = \langle T_x / x \in Q \rangle$ and Λ^* is the identity on $\mathcal{L}^* \cap I(Q)$ it follows Im Λ^* is generated by $\mathcal{L}^* \cap I(Q)$ and $\{T_x \mid x \in Q\}$. We have Ker $\Lambda^* = \{f \in I\}$ $\mathcal{L}^* / \Lambda^*(f) = R_{f(1)}^{-1} f = e$. Hence $f = R_{f(1)} \in B \cap \mathcal{L}^*$. From $[A, B] \leq I(Q)$ we get $L_x^{-1}L_x^{R_{f(1)}} \in I(Q)$ for every $L_x \in A$, but $R_{f(1)} \in \mathcal{L}^*$ implies $L_x^{R_{f(1)}} \in A$, consequently $R_{f(1)} \in C_{M(Q)}(A)$, whence $R_{f(1)} \in C_{M(Q)}(\mathcal{L})$. Since $C_{M(Q)}(\mathcal{L}) =$ $\{R_a \mid a \in N_\rho\}$, we conclude Ker $\Lambda^* = B \cap \mathcal{L}^* = \{R_a \mid a \in N_\rho\}.$

Our next question is, whether every homomorphism of \mathcal{L}^* into I(Q) which coincides with Λ on the elements of \mathcal{L} is equal to Λ^* .

We give the answer:

Theorem 2.4. Let Q be an LCC loop, M(Q) its multiplication group, I(Q) its inner mapping group, $A = \{L_a \mid a \in Q\}, \mathcal{L}^* = \{g \in M(Q) \mid L_x^g \in A \text{ for every}\}$ $L_x \in A$.

Let $T = \langle T_x \mid x \in Q \rangle, c \in C_{I(Q)}(T)$. Define a function Λ_1 on \mathcal{L}^* : if $\ell = L_a h \in \mathcal{L}_{I(Q)}(T)$. \mathcal{L}^* with $h \in \mathcal{L}^* \cap I(Q)$, then $\Lambda_1(\ell) = \Lambda(L_a)h^c$. Then Λ_1 is a homomorphism on \mathcal{L}^* and Λ_1 coincides with Λ on the elements of \mathcal{L} .

PROOF: We have $\operatorname{Im} \Lambda = \langle T_x | x \in Q \rangle$ and $\mathcal{L}_1 \leq \operatorname{Im} \Lambda$, whence $c \in C_G(\mathcal{L}_1)$, consequently Λ_1 coincides with Λ on the elements of \mathcal{L} .

We show Λ_1 is a homomorphism on \mathcal{L}^* . Let $\ell_1, \ell_2 \in \mathcal{L}^*, \ \ell_1 = L_{a_1}h_1, \ \ell_2 = L_{a_2}h_2$ with $h_1, h_2 \in \mathcal{L}^* \cap I(Q)$. By the definition of $\Lambda_1, \ \Lambda_1(\ell_1) = \Lambda(L_{a_1})h_1^c$, $\Lambda_1(\ell_2) = \Lambda(L_{a_2})h_2^c$. Clearly $\ell_1\ell_2 = L_{a_1}L_{a_2}^{h_1^{-1}}h_1h_2$, since $(L_{a_2})^{h_1^{-1}} \in A$ we have $L_{a_1}(L_{a_2})^{h_1^{-1}} \in \mathcal{L}$, whence $L_{a_1}(L_{a_2})^{h_1^{-1}} = L_{a_3}h_3$ with $h_3 \in \mathcal{L}_1$. Consequently $\Lambda_1(\ell_1\ell_2) = \Lambda(L_{a_3})(h_3h_1h_2)^c$. As $h_3 \in T$ it follows $\Lambda_1(\ell_1\ell_2) = \Lambda(L_{a_3})h_3(h_1h_2)^c = \Lambda(L_{a_3})\Lambda(L_{a_2})^{h_1^{-1}}(h_1h_2)^c$.

Thus it suffices to prove $(\Lambda(L_{a_2}))^{(h_1^{-1})c} = \Lambda(L_{a_2}^{h_1^{-1}})$. Using Im $\Lambda = T$ and $c \in C_{I(Q)}(T)$ it is equivalent to $(\Lambda(L_{a_2}))^{h_1^{-1}} = \Lambda(L_{a_2}^{h_1^{-1}})$. The latter equality follows immediately from Lemma 2.2.

Corollary 2.5. Let Q be an LCC loop. Denote $T = \langle T_x \mid x \in Q \rangle$ and suppose that $C_{I(Q)}(T) \not\leq C_{I(Q)}(\mathcal{L}^* \cap I(Q))$. Then there exists a homomorphism Λ_1 on \mathcal{L}^* which coincides with Λ on \mathcal{L} , but $\Lambda_1 \neq \Lambda^*$, where Λ^* is the homomorphism described in Theorem 2.3.

References

- [1] Basarab A.S., A class of LK-loops (in Russian), Mat. Issled. 120 (1991), 3-7.
- [2] Drápal A., Conjugacy closed loops and their multiplication groups, J. Algebra 272 (2004), 838–850.
- [3] Drápal A., On multiplication groups of left conjugacy closed loops, Comment. Math. Univ. Carolinae 45 (2004), 223–236.
- [4] Goodaire E.G., Robinson D.A., A class of loops which are isomorphic to all loop isotopes, Canad. J. Math. 34 (1982), 662–672.
- [5] Kiechle H., Nagy G.P., On the extension of involutorial Bol loops, Abh. Math. Sem. Univ. Hamburg 72 (2002), 235–250.
- [6] Nagy P., Strambach K., Loops as invariant sections in groups and their geometry, Canad. J. Math. 46 (1994), 1027–1056.
- [7] Soikis L.R., The special loops (in Russian), in: Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinyev, 1970, pp. 122–131.

Department of Algebra and Number Theory, Eötvös University, Pázmány P. sétány 1/C, H–1117 Budapest, Hungary

E-mail: ska@cs.elte.hu

(Received October 22, 2004, revised December 14, 2004)