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Bi-ideal-simple semirings

Václav Flaška, Tomáš Kepka, Jan Šaroch

Abstract. Commutative congruence-simple semirings were studied in [2] and [7] (but
see also [1], [3]–[6]). The non-commutative case almost (see [8]) escaped notice so far.
Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very
short note is to collect several pieces of information on these semirings.
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1. Introduction

A semiring is a non-empty set equipped with two binary operations, denoted as
addition and multiplication, such that the addition makes a commutative semi-
group, the multiplication is associative and distributes over the addition from
both sides. The additive (multiplicative, resp.) semigroup of the semiring may,
but need not, contain a neutral and/or an absorbing element. An element will be
called bi-absorbing if it is absorbing for both the operations. If such an element ex-
ists, it will be denoted by the symbol o (= oS). We thus have o+x = ox = xo = o
for every x ∈ S.
Let S be a semiring. We put A + B = {a+ b; a ∈ A, b ∈ B}, AB = {ab; a ∈

A, b ∈ B} and 2A = {a+ a; a ∈ A} for any two subsets A and B of S.
A semiring S is called congruence-simple if it has just two congruence relations.

2. Bi-ideals

Let S be a semiring. A non-empty subset I of S is called a bi-ideal of S if
(S+I)∪SI∪IS ⊆ I (i.e., I is an ideal both of the additive and the multiplicative
semigroup of the semiring S).
The following seven lemmas are easy.

2.1 Lemma. A one-element subset {w} of S is a bi-ideal if and only if w = oS

is a bi-absorbing element of S.
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2.2 Lemma. The subsets S, S + S, SS + S, SSS + S, . . . are bi-ideals of S.

2.3 Lemma. SaS + S is a bi-ideal of S for every a ∈ S.

In the remaining lemmas, assume that o ∈ S.

2.4 Lemma. The set {x ∈ S; xSx = o} is a bi-ideal.

2.5 Lemma. The set {x ∈ S; x+ xSx = o} is a bi-ideal.

2.6 Lemma. The set {x ∈ S; 2x = o} is a bi-ideal.

2.7 Lemma. The sets (o : S)l = {x ∈ S; xS = o}, (o : S)r = {x ∈ S; Sx = o}
and (o : S)m = {x ∈ S; SxS = o} are bi-ideals.

3. Bi-ideal-free semirings

3.1 Proposition. A semiring S is bi-ideal-free (i.e., it has no proper bi-ideal) if
and only if S = SaS + S for every a ∈ S.

Proof: The assertion follows easily from 2.3. �

4. Bi-ideal-simple semirings — introduction

A semiring S will be called bi-ideal-simple if |S| ≥ 2 and I = S whenever I is
a bi-ideal of S with |I| ≥ 2.

4.1 Proposition. A semiring S is bi-ideal-simple if and only if at least one (and
then just one) of the following five cases takes place:

(1) |S| = 2;
(2) |S| ≥ 3 and S = SaS + S for every a ∈ S;
(3) |S| ≥ 3, o ∈ S and S = SaS + S for every a ∈ S, a 6= o;
(4) |S| ≥ 3, o ∈ S, S + S = o and SaS = S for every a ∈ S, a 6= o;
(5) |S| ≥ 3, o ∈ S, SS = o and S + a = S for every a ∈ S, a 6= o.

Proof: We prove only the direct implication, the converse one being trivial. So,
let S be a bi-ideal-simple semiring. We will assume that |S| ≥ 3 and, moreover,
in view of 3.1, that S is not bi-ideal-free. Then o ∈ S by 2.1 and we have to
distinguish the following three cases.

(i) Let S + S = o. If SS = o, then every subset of S containing o is a bi-ideal
and then |S| = 2, a contradiction. Thus SS 6= o, and hence (o : S)l = o by
2.7. Similarly (o : S)r = o and, by combination, we get (o : S)m = o (use
2.7 again). Now, if a ∈ S, a 6= o, then SaS 6= o and, since S + S = o, the
set SaS is a bi-ideal. Thus SaS = S and (4) is true.

(ii) Let SS = o. Then every ideal of S(+) is a bi-ideal, and so the semigroup
S(+) is ideal-simple. Now, (5) is clear.

(iii) Let S + S 6= o 6= SS. We have (o : S)l = o = (o : S)r by 2.7, and
hence (o : S)m = o, too. Further, S + S = S by 2.2. Now, if a ∈ S,
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a 6= o, then bac 6= o for some b, c ∈ S, and b = d + e, d, e ∈ S. Then
o 6= bac = dac + eac ∈ SaS + S and consequently, SaS + S = S by 2.3. It
means that (3) is true. �

In the rest of this section, we assume that S is a bi-ideal-simple semiring with
o ∈ S.

4.2 Proposition. If S is a nil-semiring (i.e., for every x ∈ S there exists n ≥ 1
with xn = o), then SS = o.

Proof: The result is clear for |S| = 2, and so let |S| ≥ 3. If a ∈ S, a 6= o, is such
that either S = SaS+S or S = SaS, then a = bac+w, b, c ∈ S, w ∈ S∪{0}, and
we have a = b2ac2 + bwc + w = b3ac3 + b2wc2 + bwc + w = . . . , a contradiction
with bn = o. Thus SaS + S 6= S 6= SaS and the rest is clear from 4.1. �

4.3 Lemma. If |S| ≥ 3 and SS 6= o, then for every a ∈ S, a 6= o, there exist
elements b, c, d ∈ S such that bac 6= o 6= ada.

Proof: Combine 2.4, 2.7 and 4.2. �

4.4 Lemma. Just one of the following two cases takes place:

(1) x+ xSx = o for every x ∈ S;
(2) for every a ∈ S, a 6= o, there exists at least one b ∈ S with a+ aba 6= o.

Proof: Use 2.5. �

4.5 Lemma. Just one of the following two cases takes place:

(1) 2x = o for every x ∈ S;
(2) 2a 6= o for every a ∈ S, a 6= o.

Proof: Use 2.6. �

5. Congruence-simple semirings

5.1 Proposition. Every congruence-simple semiring is bi-ideal-simple.

Proof: If I is a bi-ideal, then the relation (I × I)∪ idS is a congruence of S. �

5.2 Proposition. Let S be a bi-ideal-simple semiring with o ∈ S and let a ∈ S,
a 6= o. If r is a congruence of S maximal with respect to (a, o) /∈ r, then S/r is
a congruence-simple semiring.

Proof: S/r is non-trivial. If s is a congruence of S such that r ⊆ s and r 6= s,
then (a, o) ∈ s and I = {x ∈ S; (x, o) ∈ s} is a bi-ideal of S. Since |I| ≥ 2, we
have I = S and s = S × S. �

5.3 Corollary. Let S be a bi-ideal-simple semiring with o ∈ S. Then S can be
imbedded into the product of congruence-simple factors of S.
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6. Bi-ideal-simple semirings of type 4.1(4)

6.1. If S is a bi-ideal-simple semiring of type 4.1(4), then the multiplicative
semigroup of S is ideal-simple.

6.2. Let S be a multiplicative ideal-simple semigroup with |S| ≥ 3 and o ∈ S.
Setting S + S = o we get a bi-ideal-simple semiring of type 4.1(4).

7. Bi-ideal-simple semirings of type 4.1(5)

7.1. If S is a bi-ideal-simple semiring of type 4.1(5), then T (+) is an (abelian)
subgroup of S(+), where T = S \ {o}.

7.2. Let T (+) be an abelian group, |T | ≥ 2, o /∈ T and S = T ∪ {o}. Setting
SS = S + o = o+ S = o we get a bi-ideal-simple semiring of type 4.1(5).

8. Additively zeropotent semirings

In this section, let S be an additively zeropotent semiring (a zp-semiring for
short). That is, o ∈ S and 2S = o. We define a relation ≤ on S by a ≤ b
iff b ∈ (S + a) ∪ {a}. It is easy to check that ≤ is a relation of order which is
compatible with the two operations defined on S. That is, ≤ is an ordering of the
semiring S. Clearly, o is the greatest element of S.

8.1 Lemma. If |S| ≥ 2, then an element a ∈ S, a 6= o, is maximal in S \ {o} if
and only if S + a = o.

Proof: Obvious. �

In the rest of this section, we will assume that S = S + S.

8.2 Lemma. If |S| ≥ 2, then S has no minimal elements.

Proof: If a ∈ S, a 6= o, then a = b+ c, b ≤ a. If b = a, then a = a+ c = a+2c =
a+ o = o, a contradiction. �

8.3 Corollary. Either |S| = 1 or S is infinite.

8.4 Lemma. The only idempotent element of S is the bi-absorbing element o.

Proof: Let b2 = b for some b ∈ S. Then b = c + d and b = b3 = b(c + d)b =
bcb+ bdb. Of course, c ≤ b, d ≤ b, and hence cd ≤ bd, cd ≤ cb, o = 2cd ≤ bd+ cb
and bd+ cb = o. Finally, o = bob = bdb+ bcb = b. �

8.5 Corollary. If S contains a left (or right) unit, then |S| = 1.

8.6 Lemma. If ak = al for some a ∈ S and 1 ≤ k < l, then ak = o.

Proof: There are positive integers m, n such that m(l − k) = k + n. Now, if

b = ak+n, then b = akan = alan = akal−kan = alal−kan = akal−kal−kan =

· · · = akam(l−k)an = a2k+2n = b2. By 8.4, b = o, and hence ak = al = akal−k =

akal−kal−k = · · · = akam(l−k) = akak+n = akb = o. �
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8.7 Lemma. Let a, b ∈ S and k, l ≥ 1 be such that ak = al + b. Then a2k = o.
Moreover, if 2k ≤ l, then ak = o.

Proof: We have a2l + alb = al(al + b) = ak+l = (al + b)al = a2l + bal. Conse-

quently, a2k = (al+ b)2 = a2l+ alb+ bal+ b2 = a2l+ bal+ bal+ b2 = o. If 2k ≤ l,

then a2k = o implies al = o and hence ak = al + b = o. �

8.8 Lemma. If a ∈ S is a non-nilpotent element, then the powers a1, a2, a3, . . .
are pair-wise incomparable.

Proof: Combine 8.6 and 8.7. �

8.9 Lemma. If a, b ∈ S are such that aba ≤ a, then a = o.

Proof: If aba = a, then (ab)2 = ab, ab = o by 8.4 and a = aba = oa = o. If
aba+ c = a, then ab = abab+ cb = (ab)2 + cb, ab = o by 8.7 and a = o, too. �

8.10 Lemma. If a, b ∈ S are such that ab = a 6= o (ab = b 6= o, resp.), then
a � b (b � a, resp.).

Proof: Firstly, a 6= b by 8.4. Now, if a ≤ b, then b = a + c, ac ≤ bc, c ≤ b,
ac ≤ ab = a, o = 2ac ≤ a+ bc and a+ bc = o. Thus o = a(a+ bc) = a2 + abc =
a2 + ac = a(a+ c) = ab = a, a contradiction. Similarly the second case. �

8.11 Proposition. Let S be a zp-semiring with S + S = S and |S| ≥ 2. Then:

(i) S is infinite;
(ii) the ordered set (S,≤) has no minimal elements;
(iii) the bi-absorbing element o is the only idempotent element of S;
(iv) S contains neither a left nor a right unit;
(v) if a ∈ S is not nilpotent, then the elements ai, i ≥ 1, are pair-wise incom-
parable in (S,≤);

(vi) if a 6= o, then aba � a for every b ∈ S;
(vii) if o 6= a ≤ b, then ab 6= a;
(viii) if o 6= b ≤ a, then ab 6= b.

Proof: See 8.2, 8.3, 8.4, 8.5, 8.8, 8.9 and 8.10. �

9. Bi-ideal-simple zp-semirings

9.1 Proposition. Let S be a zp-semiring with |S| ≥ 3. Then S is bi-ideal-simple
if and only if at least one (and then just one) of the following two cases takes
place:

(1) S + S = o and SaS = S for every a ∈ S, a 6= o;
(2) S = S + SaS for every a ∈ S, a 6= o.

Proof: The result follows easily from 4.1. �

In the rest of this section, let S be a bi-ideal-simple semiring such that S+S 6= o.
Then S + S = S and S is infinite (see 8.11). Moreover, by 4.2, S is not nil.
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9.2 Lemma. Let V be a finite subset of S \ {o}. Then there exists at least one
element a ∈ S such that a 6= o and a � v for every v ∈ V .

Proof: Firstly, by 9.1, we have S = S+SbS for every b ∈ S, b 6= o. In particular,
SbS 6= o, SS 6= o and, by 4.3, for every w ∈ V there is at least one aw ∈ S with
waww 6= o. Then aw 6= o and waww � w by 8.9. Now, a sequence v1, . . . , vk,
k ≥ 2, of elements from V will be called admissible in the sequel if these elements
are pair-wise distinct and viaivi ≤ vi+1 for some ai ∈ S, 1 ≤ i ≤ k − 1.
If there is no admissible sequence, then waww 6= o and waww � v for all

w, v ∈ V . The result is proved in this case, and hence we can assume that
v1, . . . , vk, k ≥ 2, is an admissible sequence with maximal length k.
Let m be maximal with respect to 1 ≤ m ≤ k and vkbvk ≤ vm for at least one

b ∈ S. Then m < k by 8.9 and vmamvm ≤ vm+1 implies vkbvkamvkbvk ≤ vm+1,
a contradiction with the maximality of m. We have thus shown that vkcvk � vi

for all 1 ≤ i ≤ k and c ∈ S. In particular, o 6= vkakvk � vi for some ak ∈ S and
all i, 1 ≤ i ≤ k. Finally, it follows from the maximality of k that vkakvk � v for
every v ∈ V . �

9.3 Corollary. Denote by A the set of maximal elements of (S \ {o},≤) (see
8.1) and assume that every element from S \ {o} is smaller or equal to an element
from A. Then the set A is infinite.

9.4 Proposition. Just one of the following two cases takes place:

(1) x + xSx = o and xm + xn = o for every x ∈ S and all positive integers
m, n;

(2) for every a ∈ S, a 6= o, there exists at least one b ∈ S such that a+aba 6= o.

Proof: Taking into account 4.4, we may assume that x + xSx = o for every
x ∈ S. Then x + x3 = o and we put I = {a ∈ S; a + a2 = o}. Clearly, I is an
ideal of S(+). Moreover, if a ∈ I and b ∈ S, then ab + abab = (a + aba)b = o.
Thus ab ∈ I, similarly ba ∈ I and we see that I is a bi-ideal of S.
If I = {o}, then a+ a2 6= o for every a ∈ S, a 6= o. But a2 + a4 = a(a+ a3) =

ao = o and a2 ∈ I. It follows that a2 = o for every a ∈ S, a contradiction with
4.2. Thus I 6= {o} and we get I = S and x + x2 = o for every x ∈ S. Further,
x+ x = o by the zp-property and x+ xn = o for every n ≥ 3, since x+ xSx = o.
If 2 ≤ n ≤ m, then xn + xm = xn−1(x+ xm−n+1) = xn−1o = o. �

9.5 Proposition. Denote by A the set of maximal elements of the ordered set
(S \ {o},≤). If A is non-empty, then x+ xSx = o for every x ∈ S (i.e., the case
9.4(1) takes place).

Proof: Combine 8.1 and 9.4. �

10. An open problem

10.1. No example of a non-trivial zp-semiring S with S + S = S (see 8.11) is
known (at least to the authors of the present brief note).
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