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Bi-ideal-simple semirings

VAcLav FLASKA, ToMAS KEPKA, JAN SAROCH

Abstract. Commutative congruence-simple semirings were studied in [2] and [7] (but
see also [1], [3]-[6]). The non-commutative case almost (see [8]) escaped notice so far.
Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very
short note is to collect several pieces of information on these semirings.
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1. Introduction

A semiring is a non-empty set equipped with two binary operations, denoted as
addition and multiplication, such that the addition makes a commutative semi-
group, the multiplication is associative and distributes over the addition from
both sides. The additive (multiplicative, resp.) semigroup of the semiring may,
but need not, contain a neutral and/or an absorbing element. An element will be
called bi-absorbing if it is absorbing for both the operations. If such an element ex-
ists, it will be denoted by the symbol o (= 0g). We thus have o+x = ox = z0o =0
for every z € S.

Let S be a semiring. We put A+ B ={a+b;a € A,b € B}, AB = {ab;a €
A,b € B} and 24 = {a+ a; a € A} for any two subsets A and B of S.

A semiring S is called congruence-simple if it has just two congruence relations.

2. Bi-ideals

Let S be a semiring. A non-empty subset I of S is called a bi-ideal of S if
(S+I)USIUIS C I (i.e., I is an ideal both of the additive and the multiplicative
semigroup of the semiring 5).

The following seven lemmas are easy.

2.1 Lemma. A one-element subset {w} of S is a bi-ideal if and only if w = og
is a bi-absorbing element of S.
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2.2 Lemma. The subsets S,S+ 5,55+ 5,555+ S,... are bi-ideals of S.
2.3 Lemma. SaS + S is a bi-ideal of S for every a € S.
In the remaining lemmas, assume that o € S.
2.4 Lemma. The set {z € S; xSx = o} is a bi-ideal.
2.5 Lemma. The set {x € S; x + xSz = o} is a bi-ideal.
2.6 Lemma. The set {x € S; 2z = o} is a bi-ideal.

2.7 Lemma. The sets (0:S); ={x € S; xS =0}, (0:5) ={zx € S; Sz =0}
and (0: S)m = {x € S; SxS = o} are bi-ideals.

3. Bi-ideal-free semirings

3.1 Proposition. A semiring S is bi-ideal-free (i.e., it has no proper bi-ideal) if
and only if S = SaS + S for every a € S.

PROOF: The assertion follows easily from 2.3. ]

4. Bi-ideal-simple semirings — introduction

A semiring S will be called bi-ideal-simple if |S| > 2 and I = S whenever I is
a bi-ideal of S with |I| > 2.

4.1 Proposition. A semiring S is bi-ideal-simple if and only if at least one (and
then just one) of the following five cases takes place:
(1) |5]=2;
(2) |S| >3 and S = SaS+ S for every a € S;
(3) |S|>3,0e S and S =SaS + S for every a € S, a # o;
(4) |1S|>3,0€ 5,54+ S =0and SaS =S for every a € S, a # o;
(5) |S|>3,0eS,SS=0and S+a=S for everya € S, a # o.

PRrROOF: We prove only the direct implication, the converse one being trivial. So,
let S be a bi-ideal-simple semiring. We will assume that |S| > 3 and, moreover,
in view of 3.1, that S is not bi-ideal-free. Then o € S by 2.1 and we have to
distinguish the following three cases.

(i) Let S+ S =o. If SS = o, then every subset of S containing o is a bi-ideal
and then |S| = 2, a contradiction. Thus SS # o, and hence (0 : S); = o by
2.7. Similarly (o : S), = o and, by combination, we get (0 : S)y, = o (use
2.7 again). Now, if a € S, a # o, then SaS # o and, since S + S = o, the
set SaS is a bi-ideal. Thus SaS = S and (4) is true.
(ii) Let SS = o. Then every ideal of S(+) is a bi-ideal, and so the semigroup
S(+) is ideal-simple. Now, (5) is clear.
(iii) Let S+ S # o # SS. We have (0 : S); = 0o = (0 : S), by 2.7, and
hence (0 : S)m = o, too. Further, S+ S = S by 2.2. Now, if a € S,
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a # o, then bac # o for some b,c € S, and b = d+ ¢, d,e € S. Then
0 # bac = dac + eac € SaS + S and consequently, SaS + S = S by 2.3. It
means that (3) is true. O

In the rest of this section, we assume that S is a bi-ideal-simple semiring with
o€Ss.

4.2 Proposition. If S is a nil-semiring (i.e., for every x € S there exists n > 1
with 2™ = o), then SS = o.

PRrROOF: The result is clear for |S| = 2, and so let |S| > 3. If a € S, a # o, is such
that either S = SaS+ S or S = SaS, then a = bac+w, b,c € S, w € SU{0}, and
we have a = b%ac® + bwe + w = b3ac® + bwe? 4+ bwe +w = ..., a contradiction
with "™ = 0. Thus SaS + S # S # SaS and the rest is clear from 4.1. O

4.3 Lemma. If |S| > 3 and SS # o, then for every a € S, a # o, there exist
elements b, c,d € S such that bac # o # ada.

ProOOF: Combine 2.4, 2.7 and 4.2. (I

4.4 Lemma. Just one of the following two cases takes place:

(1)  + xSz = o for every x € S;
(2) for every a € S, a # o, there exists at least one b € S with a + aba # o.

Proor: Use 2.5. O

4.5 Lemma. Just one of the following two cases takes place:

(1) 2z = o for every x € S;
(2) 2a # o for every a € S,a # o.

Proor: Use 2.6. O

5. Congruence-simple semirings
5.1 Proposition. Every congruence-simple semiring is bi-ideal-simple.
PROOF: If [ is a bi-ideal, then the relation (I x I) Uidg is a congruence of S. O

5.2 Proposition. Let S be a bi-ideal-simple semiring with o € S and let a € S,
a # o. If r is a congruence of S maximal with respect to (a,0) ¢ r, then S/r is
a congruence-simple semiring.

PrOOF: S/r is non-trivial. If s is a congruence of S such that r C s and r # s,
then (a,0) € s and I = {z € S; (z,0) € s} is a bi-ideal of S. Since |I| > 2, we
have I = S and s =5 x S. O

5.3 Corollary. Let S be a bi-ideal-simple semiring with o € S. Then S can be
imbedded into the product of congruence-simple factors of S.
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6. Bi-ideal-simple semirings of type 4.1(4)

6.1. If S is a bi-ideal-simple semiring of type 4.1(4), then the multiplicative
semigroup of S is ideal-simple.

6.2. Let S be a multiplicative ideal-simple semigroup with |S| > 3 and 0 € S.
Setting S + S = o we get a bi-ideal-simple semiring of type 4.1(4).
7. Bi-ideal-simple semirings of type 4.1(5)

7.1. If S is a bi-ideal-simple semiring of type 4.1(5), then T'(+) is an (abelian)
subgroup of S(+), where T = S \ {o}.

7.2. Let T(+) be an abelian group, |T| > 2, 0 ¢ T and S = T U {o}. Setting
SS=S540=0+ 5 =0 we get a bi-ideal-simple semiring of type 4.1(5).

8. Additively zeropotent semirings

In this section, let S be an additively zeropotent semiring (a zp-semiring for
short). That is, o € S and 25 = o. We define a relation < on S by a < b
iff b€ (S+a)U{a}. Itis easy to check that < is a relation of order which is
compatible with the two operations defined on S. That is, < is an ordering of the
semiring S. Clearly, o is the greatest element of S.

8.1 Lemma. If |S| > 2, then an element a € S, a # o, is maximal in S\ {o} if
and only if S+ a = o.

ProoOF: Obvious. O
In the rest of this section, we will assume that S = 5+ 5.
8.2 Lemma. If |S| > 2, then S has no minimal elements.

ProOF: Ifa € S,a# o,thena=b+c,b<a. Ifb=a,thena=a+c=a+2c=
a + o = o, a contradiction. (I

8.3 Corollary. Either |S| =1 or S is infinite.
8.4 Lemma. The only idempotent element of S is the bi-absorbing element o.

PROOF: Let b = b for some b € S. Then b = c+d and b = b3 = b(c + d)b =
beb + bdb. Of course, ¢ < b, d < b, and hence cd < bd, c¢d < ¢b, 0 = 2cd < bd + ¢b
and bd 4 ¢b = o. Finally, o = bob = bdb + bcb = b. (|

8.5 Corollary. If S contains a left (or right) unit, then |S| = 1.
8.6 Lemma. If o* = a! for some a € S and 1 < k < I, then a* = o.

PROOF: There are positive integers m,n such that m(l — k) = k + n. Now, if

k k l k l—k 11—k k l—k -k
b = a®", then b = a*a" = d'a™ = a®a'Fa" = d'dFa" = %! Fa! TR =
o= gkam=k)gn — g2k+2n — p2, By 8.4, b = o, and hence a* = a! = aFal=F =
akal=kgl=k — ... = gkqmU=Fk) = gkgk+n — gkp — o, d
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8.7 Lemma. Let a,b € S and k,1 > 1 be such that a* = a' +b. Then a2* = o.
Moreover, if 2k < [, then a* = o.

PrROOF: We have a? + alb = al(a’ + b) = a**! = (a! + b)a! = a® + ba'. Conse-
quently, a?* = (a! +b)? = a? +alb+ ba! + b2 = a® + bal + bal + b2 = 0. If 2k < I,
then a%F = o implies a' = 0 and hence a* = a! +b = 0. (Il

8.8 Lemma. If a € S is a non-nilpotent element, then the powers a',a?, a3, . ..

are pair-wise incomparable.
ProoF: Combine 8.6 and 8.7. (I
8.9 Lemma. If a,b € S are such that aba < a, then a = o.

PROOF: If aba = a, then (ab)? = ab, ab = o by 8.4 and a = aba = oa = o. If
aba + ¢ = a, then ab = abab + cb = (ab)? + ¢b, ab = 0 by 8.7 and a = o, too. [

8.10 Lemma. If a,b € S are such that ab = a # o (ab = b # o, resp.), then
a%b(bsa,resp.).

PrOOF: Firstly, a # b by 8.4. Now, if a < b, then b = a + ¢, ac < be, ¢ < b,
ac < ab = a, o = 2ac < a + bc and a + be = o. Thus o0 = a(a + be) = a® + abc =
a? + ac = a(a + ¢) = ab = a, a contradiction. Similarly the second case. O

8.11 Proposition. Let S be a zp-semiring with S+ S = S and |S| > 2. Then:
(i) S is infinite;

(ii) the ordered set (S, <) has no minimal elements;

(iii) the bi-absorbing element o is the only idempotent element of S;

(iv) S contains neither a left nor a right unit;

(v) if a € S is not nilpotent, then the elements a*, i > 1, are pair-wise incom-

parable in (S, <);

(vi) if a # o, then aba £ a for every b € S;

(vii) if 0 #a <), then ab # a;

(viii) if 0 # b < a, then ab # b.

PROOF: See 8.2,8.3,8.4,8.5,8.8,8.9 and 8.10. 0

9. Bi-ideal-simple zp-semirings

9.1 Proposition. Let S be a zp-semiring with |S| > 3. Then S is bi-ideal-simple
if and only if at least one (and then just one) of the following two cases takes
place:

(1) S+S=o0and SaS =S foreverya € S, a # o;
(2) S= S5+ SaS for every a € S, a # o.

PROOF: The result follows easily from 4.1. ]

In the rest of this section, let .S be a bi-ideal-simple semiring such that S+S # o.
Then S+ S =S and S is infinite (see 8.11). Moreover, by 4.2, S is not nil.
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9.2 Lemma. Let V be a finite subset of S\ {o}. Then there exists at least one
element a € S such that a # o and a £ v for every v € V.

PrOOF: Firstly, by 9.1, we have S = S+ 5bS for every b € S, b # o. In particular,
SbS # 0, SS # o and, by 4.3, for every w € V there is at least one a,y € S with
wayww # o. Then ay # o and wayw £ w by 8.9. Now, a sequence vy, ..., V,
k > 2, of elements from V will be called admissible in the sequel if these elements
are pair-wise distinct and v;a;v; < vi41 for some a; € S, 1 <i<k—1.

If there is no admissible sequence, then wa,w # o and wayw £ v for all
w,v € V. The result is proved in this case, and hence we can assume that
v1,...,V%, k> 2, is an admissible sequence with maximal length k.

Let m be maximal with respect to 1 < m < k and vbv, < vy, for at least one
b e S. Then m < k by 8.9 and vinmamvm < V41 implies vpbvgpamvpbvy < vmo1,
a contradiction with the maximality of m. We have thus shown that vgcv, £ v;
for all 1 <i <k and ¢ € S. In particular, o # vgagvg £ v; for some ap € S and
all i, 1 <4 < k. Finally, it follows from the maximality of k that vgagvr £ v for
every v € V. (]

9.3 Corollary. Denote by A the set of maximal elements of (S \ {0}, <) (see
8.1) and assume that every element from S\ {0} is smaller or equal to an element
from A. Then the set A is infinite.

9.4 Proposition. Just one of the following two cases takes place:

(1) x + xSz = o and 2™ + 2™ = o for every x € S and all positive integers
m,n;
(2) foreverya € S, a # o, there exists at least one b € S such that a+aba # o.

Proor: Taking into account 4.4, we may assume that = + xSz = o for every
z €S. Then z + 23 = 0 and we put I = {a € S; a + a® = 0}. Clearly, I is an
ideal of S(+). Moreover, if a € I and b € S, then ab + abab = (a + aba)b = o.
Thus ab € I, similarly ba € I and we see that I is a bi-ideal of S.

If I = {0}, then a + a® # o for every a € S, a # 0. But a® 4+ a* = a(a + a?) =
ao = o and a? € I. It follows that a® = o for every a € S, a contradiction with
4.2. Thus I # {o} and we get I = S and z + 2? = o for every = € S. Further,
x + x = o by the zp-property and x + ™ = o for every n > 3, since x + =Sz = o.

If 2 < n <m, then 2" 4+ 2™ = 2" Lz + 2™ 1) = g7~ 1o = 0. O

9.5 Proposition. Denote by A the set of maximal elements of the ordered set
(S\ {o},<). If A is non-empty, then x + xSz = o for every x € S (i.e., the case
9.4(1) takes place).

ProOOF: Combine 8.1 and 9.4. (I
10. An open problem

10.1. No example of a non-trivial zp-semiring S with S+ S = S (see 8.11) is
known (at least to the authors of the present brief note).
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