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Extending the structural homomorphism of LCC loops

PiroskA CSORGO

Abstract. A loop Q@ is said to be left conjugacy closed if the set A = {L./z € Q}
is closed under conjugation. Let @ be an LCC loop, let £ and R be the left and
right multiplication groups of @ respectively, and let I(Q) be its inner mapping group,
M(Q) its multiplication group. By Drépal’s theorem [3, Theorem 2.8] there exists a
homomorphism A : £ — I(Q) determined by L, — R;le. In this short note we
examine different possible extensions of this A and the uniqueness of these extensions.
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1. Introduction

Q is a loop if it is a quasigroup with neutral element. The functions Ly (z) = ax
(left translation) and Rq(z) = za (right translation) are permutations on the
elements of @ for every a € ). The permutation group generated by left and
right translations M (Q) = (Lq, Re / a € Q) is called the multiplication group of
the loop Q. Denote I(Q) the stabilizer of the neutral element in M (Q). I(Q) is a
subgroup of M (Q) and it is called the inner mapping group of Q. It is clear that
M(Q) is a transitive permutation group on the loop Q. Denote A = {L, / a € Q}
and B = {Rq / a € Q}. It is well known that A and B are left (and right)
transversals to I(Q) in M (Q) which satisfy (A, B) = M(Q), and the commutator
subgroup [A, B] < I(Q). Furthermore corepy gy I(Q) = 1 (coreps(g) [(Q) means
the largest normal subgroup of M (Q) in I(Q)).

The subgroups £ = (Ly / a € Q) and R = (R, / a € Q) are called left and right
multiplication groups, respectively. Denote £1 = £ N I(Q), R1 =R N I(Q) and
T, = L;'R,. A standard fact is that 1(Q) is generated by £L1UR1U{Ty / = € Q}.

The right nucleus of a loop @ is

Ny={acQ/ (zy)a=x(ya) forevery z,y € Q},
the left nucleus of a loop Q@ is

Ny={a€Q / alzy) = (ax)y for every z,y € Q}.
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We have (see [3, Lemma 1.9])

CM(Q)(R) = {La / ac N)\} and
Car@)(£) = {Ra / a € N,).

A subset A of a group G is said to be closed under conjugation if a{? € A for
all a1,a2 € A. This is clearly true if and only if A is a normal subset in (A).

A loop @ is said to be conjugacy closed (CC) if the sets A = {L, / = € Q}
and B = {R; / © € Q} are closed under conjugation. The concept of conjugacy
closedness was introduced first by Soikis [7] and later independently by Goodaire
and Robinson [4].

A loop @ is called left conjugacy closed (LCC) if the set A = {L; / x € Q}
is closed under conjugation. Thus for all a,b € @ there exists ¢ € @ such that
LQLI,L;1 = L.. Hence in every LCC loop @) we have LQLI,L;1 = LTa(b) for all
a,b e Q.

LCC loops were also introduced by Soikis [7]. We have to mention Basarab’s
paper [1], A. Drapal’s paper [3] and P. Nagy and K. Strambach’s paper [6]. This
latter paper is in connection with geometry of LCC loops. As a Bol loop @ is
LCC if and only if 22 € N for all # € Q we have to emphasize the relevance of
the paper of G.P. Nagy with H. Kiechle [5].

A. Drépal studied in [2] the relationship within multiplication groups of conju-
gacy closed (CC) loops, and in his other paper [3] concerning LCC loops he could
transfer some basic facts from CC loops to LCC loops. The following basic result
— which has been used in proofs of many statements — can also be found in this
latter paper [3]. This result was first obtained for CC loops in Drépal’s earlier
paper [2].

Theorem 1.1. Let QQ be a left conjugacy closed loop. Denote by L its left
multiplication group. Then there exists a unique homomorphism: A : L — I(Q)
that maps L, to T, for each x € (). This homomorphism is the identity on L1
and its kernel is equal to Z(L) = {Ry; / v € Q} N L; furthermore if Ry € Z(L),
then x € Z(Np).

As the kernel of this homomorphism A does not contain the whole set {R, / a €
N,} we cannot conclude — using this kernel — if the loop has non-trivial right
nucleus. The purpose of this paper is to extend this homomorphism in such a way
that the kernel consists of the set {Rq / a € Np}. Since Cprgy(L) ={Ra / a €
N,} it seems natural to examine the relationship between {g € M(Q) / Lj € A
for every L, € A} and A. It turned out that we can really extend this A in the
required way.

2. Extension

In this section, for the proofs of our theorems we need the following
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Lemma 2.1. Let Q be a loop, M (Q) its multiplication group, A = {L, / z € Q},
B = {R;/x € Q}. Denote Hy = {h € I(Q) / A" = A}. Then the following
statements are true:

(i) Ho = 1(Q) N Aut(Q);

(ii) B" = B for some h € I(Q) if and only if h € Hy.

PRrROOF: (i) First we show that if h € I(Q)NAut Q, then h € Hyie. hLoh~t € A
for every L, € A.
Let ag € Q be arbitrary, and denote h(a) = a*. Then (hLsh™1)(ag) =
h(ah™Y(ag)) = h(a)ag = a*ag = L= (ag). Consequently hLoh ™1 = Lx.
Conversely, let h € Hp. It suffices to prove h(xy) = h(z)h(y) for arbitrary
z,y € Q. Suppose hLzh~ ! = Ly, hLyh_1 = Ly;. Then
h(x) = h(x-1) = (hLy)(1) = (hLyh~ 1) (1) = Lyy (1) =27 and
hy) = hly - 1) = (hLy)(1) = (Lyh~1)(1) = Ly, (1) =y,
further h(zy) = h(zy - 1) = (hLyLy)(1) = (hLyLyh™1)(1) = Ly, Ly, (1) = z191.
(ii) By (i) it is obvious. O

Lemma 2.2. Let @ be an LCC loop, M(Q) its multiplication group, I(Q) its
inner mapping group, A = {Lq / a € Q}. Let A be the homomorphism from
Theorem 1.1. Suppose h € I(Q) N Aut Q. Then (A(Ly))"* = A(LP) for every
Ly € A.

PROOF: We have L} = Lp-1(a); Th = Th-1(a)- Using A(La) = To we get our
statement. O

We observe that for every element g of M(Q) obviously both (Rg(l))_l g and
(Lg(l))_lg belong to 1(Q).

In Drépal’s theorem (Theorem 1.1) this homomorphism A maps Ly to T, =
R;'L, and it is the identity on £; (= £ N I(Q)). Consequently, ImnA =
Ty / x € Q). As we have L = ALy and A N L1 = {e}, this A maps £ into
I(Q) in such a way that A(¢) = Rg_(i)ﬁ for every ¢ € L.

Extend this function A to the whole M (Q). Thus we consider the function Ag
which maps g € M(Q) to Rg_(ll)g e I1(Q).

Since Ag is a homomorphism on £, the question arises: which is the largest
subgroup of M(Q) such that Ag is a homomorphism on this subgroup. The
following theorem gives the answer.

Theorem 2.3. Let @ be an LCC loop. Let Ay : M(Q) — I(Q) be such that
Ao(g) = R;(ll)g. Then the largest subgroup L* of M(Q) such that the restriction

of Ag on L* is a homomorphism, is the following:
LY={ge M(Q) /L% ecA forevery Ly € A},
LSNIQ)=I(Q)NAuQ and L*=L(I(Q)NAutQ).
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Denote A* the restriction of Ag on £*. Then A* is the identity on L* N I(Q) and
KerA*={R; /x€Q} N L ={R, / a € N,}. Furthermore Im A* is generated

by (£5 N 1(Q)) U{Ty / = € @}

PRrROOF: The left conjugacy closedness implies £* > L. Denote U = {g €
M(Q) / Lj € A for every L, € A}. Clearly U is a subgroup of M(Q).

First we show £* < U. Since B N I(Q) = {e} obviously Ag is the iden-
tity on I(Q). Let h € £* N I(Q), Ly € A. Then hL, € L£* and Ag(hL,) =
Ag(R)Ag(Lg) = hR; 1 Lg. On the other hand, Ag(hLs) = R 'hL, where R71hL,
€ I(Q). Hence Rflfl = R for every a € Q, h € £* N I(Q), consequently B" = B.
Using Lemma 2.1 we obtain £* N I(Q) < U. The left conjugacy closedness implies
L<U.

We show Ag is a homomorphism on U. Let ¢1,¢9 € U, clearly {1 = Lq, h1, {2 =
Lg,ho with h1,hg €U N 1(Q). We prove AO(Lal h1Lg, ha) = AO(Lal hl)Ao(La2 h3).
Clearly Ag(Lg, h1) = R_lLalhl =A(Lg, )h1, AO(Laz hg) R, La2 ho = A(Laz)hg

On the other hand, AO(Lal hlLazhg) = AO(LalLag hlhg) Rd 1La1 La2 hlhg

for some d € Q. By the definition of U, La2 € A, whence LalLa2 e L,
—1 —1

consequently A(Lq, LZ; )= RglLa1 LZ; , and using that A is a homomorphism

—1
on L we get Ag(Lq,h1Lashe) = A(Lal)A(LZZ1 )h1ha. Thus it suffices to show
A(LZZ1 1) = (A(La2))h;1, but this follows immediately from Lemma 2.2.
Lemma 2.1 implies £* N I(Q) = I(Q) N Aut Q. Since £ < L*, we have L* =
L(I(Q)NAut Q).
AsImLl = (T / z € Q) and A* is the identity on £* N I(Q) it follows
Im A* is generated by £* N I(Q) and {T / = € Q}. We have KerA* = {f ¢

£ ) A (f) = R;(ll) = e}. Hence f = Ry;) € B N L*. From [A, B] < I(Q)

we get L 1L ™ e I1(Q) for every L, € A, but Rpqy € L* implies L 1M ¢ 4,
consequently Ry 1) € Cpy(@)(A), whence Ry (1) € Cyp(g)(L). Since Cpyg)(£) =
{Ra / a € Ny}, we concluce Ker A* =B N L* ={R, / a € Np}. O

Our next question is, whether every homomorphism of £* into I(Q) which
coincides with A on the elements of £ is equal to A*.

We give the answer:

Theorem 2.4. Let Q be an LCC loop, M (Q) its multiplication group, I(Q) its
inner mapping group, A = {Ly, / a € Q}, L* = {g € M(Q) / L} € A for every
L, € A}.

Let T = (Ty [ x € Q), ¢ € Cp()(T). Define a function Ay on L*: if { = Lqh €
L* with h € £* N I(Q), then A1(¢) = A(Lg)h®. Then A; is a homomorphism on
L* and Ay coincides with A on the elements of L.
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PrOOF: We have ImA = (T;; / = € @) and £ < ImA, whence ¢ € Cg(L1),
consequently Aj coincides with A on the elements of L.
We show A; is a homomorphism on £*. Let ¢1,0o € L*, {1 = Lqg,h1, by =
Lgyho with hy,hy € £* N I(Q). By the definition of A1, A1(¢1) = A(Lal)hﬁ,
1

A1(l2) = A(Lqy)h§. Clearly £149 = LalLZ; hiha, since (Laz)hf1 € A we have

L, (Laz)hli1 € L, whence Lg, (Laz)h;1 = Lgzha with hg € £;. Consequently
Al(élﬁg) = A(Las)(hghlhg)c. As h3 € T it follows Al(élég) = A(LGS)hg(hlhg)c =
—1
A(Lashs)(h1h2)® = A(La;)A(Lay)"t - (h1ha). B
Thus it suffices to prove (A(Laz))(hlil)c = A(LZz1 ). Using ImA = T and

_ 1
¢ € Cp)(T) it is equivalent to (A(Lgy)) - A(LZ;l ). The latter equality

follows immediately from Lemma 2.2. O

Corollary 2.5. Let @ be an LCC loop. Denote T = (T, / € Q) and suppose
that Crq)(T) £ Cr@)(L£L* N I(Q)). Then there exists a homomorphism A1 on
L* which coincides with A on L, but A1 # A*, where A* is the homomorphism
described in Theorem 2.3.
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